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AN EQUIVARIANT DISCRETE MODEL FOR COMPLEXIFIED

ARRANGEMENT COMPLEMENTS

EMANUELE DELUCCHI AND MICHAEL J. FALK

Abstract. We define a partial ordering on the set Q = Q(M) of pairs of topes
of an oriented matroid M, and show the geometric realization |Q| of the order

complex of Q has the same homotopy type as the Salvetti complex of M. For

any element e of the ground set, the complex |Qe| associated to the rank-one
oriented matroid on {e} has the homotopy type of the circle. There is a natural

free simplicial action of Z4 on |Q|, with orbit space isomorphic to the order

complex of the poset Q(M, e) associated to the pointed (or affine) oriented
matroid (M, e). If M is the oriented matroid of an arrangement A of linear

hyperplanes in Rn, the Z4 action corresponds to the diagonal action of C∗ on
the complement M of the complexification of A: |Q| is equivariantly homotopy-

equivalent to M under the identification of Z4 with the multiplicative subgroup

{±1,±i} ⊂ C∗, and |Q(M, e)| is homotopy-equivalent to the complement of the
decone of A relative to the hyperplane corresponding to e. All constructions

and arguments are carried out at the level of the underlying posets.

We also show that the class of fundamental groups of such complexes is
strictly larger than the class of fundamental groups of complements of complex

hyperplane arrangements. Specifically, the group of the non-Pappus arrange-

ment is not isomorphic to any realizable arrangement group. The argument
uses new structural results concerning the degree-one resonance varieties of

small matroids.

1. Introduction

An arrangement of hyperplanes is a set A = {H1, . . . , Hn} of linear or affine
codimension 1 subspaces of Cd. An arrangement is complexified if each Hi has a
defining equation with real coefficients; in this case the underlying real arrangement
{H1 ∩ Rd, . . . , Hn ∩ Rd} is denoted AR. A main topic in the theory of hyperplane
arrangements is the study of combinatorial invariants of the topology of the com-
plement M(A) := Cd \

⋃
A.

The arrangement A is called central if all its hyperplanes contain the origin;
in this case, M(A) carries the natural (diagonal) C∗-action. One of the many
consequences of this fact is the following topological property. Fix an element
H0 ∈ A and let H ′0 be a parallel translate of H0 that does not contain the origin.
Let dA be the decone of A relative to H0, the arrangement {H ∩H ′0 | H ∈ A \H0}

in H ′0
∼= Cd−1. Then there is a diffeomorphism

M(A) ∼= C∗ ×M(dA).

There exist combinatorially defined complexes that model the homotopy type
of M(A), e.g., by work of Salvetti [20] in the complexified case, and Björner and
Ziegler [5] in the general case. These complexes are finite, therefore cannot model
the circle action of S1 ⊂ C∗ on M(A).

In principle, there are two ways out of this situation: either to develop ‘contin-
uous’ combinatorial models that can carry a circle action, or to let a ‘discretized’
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2 EMANUELE DELUCCHI AND MICHAEL J. FALK

S1 act on the known combinatorial models. A continuous approach has been at-
tempted, e.g. in [2], and is as yet not fully developed. Here we explore the second
possibility, also in view of the fact that the simplicial complexes mentioned above
are defined in the general setting of pseudosphere arrangements, where no original
linear space with C∗ action exists.

The known discrete complexes depend only on the combinatorics of arrangements
of real codimension-one pseudo-spheres in Sd−1, encoded by the associated oriented
matroid or 2-matroid, respectively, and are defined as the order complexes of certain
partially-ordered sets, or posets. The order complex of a poset P is the abstract
simplicial complex ∆(P) whose simplices are the linearly-ordered subsets, or chains,
of P. Order-preserving and order-reversing maps of posets induce simplicial maps
of order complexes. The geometric realization of ∆(P) is denoted |P |, and is called
the geometric realization of P (see Remark 2.3).

Here we treat only complexified arrangements, in the general setting of oriented
matroids. Associated to a loop-free oriented matroid M, one has the Salvetti poset
S = S(M) whose geometric realization |S | has the homotopy type of M(A) in case
M is realized by the real arrangement AR. In general, by a result of Deshpande [9],
|S | has the homotopy type of the tangent bundle complement of the arrangement
of pseudospheres associated to M (see Definition 3.1). If e0 is a fixed element of
the ground set of M (corresponding to H0 ∈ A) one has the pointed (or affine)
oriented matroid (M, e0), and an associated subposet dS = S(M, e0) of S, with
|dS | homotopy equivalent to the complement of the decone dA of A relative to H0.

In this paper, after a preparatory section on the basics of poset topology, we

• define posets Q = Q(M) and dQ = Q(M, e0) ⊆ Q and an order-preserving
map S → Q inducing homotopy equivalences |S | ' |Q| and |dS | ' |dQ|;

• define a natural free action of Z4 on Q by order-reversing and -preserving
bijections;

• define an equivariant order-preserving map Qe0 × dQ → Q, where Qe0 is
the poset associated with M|{e0} and Z4 acts trivially on dQ, inducing a
homotopy equivalence |Qe0 |× |dQ| ' |Q|. Then |Se0 |× |dS | ' |S | as well.

Thus we obtain a combinatorial version of the cone-decone property of complexi-
fied hyperplane arrangements, which holds in the ostensibly more general setting of
oriented matroids, realizable or not. As a corollary we obtain the main result of [8],
a product decomposition π1(|S |) ∼= Z × π1(|dS |) of fundamental groups, originally
proved via complicated manipulation of group presentations. Our work also partly
answers a question of Ziegler [22, Problem 7.7].

Finally we show that this setting is indeed more general, by displaying an oriented
matroid M, an orientation of the non-Pappus matroid, for which π1(|Q|) is not
isomorphic to the fundamental group of the complement of any complex hyperplane
arrangement. To our knowledge no such example has appeared in the literature.
The argument uses properties of degree-one resonance varieties of small matroids.
Acknowledgements The authors gratefully acknowledge the support of the Insti-
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2. Poset topology

Definition 2.1. A partially ordered set (or poset) is a pair (P,≤) where P is a
set and ≤ a partial order relation on P. A morphism of posets (P,≤P)→ (Q,≤Q)
is an order-preserving function f : P → Q, i.e., one for which f(p1) ≤Q f(p2)
whenever p1 ≤P p2; it is an isomorphism if f is bijective, and in this case we will
write (P,≤P) ∼= (Q ≤Q). We will write Pos for the category of posets and order-
preserving functions. A chain in the poset (P,≤) is a subset of P that is totally
ordered by ≤P . The product of two posets (P,≤P) and (Q,≤Q) is (P ×Q,≤P×Q),
where (p1, q1) ≤(P×Q) (p2, q2) if and only if p1 ≤P p2 and q1 ≤Q q2.

The opposite or ‘order dual’ of a given poset (P,≤P) is the poset (P,≤P)op =
(P,≤opP ) where p1 ≤opP p2 if and only if p2 ≤P p1.

Remark 2.2 (Notation). It is customary to denote a poset (P,≤) by its underlying
set P when the order relation is understood.

Let P be a poset. Let (∆(P),≤) be the poset of chains in P, with σ ≤ τ if and
only if σ ⊆ τ. The poset ∆(P) is an abstract simplicial complex with vertex set
P, called the order complex of P. The standard geometric realization of ∆(P) will
be denoted by |P |, and called the geometric realization of P. We refer to [15] as a
general reference for poset topology.

Remark 2.3. The terminology leads to no conflict: if P is a simplicial complex,
there is a simplicial homeomorphism of |∆(P)| to the barycentric subdivision of |P |.
See also Remark 2.10 below.

As is customary, we refer to the homotopy type of |P | when speaking of “the
homotopy type of the poset P.” In particular, we will say that posets P and Q are
homotopy equivalent (written P ' Q) if |P | and |Q| are.

Remark 2.4.

(a) For every poset P we have ∆(P) = ∆(Pop).
(b) If P and Q are posets, then |P ×Q| is homeomorphic to |P |× |Q|. (In fact

∆(P × Q) is a triangulation of |P | × |Q|.) See [15, Theorem 10.21] for a
generalization.

The following “Quillen Lemma” is widely used.

Lemma 2.5 ([19]). Let f : P → Q be a poset map. If f−1(Q≥q) is contractible for
all q ∈ Q, then P ' Q.

Remark 2.6. The condition of Lemma 2.5 can be replaced by “f−1(Q≤q) is con-
tractible for all q ∈ Q” via Remark 2.4(a).

Definition 2.7. An order-preserving function f : P → P is monotone if either
f(p) ≥ p for all p ∈ P or f(p) ≤ p for all p ∈ P.

Lemma 2.8 (Theorem 13.22(b) in [15]). Let f : P → P be a monotone poset map.
Then P ' fix(f).

Remark 2.9. If a poset P has a unique maximal element p, then P is contractible
because its order complex is the cone over the order complex of P \ {p}.

Remark 2.10. For every poset P, there is a canonical homotopy equivalence ∆(P) '
P (e.g., by the function ∆(P)→ P, ω 7→ minω).
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4 EMANUELE DELUCCHI AND MICHAEL J. FALK

3. Discrete circle action on complexified arrangements

For the remainder of this paper fix a rank r oriented matroid on finite ground
set E and let F be its set of covectors. For an introduction to the theory of oriented
matroids see [4]: here we recall only what is needed in the following.

Definition 3.1. [4, Definition 5.1.3] A rank-r arrangement of pseudospheres is a
set A = {Se}e∈E of centrally symmetric PL-homeomorphic embeddings of Sr−2 in
Sr−1 satisfying

⋂
A = ∅ and, for all B ⊆ A,

⋂
B is a PL-sphere, together with a

choice of a connected component S+e of Sr \ Se for every e ∈ E.
The set of real signs is {+, 0,−}, and the map

σA : Sr−1 → {+, 0,−}E; σA(x)e :=

 + if x ∈ S+e
0 if x ∈ Se
− else.

associates a sign vector to every point of the sphere. Notice that the zero vector
0̂ := (0, . . . , 0) is not in the image of σA.

The set of covectors of a rank-r oriented matroid on the ground set E is any
subset F ⊆ {+, 0,−}E of the form F = im(σA) ∪ {0̂} for some rank r arrangement
of pseudospheres A.

Remark 3.2. If we partially order the set of signs {+, 0,−} by 0 < +, 0 < − and +
incomparable to −, the set F inherits a partial order ≤F as a subset of the product
poset {+, 0,−}E. With this partial ordering, F has a unique minimal element 0̂ and
a set T of maximal elements, called topes.

Notice that, on F \ {0̂}, the ordering ≤F coincides with the incidence relation of
closed cells of the stratification of Sr−1.

A

B C

D E

F

A B D F E C

Figure 1. An arrangement of three lines in the real plane, and
its poset F of faces.

Definition 3.3 (Composition of sign vectors). Given two sign vectors X, Y ∈
{+, 0,−}E define a sign vector X ◦ Y as

(X ◦ Y)e =
{
Ye if Xe = 0
Xe else.

Remark 3.4. If X and Y are covectors of an oriented matroid (and thus correspond
to cells on the sphere), then X◦Y correspond to the cell obtained by ‘moving slightly
off X towards Y’.

The topological object on which we’ll focus is given by the geometric realization
of the following poset.
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Definition 3.5. The Salvetti poset of the given oriented matroid is the set

S = {(F, C) ∈ F × T | F ◦ C = C}

ordered by (F, C) ≤ (F ′, C ′) if F ′ ≤ F and F ◦ C ′ = C.

Remark 3.6 (Arrangements of hyperplanes). In the particular case where the ar-
rangement A of Definition 3.1 is induced by the intersection of linear hyperplanes
with the unit sphere, Salvetti proved [20] that |S | can be embedded as a deformation
retract into the complement of the complexification of the hyperplanes.

Definition 3.7 (Definition 4.2.9 of [4]). Let M be a given oriented matroid with
set F of covectors and set T of topes. Given B ∈ T let TB denote the poset of all
topes ordered by

T 4B R⇔ S(B, T) ⊆ S(B, R)
where the separating set S(X, Y) of two sign vectors X, Y ∈ {+, 0,−}E is defined as
S(X, Y) := {e ∈ E | Xe = −Ye 6= 0}.

Remark 3.8. The interval determined by R 4B T is the subposet of TB induced on

[R, T ] = {C ∈ TB | R 4B C 4B T }.

The notation does not reflect the dependency on B because for any choice of B ′ such
that S(T, R) ∩ S(B ′, T) = ∅ the posets [R, T ] ⊆ TB and [R, T ] ⊆ TB ′ are canonically
isomorphic (see e.g, [4, Corollary 4.2.11]).

For the purposes of what follows we need to replace |S | with another, homotopy
equivalent simplicial complex.

Definition 3.9. Let Q := (T × T ,≤) be the poset given on the set T × T by the
order relation

(T, R) ≤ (T ′, R ′) :⇔ T 4T ′ R 4T ′ R ′

We show that ≤ is transitive, and leave reflexivity and anti-symmetry to the
reader. Let (T, R) ≤ (T ′, R ′) and (T ′, R ′) ≤ (T ′′, R ′′). Then by definition (a) T 4T ′

R 4T ′ R ′ and (b) T ′ 4T ′′ R ′ 4T ′′ R ′′. From (b) follows in particular T ′ 4T ′′ R ′,
and the interval [T ′, R ′] has, by Remark 3.8, the same structure in TT ′′ as in TT ′ .
Therefore, from (a) we deduce T ′ 4T ′′ T 4T ′′ R 4T ′′ R ′. With (b), this implies
T 4T ′′ R 4T ′′ R ′′, meaning (T, R) ≤ (T ′′, R ′′), as required.

Remark 3.10. An oriented matroid M is uniquely determined by its covectors, and
also by several other equivalent combinatorial systems, e.g., vectors, basis signa-
tures, or the set of topes. The oriented matroid M is considered to consist of any
and all of these notions - see [4]. In particular, the adjacency relation among topes
(i.e. the tope graph of [4, Definition 4.2.1]) is enough to reconstruct the oriented
matroid up to a reorientation (i.e., up to a global change of sign in some compo-
nents of the covectors). Correspondingly, the poset Q can be described in terms of
the tope graph of M: (T, R) ≤ (T ′, R ′) if and only if some geodesic from T to R can
be extended to a geodesic from T ′ to R ′.

Lemma 3.11. The function

S → Q; (F, C) 7→ (C, F ◦ (−C))

is a poset morphism and induces a homotopy equivalence |S | ' |Q|.
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6 EMANUELE DELUCCHI AND MICHAEL J. FALK

Proof. The given function is order-preserving. Indeed, assuming (F, C) ≤ (F ′, C ′)
one sees thatFe ≤ Ce implies F ′e ≤ C ′e for all e ∈ E. This last statement is equivalent
to (C, F ◦ (−C)) ≤Q (C ′, F ′ ◦ (−C ′)).

Moreover, for any given (T, R) ∈ Q the preimage of Q≤(T,R) is{
[F, F ◦ T ]

∣∣∣∣σ−1A (F) ∈
⋂

e 6∈S(T,R),
T∈Sτe

Sτe

}
.

Here Sτe denotes S+e or S−e := −S+e . This poset is isomorphic to the poset{
F

∣∣∣∣σ−1A (F) ∈
⋂

e 6∈S(T,R),
T∈Sτe

Sτe

}op

of those cells in the arrangement of pseudospheres that lie in the relative interior of
the region containing R and delimited by the pseudospheres not separating R from
T . This poset is contractible, e.g. by [4, Proposition 4.3.6 (c)] and [3, Theorem
4.1], and we conclude with Remark 2.6. �

Definition 3.12. We define a function ρ : Q→ Q by setting ρ(R, T) := (−T, R) for
every (R, T) ∈ Q.

Remark 3.13. The function ρ is evidently a bijection.

Lemma 3.14. The function ρ is order-reversing (thus, it defines an isomorphism
Q ' Qop). Moreover, ρ4 = id.

Remark 3.15. The following technical facts are a corollary of [4, Proposition 4.2.10],
and will be used in the proof of Lemma 3.14. For all A,B,C,D ∈ T :

(a) A 4B C⇒ −A 4−B −C;
(b) A 4B C 4B D⇒ C 4A D;
(c) A 4B C⇒ B 4−C A.

Proof of Lemma 3.14. It is enough to prove that ρ is order-reversing, all other
claims follow easily. To this end let (R, T) ≤ (R ′, T ′) ∈ Q, meaning R ′ 4R ′ R 4R ′

T 4R ′ T ′. Now: R 4R ′ T implies R ′ 4−T R by Remark 3.15.(c), while from T 4R ′

T ′ 4R ′ −R ′ we get T ′ 4T −R ′ (Remark 3.15.(b)) and thus −T ′ 4−T R
′ (Remark

3.15.(a)). Together, we obtain −T ′ 4−T R
′ 4−T R, i.e., (−T, R) ≥ (−T ′, R ′) as

required. �

Theorem 3.16. The assignment n 7→ ρn defines an action of Z4 on ∆(Q) (and
thus a simplicial action on the complex |Q|).

Proof. This follows from Lemma 3.14 with Remark 2.4. �

Remark 3.17. The map ρ extends to an order 4 automorphism of F×F , but it does
not induce an action on the associated 2-matroid [22, Proposition 4.2]. Moreover,
even in the realizable case, the quotient of the s(2)-stratification associated to the
complexification of A [5, Theorem 5.1(iv)] is not easily identifiable with the decone.

4. Combinatorial deconing

Recall that, throughout, F denotes the poset of covectors of an arbitrary (but
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AF = ρ(x) BE CD DC EB FA = ρ3(x)

AD DABC CB AE EA BF FB CF FC DE ED

AB BA AC CA BD DB CE EC DF FD EF FE

AA = x BB CC DD EE FF = ρ2(x)

Figure 2. The poset Q for the arrangement of Figure 1. Two
orbits of the Z4-action are shaded. The image of the inclusion of
S given in Lemma 3.11 are all elements of rank 0, 1 and 3.

fixed) oriented matroid on the ground set E.

Definition 4.1. Every choice of an element e ∈ E gives rise to an affine oriented
matroid with poset of covectors

deF := {F ∈ F | Fe = +}.

From now an arbitrary element e ∈ E will be fixed, and we will simply write dF .
Accordingly, we define the subposets

dS := {[F, C] ∈ S | F, C ∈ dF } ⊆ S
dQ := {(R, T) ∈ Q | Re = Te = +} ⊆ Q

Remark 4.2. The map of Lemma 3.11 restricts to a poset map dS → dQ which
induces homotopy equivalence (because preimages of lower intervals are equal to
those with respect to the unrestricted map, thus Remark 2.6 applies).

Definition 4.3. Consider the oriented matroid of rank 1 on the ground set {e}, with
sets of covectors and topes Fe = {(+), (0), (−)} and Te = {(+), (−)}. The action
of Z4 on the associated poset Qe = {(+,+), (+,−), (−,+), (−,−)} is transitive.
Choosing R ∈ Te we can identify the elements of Qe with elements of Z4 so that,
for i = 0, . . . , 3, ρi(R, R) is identified with the class [i] ∈ Z4.

Definition 4.4. Define a function Ψ : ∆(Qe) × ∆(dQ)op → Q so that, for any
given chain ω = ω1 < · · · < ωk,

Ψ({[i]},ω) :=

{
ρi(ω1) i even
ρi(ωk) i odd

Ψ({[i], [i+ 1]},ω) := Ψ([i],ω)∨ Ψ([i+ 1],ω)

Remark 4.5 (Joins in Q). Although Q is certainly not a lattice, the ‘join’ in the
above definition - which should be thought of as ‘the minimum among all elements
that are above both terms’ - is well-defined in the cases we need. Indeed, without
loss of generality Ψ([i],ω)∨Ψ([i+ 1],ω) = (A,B)∨(−D,C) for some A,B,C,D ∈ T
with (A,B) ≥ (C,D), and one sees that the join operation determines the element
(−D,B): indeed, (−D,B) is greater than both (A,B) and (C,D) (e.g., by Remark
3.15.(c)) and for every (R, T) < (−D,B), the interval [R, T ] ⊆ T , and thus any
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8 EMANUELE DELUCCHI AND MICHAEL J. FALK

geodesic from R to T , either does not contain B (hence (R, T) 6≥ (A,B)) or it does
not contain −D (and then, (R, T) 6≥ (−D,C)).

Remark 4.6 (Notation). For ease of notation we will from now omit all brackets
when referring to elements of Qe or ∆(Qe), thus writing for instance 12 instead of
{[1], [2]} ⊂ Z4.

Remark 4.7. It will be convenient to examine explicitly the function Ψ. If ω =
(A1, B1) < . . . < (Ak, Bk) is a chain in dQ, we have

Ψ(0,ω) = (A1, B1); Ψ(01,ω) = (−Bk, B1);
Ψ(1,ω) = (−Bk, Ak); Ψ(12,ω) = (−A1, Ak);
Ψ(2,ω) = (−A1,−B1); Ψ(23,ω) = (Bk,−B1);
Ψ(3,ω) = (Bk,−Ak); Ψ(03,ω) = (A1,−Ak).

Lemma 4.8. The function Ψ defines a poset map and induces a homotopy equiv-
alence.

Proof. The maps ∆(dQ)op → Q mapping ω to ω1 and to ωk are, respectively,
order-preserving and order-reversing. It follows that Ψ is order-preserving.

To prove homotopy equivalence, we consider preimages of elements (C,K) ∈ Q
and verify the condition of Lemma 2.5.

Case 1: Ce = Ke = +. First, from the explicit description of Ψ in Remark 4.7
notice the poset isomorphism

Ψ−1(Q≥(C,K)) ∼= {ω ∈ ∆(dQ)op | maxω ∈ dQ≥(C,K)}.

Given a poset P with a unique maximal element x, write ∆†(P) for the poset
of all chains in P containing x. Define a diagram of posets

D : (dQ≥(C,K))op → Pos; D(X, Y) = ∆†(Q≤(X,Y))op

with diagram maps being the natural maps.
Then the Grothendieck construction

∫
D, viewed as a poset, has elements

((X, Y),ω), where (X, Y) ≥ (C,K) and maxω = (X, Y), ordered according to

((X, Y),ω) ≤ ((X ′, Y ′),ω ′)⇔ (X, Y) ≥ (X ′, Y ′), and ω ⊇ ω ′.
Thus we have an evident poset isomorphism Ψ−1(Q≥(C,K)) ∼=

∫
D and so

|Ψ−1(Q≥(C,K))| ' |
∫
D| ' hocolim |D|,

where the second equivalence is an instance of [21, Theorem 1.2]. Here |D| is
the diagram of geometric realizations of D in the category of topological spaces
and continuous maps.
Now, because all posets D(X, Y) have a unique minimal element (the 1-element
‘chain’ {(X, Y)}), their geometric realization |D(X, Y)| is contractible. With [15,
Theorem 15.19] we obtain

|Ψ−1(Q≥(C,K))| ' hocolim |D| ' |dQ≥(C,K)| ' ∗.
Case 2: −Ce = Ke = +. Again, with Remark 4.7 we can write explicitly

Ψ−1(Q≥(C,K)) = {(01, (A1, K
′) < . . . < (Ak,−C

′)) | (K ′,−C ′) ≤ (K,−C)}

∪ {(1, (A1, B1) < . . . < (K ′,−C ′)) | (K ′,−C ′) ≤ (K,−C)}

∪ {(12, (−C ′, B1) < . . . < (K,Bk)) | (K
′,−C ′) ≤ (K,−C)}
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and we call the three parts of the union P01, P1, P12, in the order listed. It
is immediate to see that P1 = {1} × ∆(Q≤(K,−C))

op and is thus contractible.
Moreover, notice that (1,ω) ∈ P1 implies both (01,ω) ∈ P01 and (12,ω) ∈
P12, for all ω. Thus, by defining R := ∆(Qe)≥{1} × P1, we have a covering of

Ψ−1(C,K) by three posets P01,R,P12 with P01 ∩ R ' P12 ∩ R ' P1 (thus
contractible) and P01∩P12 = ∅. By the generalized nerve lemma [15, Theorem
15.24] applied to the covering of |Ψ−1(C,K)| by its subcomplexes |P01|, |R| and
|P12|, the poset Ψ−1(C,K) is contractible if P01 and P12 are.

We are thus left with proving contractibility of P01 (contractibility of P12
follows by a similar argument). To this end, notice first of all that (A1, K

′) <
(A2, B2) < . . . < (Ak,−C

′) is a chain if and only if

Ak 4C ′ . . . 4C ′ A1 4C ′ K ′ 4C ′ B2 4C ′ . . . 4C ′ Bk−1

We thus obtain an order-reversing bijection

PI → ∆[K ′, C ′]× ∆††[K ′,−C ′]; (01,ω) 7→ ω,

where ∆††[K ′,−C ′] denotes the poset of all chains in [−C ′, K ′] containing both
−C ′ and K ′. This poset has a unique minimal element {−C ′ ≤ K ′} and is thus
contractible, hence

P01 ' ∆[K ′, C ′]× ∆††[K ′,−C ′] ' ∗.
The other cases are treated analogously to the above.

�

Theorem 4.9. For any oriented matroid M and every element e of its ground set:

|S | ' S1 × |dS |.

Proof. Immediate applying Remark 2.10 to Lemma 4.8. �

Corollary 4.10 (Theorem 4.2 of [8]). For oriented matroid M and any element e
of its ground set: π1(|S |) ' Z× π1(|dS |).

5. Non-realizable groups

We close by exhibiting an oriented matroid M for which the fundamental group
π1(|Q|) ∼= π1(|S |) is not isomorphic to the fundamental group of the complement
of any arrangement (complexified or not) of linear hyperplanes in Cr. Thus the
homotopy type of Q is not represented by a complex arrangement complement. To
our knowledge no example of either phenomenon has appeared in the literature. The
example illustrates that results such as ours extending properties of arrangement
groups to the non-realizable case are strict generalizations of the existing theory.

The argument uses the degree-one resonance variety of M, which turns out to
be an invariant of the cohomology ring of the group π1(|Q|). This is a union of
linear subspaces of H1(π1(|Q|),C) that depends only on the underlying matroid M
of M, up to linear change of coordinates. The idea is then to reconstruct the rank-
one and rank-two flats of the underlying matroid M from the linear isomorphism
type of its degree-one resonance variety, using its description in terms of multinets
(a.k.a. combinatorial pencils). For a particular oriented matroid M of rank three
whose underlying matroid M is not realizable over C, we are able to accomplish
this. It follows that the fundamental group π1(|Q(M)|) cannot arise from any com-
plex hyperplane arrangement, since a generic three-dimensional section of such an

Mar 6 2016 10:55:43 EST
Version 2 - Submitted to PROC

This is a pre-publication version of this article, which may differ from the final published version. Copyright restrictions may apply.



10 EMANUELE DELUCCHI AND MICHAEL J. FALK

arrangement would have the same rank-one and rank-two flats as a non-realizable
rank-three matroid. A crucial, delicate step in the argument is to show that the
structure of the resonance variety precludes the existence of any non-local compo-
nents. We refer the reader to [10] for background on Orlik-Solomon algebras, their
degree-one resonance varieties, and multinets.

5.1. Resonance varieties. Let M be an oriented matroid on ground set E, with
associated tope-pair poset Q. Let AZ = AZ(M) be the cohomology ring H∗(|Q|,Z)
of |Q|. By [13, 5], AZ is isomorphic as a graded algebra to the Orlik-Solomon (OS)
algebra of the underlying unoriented matroid M of M, the quotient of the exterior al-
gebra on E by the ideal generated by elements of the form

∑p
k=1(−1)

ke1 · · · êi · · · ep,
where {e1, . . . , ep} ranges over the circuits in M. We assume M is a simple matroid,
which implies A1Z

∼= ZE. Moreover, AZ is generated by A1Z and is a free Z-module -
see [10].

For a graded algebra R = ⊕p≥0Rp, let R≤2 = R/⊕p≥3 Rp.

Lemma 5.1. The graded algebras A≤2 and H≤2(π1(Q|,Z) are isomorphic.

Proof. By the remarks above, the integral cohomology ring of the space —Q— is
generated in degree one and is free abelian. Then [18, Proposition 1.6] implies
H≤2(|Q|,Z) ∼= H≤2(π1(|Q|),Z). �

Let A = AZ ⊗ C. By the preceding lemma, A≤2 is determined up to graded
algebra isomorphism by π1(|Q|).

Definition 5.2. The degree-one resonance variety of A is the subset R1(A) of A1

given by

R1(A) = {a ∈ A1 | ab = 0 for some b ∈ A1 − ka}.

Clearly R1(A) depends only on A≤2. It is not hard to show R1(A) is a subset of
the diagonal hyperplane H0 = {x ∈ CE |

∑
e∈E xe = 0}. Also R1(A) is expressible

as a finite union of linear spaces of A1 ∼= CE [7, 16], every two of which intersect
trivially [16]. These maximal linear subspaces of R1(A) are called the components
of R1(A). (In fact they are the irreducible components of R1(A), which is an affine
algebraic set.)

Corollary 5.3. R1(A) is determined by π1(|Q|) up to linear change of coordinates
of CE.

Next we review the characterization of components of R1(A) from [12]. Each
rank-two flat X of cardinality |X| ≥ 3 in M gives rise to a component LX of R1(A)
of dimension |X|− 1, called a local component, and defined by

LX = {x ∈ H0 | xe = 0 for e 6∈ X}.
The support supp(L) of a linear subspace L of A1 is the set {e ∈ E | xe 6=
0 for some x ∈ L}. The support of a local component LX is the rank-two flat
X. A component L of R1(A) is non-local if supp(L) has rank greater than two,
and is global if supp(L) = E. Non-local components of R1(A) arise from multinets
supported on rank-three submatroids of M, by [12].

Definition 5.4. A (weak) (k, d)-multinet on M is a pair (m,N ) consisting of a
function m : E → N and a partition N = E1 t · · · t Ek of E with k ≥ 3 parts,
satisfying
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(i) For all i,
∑
e∈Eim(e) = d;

(ii) For each rank-two flat X = ee ′ spanned by points e and e ′ from different
parts of N , the sum

∑
e∈X∩Eim(e) is constant, independent of i.

Multinets are also called combinatorial pencils [17]; they arise from one-dimensional
linear systems (pencils) of degree d projective plane curves with k completely re-
ducible (not necessarily reduced) fibers. The set of rank-two flats described in
condition (ii) is called the base locus, and is denoted X . For X ∈ X , the num-
ber
∑
e∈X∩Eim(e) is denoted m(X). A (k, d)-net is a (k, d)-multinet satisfying

m(e) = 1 = m(X) for all e ∈ E and X ∈ X . Equivalently, a (k, d)-net is a partition
N of E with parts of size d for which each rank-two flat in X contains one point
from each part of N .

In the next sequence of lemmas, we establish some restrictions on the non-local
components that can appear, under some restrictions on M.

Lemma 5.5. Suppose M has no rank-two flats of size larger than three. Then any
multinet on M is a (3, d)-net for some d.

Proof. Suppose (m,N ) is a multinet on M, and X is the associated base locus. Each
rank-two flat in X contains at least one point from each block of N , hence N has 3
blocks and one point from each block is in each flat in X . Suppose m(e) = m > 1
for some e ∈ E. Without loss, e ∈ E1. Then every point in E2 and E3 must have
multiplicitym, which then implies all points in E1 have multiplicitym, by condition
(iii) of Definition 5.4. Then |E1| = |E2| = |E3| by condition (i), hence N is a net. �

Lemma 5.6. Suppose M is the cycle matroid of a simple graph Γ , and R1(A) has
a global component. Then Γ is the complete graph K4.

Proof. Since M is graphic, there are no rank-two flats of size greater than three.
Then any nonlocal component arises from a (3, d)-net on M, by Lemma 5.5. Let us
refer to the blocks of the associated partition as colors. Flats in the base locus X
are edge sets of triangles (3-cliques) in Γ . Fix one such flat X = {e1, e2, e3}. Then
E − X is nonempty, since R1(A) has a non-local component. Any e ∈ E − X must
be the same color as one of e1, e2, or e3, and must lie in a rank-two flat containing
the other two. Choose e4 ∈ E−X. Without loss e4 has the same color as e1. Write
e2, e4 = {e2, e4, e5} and e3, e4 = {e3, e4, e6}. Any remaining edge of Γ must also lie
in a triangle with two of e1, e2, or e3; since M is simple no such edge exists. Then
E = {e1, e2, e3, e4, e5, e6} and Γ is isomorphic to K4. �

Lemma 5.7. Suppose |E| ≤ 8 and M has no rank-two flats of size greater than three.
If R1(A) has a global component then M is the graphic matroid of the complete graph
K4.

Proof. It is no loss to assume M is simple, i.e., M has no loops or multiple points.
If M has a free point then it cannot support a net. Using the catalog [1] (see also
[6]), one finds that only 62 of the 489 rank-three matroids on eight or fewer points
are simple, not graphic, and have no free points, and, of these, only 27 have no
rank-two flats of size greater than three. One checks by hand that none of these
27 matroids supports a (3, d)-net. Combined with Lemma 5.6 and Lemma 5.5, this
proves the claim. �
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12 EMANUELE DELUCCHI AND MICHAEL J. FALK

Remark 5.8. In fact Lemma 5.7 holds without the restriction on rank-two flats. For
the general result one needs the fact that the partition associated with a multinet
on M is neighborly, as defined in [11], and then one checks that none of the 62
non-graphic simple rank-three matroids on eight or fewer points with no free points
supports a neighborly partition.

Let C be the set of components of R1(A). Let dC : 2
C − {∅} → Z≥0 be defined

by dC(S) = dimC(
∑
L∈S L). The pair (C, dC) is the (resonance) polymatroid of M,

and is denoted by CM. We call dC(S) the rank of S. A subset S of CM is closed if
dC(S) < dC(T) for all T ) S. If S ⊆ C, the polymatroid (S, dC|2S−{∅}) is denoted
CS. A polymatroid isomorphism ϕ : (C, dC) → (C ′, dC ′) is a bijection ϕ : C → C ′

satisfying dC ′(ϕ(S)) = dC(S) for all S ∈ 2C − {∅}. For S ⊆ C let supp(S) =
supp(

∑
L∈S L). Note that dC(S) ≤ | supp(S)|− 1, since

∑
L∈S L ⊆ Csupp(S) ∩H0.

Let M and M ′ be matroids on the same ground set, with Orlik-Solomon algebras
A and A ′. Let C = CM and C ′ = CM ′ .

Lemma 5.9. Suppose ι : A1 → (A ′)1 is a linear isomorphism carrying R1(A) to
R1(A ′). Then ι induces a polymatroid isomorphism ι∗ : C→ C ′. In particular, S is
a closed subset of C if and only if ι∗(S) is a closed subset of C ′.

Proof. Since ι is a linear isomorphism, it sends components ofR1(A) to components
of R1(A ′), and the induced map ι∗ : C → C ′ is bijective. Also dimC(

∑
L∈S L) =

dimC
(∑

L∈S ι(L)
)

for any collection of subspaces S of A1. Thus ι∗ is a polymatroid
isomorphism. For the last statement, observe that closure is defined in terms of the
polymatroid structure. �

We have the following corollary of Lemma 5.7.

Corollary 5.10. Suppose |E| ≤ 8 and R1(A) has a non-local component. Then
there is a closed subset S of C with |S| = 5 and dC(S) = 5.

Proof. By [11], the resonance variety of M(K4) has four local components and one
global component, and has rank five. If L ∈ CM is a non-local component, then
supp(L) is a copy of M(K4) in M, by Lemma 5.7. Then one has a five element
subset S of C with supp(S) = supp(L) of size 6 and dC(S) = 5. Moreover S must be
closed in CM since supp(L) cannot support any other net or rank-two flats of size
at least three. �

5.2. Building blocks. The key to our argument is the existence of some small
matroids that are uniquely determined by C. The graphic matroid M(K4) is one
such matroid. Consider now the rank-three whirl, the matroid W of rank three on
{1, 2, 3, 4, 5, 6} with dependent rank-two flats 123, 345, and 156. The polymatroid
CW of W has size three and rank five.

Lemma 5.11. Suppose |E| ≤ 8, S ⊆ C is a closed subset with CS isomorphic to
CW. Assume S contains no non-local components. Then supp(S) is a six-point
submatroid of M isomorphic to W.

Proof. Since S has no non-local components by hypothesis, supp(S) has at least six
points and three rank-two flats X1, X2, X3 of size three. The flats X1, X2, and X3
cannot be pairwise disjoint, else dC(S) = 6. After relabeling, we may assume X1 and
X2 have a point in common. Then dC({LX1 , LX2 }) = 4. Again because dC(S) 6= 6,
X3 must meet X1∪X2 in two points. Then |E| = 6. The only rank-three matroids on
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six points with three rank-two flats of size three are M(K4) and W. The resonance
variety of M(K4) has no closed sets of size three. Indeed, CK4 := C(M(K4)) has rank
five, and any two-element subset of CK4 has rank four, so all five elements of CK4 lie
in the closure of any three-element subset. We conclude that supp(S) is isomorphic
to W. �

W:

1 2 3

6 4

5

V:

1 2 3

6 5 4

7

M:

1 2 3

7
8

9

4 5 6

Figure 3. The matroids W, V and the non-Pappus matroid M

Let V denote the rank-three matroid with ground set {1, 2, 3, 4, 5, 6, 7} and depen-
dent rank-two flats 123, 456, 167, and 347. Note that V has precisely two deletions
isomorphic to W, V− 2 and V− 5. We call the flats 123 and 456 of V distinguished:
they are the unique pair of disjoint rank-two flats. Their complement, the point 7,
is the distinguished point of V.

Lemma 5.12. Suppose |E| ≤ 8, S ⊆ C is closed with |S| = 4, dC(L) = 2 for all
L ∈ S, and dC(S) = 6. Suppose S has no non-local components, and there are
exactly two subsets T ⊆ S with CT isomorphic to CW. Then

(i) supp(S) is a seven-point submatroid of M isomorphic to V;
(ii) the distinguished rank-two flats of supp(S) are the supports of the unique

pair of elements of S that do not lie in a single copy of CW; and
(iii) the distinguished point of V is the unique point in the support of the other

two elements of S.

Proof. Let T ⊆ S with CT isomorphic to CW. By Lemma 5.11, supp(T) is a six-
point submatroid of M isomorphic to W. Write S = T ∪ {L}. Since dC(S) =
dC(T) + 1, | supp(S)| ≤ | supp((T)| + 1 = 7. Since T is closed and dC(T) = 5 =
| supp(T)| − 1, supp(L) 6⊆ supp(T). Then | supp(S)| = 7. Then the submatroid
of M on supp(S) is isomorphic to a one-point extension of W. Since L is a local
component, this extension has four three-point lines. There are, up to isomorphism,
two such extensions, and, of these, V is distinguished by the fact that it has two
deletions isomorphic to W; the other has three. Then the hypothesis of the lemma
implies supp(S) is isomorphic to V. The latter two statements are easily verified. �

5.3. The main example. Let M be the oriented matroid of the non-Pappus ar-
rangement of pseudo-lines [14, Theorem 3.2 and Figure 3.3]. The underlying rank-
three matroid M has nine points, which we identify with the numbers 1, . . . , 9, and
eight dependent rank-two flats

123, 157, 168, 247, 269, 348, 359, 456.

In any point configuration over a field with these dependent rank-two flats, 789 is
also a rank-two flat, by Pappus’ Theorem. Thus M, the non-Pappus matroid, is
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14 EMANUELE DELUCCHI AND MICHAEL J. FALK

not realizable over any field. Then the oriented matroid M is non-realizable. Let
Q be the tope-pairs poset associated with M.

Theorem 5.13. π1(|Q|) is not isomorphic to the fundamental group of the com-
plement of any arrangement of linear hyperplanes in Cr.

Proof. Suppose A is an arrangement of linear hyperplanes in Cr, and π1(|Q|) is
isomorphic to the fundamental group of the complement of A. Let M ′ denote the
underlying matroid, and A ′ the Orlik-Solomon algebra of A. By Corollary 5.3
there is a linear isomorphism from ι : A1 → (A ′)1, with ι(R1(A)) = R1(A ′), and
ι induces an isomorphism ι∗ : C → C ′, by Lemma 5.9. The non-Pappus matroid
M has no rank-two flats of size greater than three, it does not support a net, and
it has no submatroids isomorphic to M(K4). Then, by [12, Corollary 3.12] and
Lemmas 5.5 and 5.7, R1(A) consists of eight two-dimensional local components.
For L ∈ C, denote ι∗(L) ∈ C ′ by L ′.

First, since (A ′)1 ∼= A1, M ′ is a matroid on nine points. Moreover, since ι is an
isomorphism, R1(A ′) consists of eight two-dimensional subspaces. Then M ′ has at
most eight dependent rank-two flats, and none of size larger than three.

Then, by [12] and Lemma 5.5, any global component in C ′ must be supported
by a net, while any net on nine points has at least nine dependent flats in its base
locus. Thus C ′ has no global components.

A Mathematica computation shows that the only sets S ⊆ C satisfying dC(S) = 5
are closed and consist of three components. There are 12 of them, corresponding
to the 12 copies of W in M:

{L123, L157, L168}, {L123, L157, L359}, {L123, L168, L269}, {L123, L157, L348},

{L123, L247, L348}, {L123, L269, L359}, {L157, L168, L456}, {L157, L247, L456},

{L168, L348, L456}, {L247, L269, L456}, {L269, L359, L456}, {L348, L359, L456}.

The images of these sets are precisely the subsets S ′ of C ′ satisfying d ′C(S
′) = 5,

and they are closed, by Lemma 5.9, and have only three elements. Then C ′ has no
non-local components, by Corollary 5.10.

The elements L123 and L456 of C are distinguished by the fact that they are
included in four copies of CW in C. All other elements of C lie in six copies of CW.
Moreover, L123 and L456 lie in precisely three copies of CV, with supports 1234567,
1234568, and 1234569. The lines 123 and 456 are the distinguished rank-two flats
in each of the three. We label these copies of CV by their distinguished points, as
C7, C8, and C9.

Let C ′i denote the image of Ci in C ′, for i = 7, 8, 9. By Lemma 5.12, supp(C ′7)
is a copy of V with distinguished lines given by the supports of L ′123 and L ′456. We
label the elements of these supports 1 ′, 2 ′, 3 ′ and 4 ′, 5 ′, 6 ′, respectively. Moreover,
the distinguished point in supp(C ′7) is the unique point in supp(L ′157)∩ supp(L ′247);
we label it 7 ′. Similarly, the intersections supp(L ′168)∩supp(L ′348) and supp(L ′269)∩
supp(L ′359) each consists of a single point – the distinguished points of supp(V ′8)
and supp(V ′9), respectively, which we label 8 ′ and 9 ′.

The three copies of V yield eight rank-two flats of size three in M ′, and with our
labeling they coincide with the dependent rank-two flats of M. Thus the truncation
of M ′ to rank three is isomorphic to M. This is a contradiction: a generic three-
dimensional section of A ′ would be a realization of M, which is not realizable over
C. �
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