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MONOMIAL DIFFERENCE IDEALS

JIE WANG

(Communicated by Lev Borisov)

Abstract. In this paper, basic properties of monomial difference ideals are
studied. We prove the finitely generated property of well-mixed difference
ideals generated by monomials. Furthermore, a finite prime decomposition of
radical well-mixed monomial difference ideals is given. As a consequence, we
prove that every strictly ascending chain of radical well-mixed monomial dif-
ference ideals in a difference polynomial ring is finite, which answers a question
raised by E. Hrushovski in the monomial case.

1. Introduction

Monomial ideals in a polynomial ring have been extendedly studied because of
their connections with combinatorics since the 1970s. Another reason to study
monomial ideals is the fact that they appear as initial ideals of arbitrary ideals.
Richard Stanley was the first to use squarefree monomial ideals to study simplicial
complexes ([6]). Since then, the study of squarefree monomial ideals has become
an active research area in combinatorial commutative algebra. In this paper, we
study the basic properties of monomial difference (abbr. σ-) ideals and hope that
they will play a similar role in the study of general σ-ideals in a σ-polynomial ring.

It is well known that Hilbert’s basis theorem does not hold for σ-ideals in a
σ-polynomial ring. Instead, we have the Ritt-Raudenbush basis theorem, which
asserts that every perfect σ-ideal in a σ-polynomial ring has a finite basis. It is
natural to ask if the finitely generated property holds for more σ-ideals. Let k
be a σ-field and R a finitely σ-generated k-σ-algebra. In [2, Section 4.6], Ehud
Hrushovski raised the question whether a radical well-mixed σ-ideal in R is finitely
generated. The question is also equivalent to asking whether the ascending chain
condition holds for radical well-mixed σ-ideals in R. For the sake of convenience,
let us state it as a conjecture:

Conjecture 1.1. Every strictly ascending chain of radical well-mixed σ-ideals in
R is finite.

Also in [2, Section 4.6], Ehud Hrushovski proved that the answer is yes un-
der some additional assumptions on R. In [4], Alexander Levin showed that the
ascending chain condition does not hold if we drop the radical condition. The
counterexample given by Levin is a well-mixed σ-ideal generated by binomials. In
[8, Section 9], Michael Wibmer showed that if R can be equipped with the structure
of a k-σ-Hopf algebra, then Conjecture 1.1 is valid.
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The main result of this paper is that a well-mixed σ-ideal generated by mono-
mials in a σ-polynomial ring is finitely generated. Furthermore, we give a finite
prime decomposition of radical well-mixed monomial σ-ideals. As a consequence,
Conjecture 1.1 is valid for radical well-mixed monomial σ-ideals in a σ-polynomial
ring.

The paper will be organized as follows. In Section 2, we list some basic facts
from difference algebra. In Section 3, several basic properties of monomial σ-ideals
are proved. In Section 4, we will give a counterexample which shows that the well-
mixed closure of a monomial σ-ideal may not be a monomial σ-ideal and prove
the finitely generated property of well-mixed σ-ideals generated by monomials. In
Section 5, we give a finite prime decomposition of radical well-mixed monomial σ-
ideals. In Section 6, a reflexive prime decomposition of perfect monomial σ-ideals
will be given.

2. Preliminaries

In this section, we list some basic notions and facts from difference algebra.
For more details please refer to [7]. All rings in this paper will be assumed to be
commutative and unital.

A difference ring, or σ-ring for short (R, σ), is a ring R together with a ring
endomorphism σ : R → R. If R is a field, then we call it a difference field, or a
σ-field for short. We usually omit σ from the notation, simply referring to R as a σ-
ring or a σ-field. In this paper, k is always assumed to be a σ-field of characteristic
0.

Following [3], we use the notation of symbolic exponents. Let x be an alge-
braic indeterminate and p =

∑s
i=0 cix

i ∈ N[x]. For a in a σ-ring R, denote ap =∏s
i=0(σ

i(a))ci . It is easy to check that for p, q ∈ N[x], ap+q = apaq, apq = (ap)q.

Definition 2.1. Let R be a σ-ring. An ideal I of R is called a σ-ideal if for a ∈ R,
a ∈ I implies ax ∈ I. Suppose I is a σ-ideal of R; then I is said to be:

• reflexive if ax ∈ I implies a ∈ I for a ∈ R;
• well-mixed if ab ∈ I implies abx ∈ I for a, b ∈ R;
• perfect if ag ∈ I implies a ∈ I for a ∈ R, g ∈ N[x]\{0};
• σ-prime if I is reflexive and a prime ideal as an algebraic ideal.

We give some basic properties about these σ-ideals and omit the proofs, which
can be found in [7, Chapter 1].

Lemma 2.2.

(i) A σ-ideal is perfect if and only if it is reflexive, radical, and well-mixed.
(ii) A σ-prime σ-ideal is perfect.
(iii) A prime σ-ideal is radical, well-mixed.

Lemma 2.3. Let R be a σ-ring. A σ-ideal I of R is perfect if and only if ax+1 ∈ I
implies a ∈ I for a ∈ R.

Let R be a σ-ring. If F ⊆ R is a subset of R, denote the minimal ideal contain-
ing F by (F ), the minimal σ-ideal containing F by [F ], and denote the minimal
radical σ-ideal, the minimal reflexive σ-ideal, the minimal well-mixed σ-ideal, the
minimal radical well-mixed σ-ideal, the minimal perfect σ-ideal containing F by
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√
F , F ∗, 〈F 〉, 〈F 〉r, {F} respectively, which are called the radical closure, the re-

flexive closure, the well-mixed closure, the radical well-mixed closure, the perfect
closure of F respectively.

It can be checked that
√
F

∗
=

√
F ∗ and {F} = 〈F 〉∗r.

Let k be a σ-field. Suppose y = {y1, . . . , yn} is a set of σ-indeterminates over
k. Then the σ-polynomial ring over k in y is the polynomial ring in the variables
y, σ(y), σ2(y), . . . . It is denoted by

k{y} = k{y1, . . . , yn}
and has a natural k-σ-algebra structure.

3. Basic properties of monomial difference ideals

In the rest of this paper, unless otherwise specified, R always refers to the σ-
polynomial ring k{y1, . . . , yn}. Denote N∗ = N\{0} and N[x]∗ = N[x]\{0}.

Definition 3.1. Suppose u = (u1, . . . , un) ∈ N[x]n. A monomial in R is a product
Yu = yu1

1 . . . yun
n . A σ-ideal I ⊆ R is called a monomial σ-ideal if it is generated by

monomials.

As a vector space over k, we can write the σ-polynomial ring R as

R = k[N[x]n] =
⊕

u∈N[x]n

Ru =
⊕

u∈N[x]n

kYu,

where Ru = kYu is the vector subspace of R spanned by the monomial Yu. Since
Ru · Rv ⊆ Ru+v, we see that R is an N[x]n-graded ring. A monomial σ-ideal
I defined above is just a graded σ-ideal of R, which means there exists a subset
S ⊆ N[x]n such that I = k[S] :=

⊕
u∈S kYu. Such S is called the support set of I.

For a set of monomials F , we denote C(F ) = {u ∈ N[x]n | Yu ∈ F}.

Lemma 3.2. Let S ⊆ N[x]n. Then I = k[S] is a monomial σ-ideal if and only if
S satisfies:

(1) if u ∈ S,v ∈ N[x]n, then u+ v ∈ S;
(2) if u ∈ S, then xu ∈ S.

Proof. The necessity is obvious. For the sufficiency, let a ∈ I and b ∈ R. Then
C(supp(a)) ⊂ S. So by (1) and (2), C(supp(ab)) ⊂ S and C(supp(ax)) ⊂ S, which
implies that ab ∈ I and ax ∈ I. �

A subset S ⊆ N[x]n satisfying the above conditions is called a character set.
For a ∈ R, if we write a =

∑
auYu, au ∈ k, then

supp(a) := {Yu | au 	= 0}
is called the support of a.

Lemma 3.3. Let I be a σ-ideal of R. Then the following are equivalent:

(a) I is a monomial σ-ideal.
(b) For a ∈ R, a ∈ I if and only if supp(a) ⊂ I.

Proof. (a)⇒(b). One direction is obvious. For the other one, let a ∈ I. There
exist monomials h1, . . . , hm ∈ I and a1, . . . , am ∈ R such that a =

∑m
i=1 aihi. It

follows that supp(a) ⊆
⋃m

i=1 supp(aihi). Note that supp(aihi) ⊂ I for all i, since
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each monomial in supp(aihi) is a multiple of hi and hence belongs to I. It follows
that supp(a) ⊂ I as desired.

(b)⇒(a). Let F be a set of generators of I. Since for any a ∈ F , supp(a) ⊂ I, it
follows that

⋃
a∈F supp(a) is a set of monomial generators of I. �

Lemma 3.4. If I1 and I2 are monomial σ-ideals, then I1 + I2 and I1 ∩ I2 are also
monomial σ-ideals.

Proof. Suppose I1 = k[S1] and I2 = k[S2]. Then I1 + I2 = k[S1 ∪ S2], I1 ∩ I2 =
k[S1 ∩ S2]. �

If I = k[S] is a monomial σ-ideal, then the conditions for I to be radical, reflexive,
perfect and prime can be described using the support set S. To show this, we first

define an order on N[x]n. Let f =
∑l

i=0 fix
i, g =

∑m
i=0 gix

i ∈ N[x]. Let k be a
positive integer with k > max{l,m}, and set fi = 0 for l + 1 � i � k, gi = 0 for
m + 1 � i � k. Then define f < g if there exists r ∈ N, 0 ≤ r ≤ k such that
fi = gi for i = r+1, . . . , k and fr < gr. Extend the order < to N[x]n by comparing
u = (u1, . . . , un) and v = (v1, . . . , vn) ∈ N[x]n with respect to the lexicographic
order. Obviously, this is a total order on N[x]n and has the following properties.

Lemma 3.5. The order < defined above satisfies:

(1) For u1,u2,v1,v2 ∈ N[x]n, if u1 < v1,u2 � v2, then u1 + u2 < v1 + v2.
(2) For u,v ∈ N[x]n, if u < v, then xu < xv.

Let a ∈ R. We define deg(a) to be the maximal element with respect to < in
C(supp(a)).

Proposition 3.6. Let I = k[S] be a monomial σ-ideal of R. Then:

(1) I is radical if and only if for m ∈ N∗ and u ∈ N[x]n, mu ∈ S implies u ∈ S;
(2) I is reflexive if and only if for u ∈ N[x]n, xu ∈ S implies u ∈ S;
(3) I is perfect if and only if for g ∈ N[x]∗ and u ∈ N[x]n, gu ∈ S implies u ∈ S;
(4) I is prime if and only if for u,v ∈ N[x]n, u+ v ∈ S implies u ∈ S or v ∈ S.

Proof. (1) “⇒” follows from the definition of radical ideals.

“⇐”. Suppose that a =
∑k

i=1 aiY
ui ∈ R, ai 	= 0, u1 < . . . < uk and am ∈ I.

We will show that a ∈ I by induction on the number of terms of a. When k = 1,
am = (a1Yu1)m = am1 Ymu1 ∈ I. Therefore, Ymu1 ∈ I and hence mu1 ∈ S. So
u1 ∈ S or equivalently Yu1 ∈ I, which implies a ∈ I. For the inductive step,
assume now that k ≥ 2. Note that am = am1 Ymu1+ the other terms. Since mu1

is minimal in the set of all possible combinations of ui1 + . . .+ uim , the monomial
Ymu1 cannot be cancelled in the expression of am and hence belongs to supp(am).
Since I is a monomial σ-ideal, supp(am) ⊆ I and hence Ymu1 ∈ I or equivalently
mu1 ∈ S. So u1 ∈ S and Yu1 ∈ I. Consider a′ = a−a1Yu1 with k−1 terms. Since
(a′)m = (a − a1Yu1)m = am − Yu1 · ∗ ∈ I, by the induction hypothesis, a′ ∈ I.
Thus a = a′ + a1Yu1 ∈ I.

(2) “⇒” follows from the definition of reflexive ideals.

“⇐”. Suppose that a =
∑k

i=1 aiY
ui ∈ R, ai 	= 0 and ax ∈ I. Since ax =∑k

i=1 a
x
i Y

xui and I is a monomial σ-ideal, it follows that Yxui ∈ I for every i.
Therefore, xui ∈ S and hence ui ∈ S for every i, which implies Yu

i ∈ S for every i.
Thus a ∈ I.

(3) “⇒” follows from the definition of perfect ideals.
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“⇐”. Suppose that a =
∑k

i=1 aiY
ui ∈ R, ai 	= 0, u1 < . . . < uk and ax+1 ∈ I.

We will prove that a ∈ I by induction on the number of terms of a. When k = 1,
ax+1 = (a1Yu1)x+1 = ax+1

1 Y(x+1)u1 ∈ I. Therefore, Y(x+1)u1 ∈ I and hence
(x + 1)u1 ∈ S. So u1 ∈ S or equivalently Yu1 ∈ I, which implies a ∈ I. For
the inductive step, assume now that k ≥ 2. Note that ax+1 = ax+1

1 Y(x+1)u1+ the
other terms. Since u1 < . . . < uk and xu1 < . . . < xuk, (x + 1)u1 is minimal in
the set of all possible combinations of ui + xuj . So the monomial Y(x+1)u1 cannot
be cancelled in the expression of ax+1 and hence belongs to supp(ax+1). Since I
is a monomial σ-ideal, supp(ax+1) ⊆ I and hence Y(x+1)u1 ∈ I or equivalently
(x+ 1)u1 ∈ S. So u1 ∈ S and Yu1 ∈ I. Consider a′ = a− a1Yu1 with k− 1 terms.
Since (a′)x+1 = ax+1 − a1a

xYu1 − aax1Y
xu1 + ax+1

1 Y(x+1)u1 ∈ I, by the induction
hypothesis, a′ ∈ I. Thus a = a′ + a1Yu1 ∈ I.

(4) “⇒” follows from the definition of prime ideals.
“⇐”. Suppose it’s not true, so there exist a and b in R such that ab ∈ I but

a /∈ I and b /∈ I. Let a and b be such a pair such that deg(a) + deg(b) is minimal.
Since I is a monomial σ-ideal, supp(ab) ⊂ I. In particular, the highest degree term
is in I. The highest degree term is just the product of the leading terms of a and b,
which we will call ld(a) and ld(b). So ld(a)·ld(b) ∈ I, and since they are monomials,
we see that either ld(a) or ld(b) in I. Without loss of generality, assume it’s ld(a).
In that case (a− ld(a)) · b ∈ I, but neither a− ld(a) nor b is in I, and this violates
the minimality of the pair a and b. �

Suppose that I = k[S] is a monomial σ-ideal. If I is radical, reflexive, well-mixed,
perfect, or prime, then we call the corresponding support set S radical, reflexive,
well-mixed, perfect, or prime respectively.

Let S be a subset of N[x]n. Denote

[S] = {xiu+ t | u ∈ S, i ∈ N, t ∈ N[x]n}
= {gu+ t | u ∈ S, g ∈ N[x]∗, t ∈ N[x]n}

and
√
S = {u ∈ N[x]n | mu ∈ [S],m ∈ N∗},
S∗ = {u ∈ N[x]n | xmu ∈ [S],m ∈ N},

{S} = {u ∈ N[x]n | gu ∈ [S], g ∈ N[x]∗}.

One can check that [Yu : u ∈ S] = k[
[
S

]
] and if I = k[S] is a monomial σ-ideal,

then [S] = S.

Proposition 3.7. Let I = k[S] be a monomial σ-ideal of R. Then
√
I = k[

√
S],

I∗ = k[S∗], and {I} = k[{S}].

Proof. Clearly, k[
√
S] ⊆

√
I, k[S∗] ⊆ I∗, and k[{S}] ⊆ {I}. So we only need to

show that k[
√
S], k[S∗], k[{S}] are a radical σ-ideal, a reflexive σ-ideal, a perfect

σ-ideal respectively.
Suppose u ∈

√
S and v ∈ N[x]n; then there exists m ∈ N∗ such that mu ∈ S.

So m(u + v) = mu + mv ∈ S,m(xu) = x(mu) ∈ S and hence u + v, xu ∈
√
S.

Therefore, k[
√
S] is a σ-ideal. Suppose m ∈ N∗ and mu ∈

√
S. Then there exists

m′ ∈ N∗ such that m′mu ∈ S, and it follows u ∈
√
S. Thus by Proposition 3.6(1),

k[
√
S] is radical.
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Suppose u ∈ S∗ and v ∈ N[x]n; there exists m ∈ N such that xmu ∈ S. So
xm(u + v) = xmu + xmv ∈ S, xm(xu) = xm+1u ∈ S and hence u + v, xu ∈ S∗.
Therefore, k[S∗] is a σ-ideal. Suppose m ∈ N and xmu ∈ S∗. Then there exists

m′ ∈ N such that xm′+mu ∈ S, and it follows u ∈ S∗. Thus by Proposition 3.6(2),
k[S∗] is reflexive.

Suppose u ∈ {S} and v ∈ N[x]n; then there exists g ∈ N[x]∗ such that gu ∈ S.
So g(u + v) = gu + gv ∈ S, g(xu) = x(gu) ∈ S and hence u + v, xu ∈ {S}.
Therefore, k[{S}] is a σ-ideal. Suppose g ∈ N[x]∗ and gu ∈ {S}. Then there exists
g′ ∈ N[x]∗ such that g′gu ∈ S, and it follows u ∈ {S}. Thus by Proposition 3.6(3),
k[{S}] is perfect. �

4. Properties of well-mixed σ-ideals generated by monomials

Unlike the radical closure, the reflexive closure, and the perfect closure, the
well-mixed closure of a monomial σ-ideal may not be a monomial σ-ideal. More
precisely, it relies on the action of the difference operator. We will give an example
to illustrate this. First let us give a concrete description of the well-mixed closure
of a σ-ideal which has been mentioned in [4]. Suppose F is a subset of any σ-ring
R. Let F ′ = {aσ(b) | ab ∈ F}. Note that F ⊂ F ′. Let F [0] = F and recursively
define F [k] = (F [k−1])′(k = 1, 2, . . .). Then by Lemma 3.1 in [4], the well-mixed
closure of F is

(4.1) 〈F 〉 =
∞⋃
k=0

F [k].

Example 4.1. Let k = C and R = C{y1, y2}. Let us consider the σ-ideal I =
〈y21 , y22〉 of R. Owing to the above process of obtaining the well-mixed closure, we
see that 1, y1, y

x
1 , y2, y

x
2 , y1y2 cannot appear in supp(c) for any c ∈ I. Since y21−y22 =

(y1+y2)(y1−y2) ∈ I, we have (y1+y2)(y1−y2)
x = yx+1

1 +yx1y2−y1y
x
2 −yx+1

2 ∈ I.
Note that yx+1

1 , yx+1
2 ∈ I, hence yx1y2−y1y

x
2 ∈ I. We will show that if the difference

operator on C is the identity map, then yx1y2, y1y
x
2 /∈ I. As a consequence, I is not

a monomial σ-ideal.
Set F = {y21 , y22}. By (4.1), I =

⋃∞
k=0 F

[k]. To show yx1y2, y1y
x
2 /∈ I, we will prove

that for any c ∈ I, y1y
x
2 − yx1y2 always appears in c as a whole by induction on k.

k = 0 is obvious. Assume that for any c ∈ F [k], y1y
x
2 − yx1y2 always appears in c as

a whole, and so does (F [k]). Now for any c ∈ F [k+1], suppose a = a0+a1y1+a2y2+
a3y

x
1y2+a4y

x
1y2+∗ and b = b0+b1y1+b2y2+∗, where ai, bj ∈ C, 0 ≤ i ≤ 4, 0 ≤ j ≤ 2

and ∗ represents other terms, such that ab ∈ (F [k]), c = abx and y1y
x
2 or yx1y2 ∈

supp(c). It is impossible that a0, b0 	= 0 or a0 	= 0, b0 = 0 since 1, yx1 , y
x
2 cannot

appear in supp(c). If a0 = 0, b0 	= 0, then a1, a2 = 0 since y1, y2 cannot appear
in supp(c) and therefore abx = b0(a3y

x
1y2 + a4y1y

x
2 ) + ∗. The fact that ab =

b0(a3y
x
1y2 + a4y1y

x
2 ) + ∗ ∈ (F [k]) implies that b0(a3y

x
1y2 + a4y1y

x
2 ) is some multiple

of y1y
x
2 −yx1y2. Assume now that a0, b0 = 0. Then ab = (a2b1+a1b2)y1y2+∗. Since

y1y2 /∈ supp(ab), we have a2b1 + a1b2 = 0. So c = abx = a2b1y
x
1y2 + a1b2y1y

x
2 + ∗ =

a2b1(y
x
1y2 − y1y

x
2 ) + ∗ and hence y1y

x
2 − yx1y2 appears in c as a whole.

On the other hand, if the difference operator on C is the conjugation map (that
is, σ(i) = −i), the situation is totally changed. Since

y21 + y22 = (y1 + iy2)(y1 − iy2) ∈ I,
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(y1 + iy2)(y1 − iy2)
x = yx+1

1 + iyx1y2 + iy1y
x
2 − yx+1

2 ∈ I and hence yx1y2 + y1y
x
2 ∈ I.

Since we also have yx1y2 − y1y
x
2 ∈ I, then yx1y2, y1y

x
2 ∈ I. It follows that I =

[yu1 , y
w1
1 yw2

2 , yv2 : 2 � u, 2 � v, x + 1 � w1 + w2] (� is defined below). In this case,
I = 〈y21 , y22〉 is indeed a monomial σ-ideal.

In the rest of this section, we will prove that a well-mixed σ-ideal generated by
monomials can be generated by finitely many monomials as a well-mixed σ-ideal.
For the proof, we need a new order on N[x]n and some lemmas.

Definition 4.2. Let f =
∑l

i=0 fix
i, g =

∑m
i=0 gix

i ∈ N[x]. Let k be a positive
integer with k > max{l,m}, and set fi = 0 for l+1 � i � k, gi = 0 form+1 � i � k.

Then define f � g if
∑k

j=i fj �
∑k

j=i gj for i = 0, . . . , k. Note that � is a partial

order on N[x]. Extend � to N[x]n by defining u = (u1, . . . , un) � v = (v1, . . . , vn)
if and only if ui � vi for i = 1, . . . , n.

It is straightforward from the definition that the partial order � has the following
properties.

Lemma 4.3. Let u1,u2,v1,v2 ∈ N[x]n. If u1 � v1,u2 � v2 ,then xu1 � xv1,u1+
u2 � v1 + v2.

Moreover, we have:

Lemma 4.4. Let u,v ∈ N[x]n. If u � v, then Yv ∈ 〈Yu〉.

Proof. For brevity, we just prove the case n = 1, since the case n ≥ 2 is similar.

Let f, g ∈ N[x]. Without loss of generality, we can assume that f =
∑l

i=0 fix
i, g =∑l

i=0 gix
i. We shall show that if f � g, then yg1 ∈ 〈yf1 〉. Let us do this by induction

on l. When l = 0, it is clear that f0 � g0 implies that yg01 ∈ 〈yf01 〉. For the inductive
step, assume now that l ≥ 1. Since

∑l
i=0 fi ≤

∑l
i=0 gi, increase f0 if necessary

such that
∑l

i=0 fi =
∑l

i=0 gi. Then we have f0 ≥ g0, since
∑l

i=1 fi ≤
∑l

i=1 gi.

Let f ′ =
∑l

i=2 fix
i−1 + f1 + f0 − g0, g

′ =
∑l

i=2 gix
i−1 + g1. Then f ′ � g′. So by

the induction hypothesis, yg
′

1 ∈ 〈yf
′

1 〉. It follows that yg1 = yg
′x+g0

1 ∈ 〈yf
′x+g0

1 〉 ⊆
〈yf

′x+g0−(f0−g0)x+f0−g0
1 〉 = 〈yf1 〉. �

For f =
∑l

i=0 fix
i ∈ N[x], denote |f | =

∑l
i=0 fi ∈ N.

Lemma 4.5. Let S ⊆ N[x] such that |f | is a constant a ∈ N for all f ∈ S. Then
the set of minimal elements of S with respect to the partial order � is finite.

Proof. We shall prove the lemma by induction on a. The case a = 0, 1 is clear. For

the inductive step, assume now a ≥ 2. Choose an f =
∑l

i=0 fix
i ∈ S. The set

G = {g =
∑l

i=0 gix
i | |g| � a} is finite. For each g =

∑l
i=0 gix

i ∈ G, we define

Sg = {
m∑
i=0

hix
i ∈ S | m > l,

l∑
i=0

hix
i = g}

and

S′
g = {

m∑
i=l+1

hix
i |

m∑
i=0

hix
i ∈ Sg}.

It follows S =
⋃

g∈G Sg. For each g ∈ G, if g 	= 0, then for all h ∈ S′
g, |h| is a

constant which is lower than a. So by the induction hypothesis, the set of minimal
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elements of S′
g with respect to the partial order � is finite and hence so is Sg. Note

that for any h ∈ S0, f � h. Therefore, the set of minimal elements of S is contained
in the union of the set of minimal elements of Sg, where g ∈ G, g 	= 0, and {f}.
Since the latter is a finite set, the former must be finite. �

Lemma 4.6. Let S ⊆ N[x] such that for all f ∈ S, |f | � a for some a ∈ N. Then
the set of minimal elements of S with respect to the partial order � is finite.

Proof. It is an immediate corollary of the above lemma. �

Lemma 4.7. Let S ⊆ N[x] such that for all f ∈ S, deg(f) � k for some k ∈ N.
Then the set of minimal elements of S with respect to the partial order � is finite.

Proof. We shall prove the lemma by induction on k. The case k = 0 is clear. For

the inductive step, assume now that k ≥ 1. Choose an f =
∑k

i=0 fix
i ∈ S and

denote c = |f |. For every j, 0 ≤ j < c, j ∈ N, there exists an integer, say s,

0 � s � k, such that
∑k

i=s+1 fi � j <
∑k

i=s fi, and we define

Uj = {
k∑

i=s

gix
i |

k∑
i=s

gi = j},

which is obviously a finite set. For each g ∈ Uj , define

Sg = {
k∑

i=0

gix
i ∈ S |

k∑
i=s

gix
i = g}

and

S′
g = {

s−1∑
i=0

gix
i |

k∑
i=0

gix
i ∈ Sg}.

In addition, we define

Sf = {h ∈ S | f � h}.
By the definition of �, for an h ∈ S, if h � f , then h must belong to some Sg. So
we have

(4.2) S = (

c−1⋃
j=0

⋃
g∈Uj

Sg) ∪ Sf .

Note that for each g ∈ Uj , deg(h) < k for all h ∈ S′
g, so by the induction hypothesis,

the set of minimal elements of S′
g with respect to the partial order � is finite and

hence so is Sg. Because of (4.2), we have that the set of minimal elements of S is
contained in the union of the set of minimal elements of Sg and {f}, where g ∈ Uj

and j = 0, . . . , c− 1. Since the latter is a finite set, the former must be finite. �

Lemma 4.8. Let S ⊆ N[x]. Then the set of minimal elements of S with respect to
the partial order � is finite.

Proof. Let us choose an f =
∑k

i=0 fix
i ∈ S and denote c = |f |. For every j,

0 ≤ j < c − f0, j ∈ N, there exists an integer, say s, 1 � s � k, such that
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∑k
i=s+1 fi � j <

∑k
i=s fi, and we define

Uj = {
l∑

i=s

gix
i |

l∑
i=0

gix
i ∈ S,

l∑
i=s

gi = j},

Sj = {
l∑

i=0

gix
i ∈ S |

l∑
i=s

gi = j}

and

S′
j = {

s−1∑
i=0

gix
i |

l∑
i=0

gix
i ∈ Sj}.

By Lemma 4.5, for each j, the set of minimal elements of Uj is finite, which is
denoted by Vj . By Lemma 4.7, for each j, the set of minimal elements of S′

j is
finite, which is denoted by Wj .

In addition, we define

Sc = {
l∑

i=0

gix
i ∈ S |

l∑
i=0

gi < c},

Sf = {h ∈ S | f � h}.
By the definition of �, for an h ∈ S, if h /∈ Sc and h /∈ Sf , then h must belong

to some Sj . So we have

(4.3) S = (

c−f0−1⋃
j=0

Sj) ∪ Sc ∪ Sf .

By Lemma 4.6, the set of minimal elements of Sc is finite, which is denoted by C. We
claim that the set of minimal elements of S is contained in
(
⋃c−f0−1

j=0 (Vj +Wj)) ∪C ∪ {f}, where Vj +Wj means {g + h | g ∈ Vj , h ∈ Wj}. To
prove this, let g =

∑l
i=0 gix

i ∈ S. By (4.3), if g /∈ Sc and g /∈ Sf , then there exists

j such that g ∈ Sj . By definition,
∑l

i=s gix
i ∈ Uj and

∑s−1
i=0 gix

i ∈ S′
j . So there

exists h ∈ Vj and there exists h′ ∈ Wj such that h �
∑l

i=s gix
i and h′ �

∑s−1
i=0 gix

i.

Therefore, h+ h′ ∈ Vj +Wj such that h+ h′ �
∑l

i=s gix
i +

∑s−1
i=0 gix

i = g, which
proves the claim.

Since (
⋃c−f0−1

j=0 (Vj + Wj)) ∪ C ∪ {f} is a finite set, it follows that the set of
minimal elements of S is finite. �

Lemma 4.9. Let S ⊆ N[x]n. Then the set of minimal elements of S with respect
to the partial order � is finite.

Proof. We shall prove the lemma by induction on n. The case n = 1 is proved by
Lemma 4.8. For the inductive step, assume now that n ≥ 2. Define

S1 = {u1 | (u1, . . . , un) ∈ S}.
By Lemma 4.8, the set of minimal elements of S1 is finite, which is denoted by U .
For each u ∈ U , define

Su = {(u1, u2, . . . , un) ∈ S | u � u1}
and

S′
u = {(u2, . . . , un) | (u1, u2, . . . , un) ∈ Su}.
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Obviously, we have S =
⋃

u∈U Su.
By the induction hypothesis, for each u ∈ U , the set of minimal elements of

S′
u with respect to the partial order � is finite, which is denoted by Vu. Let

u × Vu = {(u,v) | v ∈ Vu}. We claim that the set of minimal elements of S is
contained in

⋃
u∈U u × Vu. To prove this, let u = (u1, u2, . . . , un) ∈ S. There

exists u ∈ U such that u ∈ Su. By definition, (u2, . . . , un) ∈ S′
u. So there exists

v ∈ Vu such that v � (u2, . . . , un). Therefore, (u,v) � (u1, u2, . . . , un) = u and
(u,v) ∈ u× Vu, which proves the claim.

Since
⋃

u∈U u× Vu is a finite set, the set of minimal elements of S is finite. �

Now we can prove the finitely generated property of well-mixed σ-ideals gener-
ated by monomials.

Theorem 4.10. Let I = 〈Yu : u ∈ S〉 for some S ⊆ N[x]n. Then I is generated
by a finite set of monomials as a well-mixed σ-ideal.

Proof. If u � v, we can delete v from the generating set S to get the same well-
mixed σ-ideal, since Yv ∈ 〈Yu〉 by Lemma 4.4. So we only need to show that the
set of minimal elements of S with respect to the partial order � is finite, which
follows from Lemma 4.9. �

Corollary 4.11. Any strictly ascending chain of well-mixed σ-ideals generated by
monomials in R is finite.

Proof. Assume that I1 ⊆ I2 ⊆ . . . ⊆ Ik . . . is an ascending chain of well-mixed σ-
ideals generated by monomials. Then

⋃∞
i=1 Ii is also a well-mixed σ-ideal generated

by monomials. By Theorem 4.10,
⋃∞

i=1 Ii is finitely generated by monomials, say
{a1, . . . , am}. Then there exists k ∈ N large enough such that {a1, . . . , am} ⊂ Ik.
It follows that Ik = Ik+1 = . . . =

⋃∞
i=1 Ii. �

Remark 4.12. It should be pointed out that a counterexample due to Levin in [4]
shows that Corollary 4.11 does not hold even for well-mixed σ-ideals generated by
binomials in R.

5. Prime decomposition of radical well-mixed monomial σ-ideals

In this section, we will give a finite prime decomposition of radical well-mixed
monomial σ-ideals. First let us prove some lemmas. Notation follows as in Section
4.

Lemma 5.1. Let F and G be subsets of any σ-ring R. Then

(a) F [1]G[1] ⊆ (FG)[1];
(b) F [i]G[i] ⊆ (FG)[i] for i = 1, 2, . . .;

(c) F [i] ∪G[i] ⊆
√
(FG)[i] for i = 1, 2, . . . .

Proof. (a) Let aσ(b) ∈ F [1] and cσ(d) ∈ G[1] such that ab ∈ (F ) and cd ∈ (G).
Then abcd ∈ (FG) and it follows that acσ(bd) = aσ(b)cσ(d) ∈ (FG)[1]. So
F [1]G[1] ⊆ (FG)[1].
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(b) We prove (b) by induction on i. The case i = 1 is proved by (a). For the induc-
tive step, assume now that i ≥ 2. Then by (a) and the induction hypothesis,

F [i]G[i] = (F [i−1])[1](G[i−1])[1] ⊆ (F [i−1]G[i−1])[1]

⊆ ((FG)[i−1])[1] = (FG)[i].

(c) For any a ∈ F [i] ∪G[i], a2 ∈ F [i]G[i]. It follows that a ∈
√
F [i]G[i] ⊆

√
(FG)[i].

�

Proposition 5.2. Let F and G be subsets of any σ-ring R. Then

〈F 〉r ∩ 〈G〉r = 〈FG〉r.

As a corollary, if I and J are two σ-ideals of R, then

〈I〉r ∩ 〈J〉r = 〈I ∩ J〉r = 〈IJ〉r.

Proof. 〈F 〉r ∩ 〈G〉r ⊇ 〈FG〉r is clear. It is enough to show the converse. Because
of (4.1),

〈F 〉r ∩ 〈G〉r =
√

〈F 〉 ∩
√
〈G〉 =

√√√√
∞⋃
i=0

F [i]) ∩

√√√√
∞⋃
i=0

G[i])

=

√√√√
∞⋃
i=0

(F [i] ∩G[i]) ⊆

√√√√
∞⋃
i=0

√
(FG)[i] = 〈FG〉r,

where the inclusion follows from Lemma 5.1(c). �

Lemma 5.3. Let I be a radical well-mixed σ-ideal of R. Suppose Yu1 ,Yu2 are two
monomials in R such that Yu1+u2 ∈ I. Then

I = 〈I,Yu1〉r ∩ 〈I,Yu2〉r.

Proof. By Proposition 5.2,

〈I,Yu1〉r ∩ 〈I,Yu2〉r = 〈I,Yu1+u2〉r = I.

�

For b = (b1, . . . , bn) ∈ (N ∪ {−1})n, we define

mb := [yx
bi

i | bi 	= −1],

which is a prime monomial σ-ideal.
For m ∈ N∗, denote [m] = {1, . . . ,m}.
Now we can prove the decomposition theorem of radical well-mixed monomial

σ-ideals.

Theorem 5.4. Let I = 〈Yu : u ∈ S〉r where S ⊆ N[x]n. Then I can be written
as a finite intersection of prime monomial σ-ideals of the forms mb. That is, there
exist b1, . . . ,bs ∈ (N ∪ {−1})n such that

I = m
b1 ∩ . . . ∩m

bs .

Moreover, if the decomposition is irredundant, then it is unique.
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Proof. By Lemma 5.3, if a monomial Yu ∈ I and u = u1+u2, then I = 〈I,Yu1〉r ∩
〈I,Yu2〉r. Iterating this process eventually write I as follows:

I = ∩〈yx
bi1

i1 , . . . , yx
bik

ik
〉r.

Note that [yx
bi1

i1
, . . . , yx

bik

ik
] is a prime σ-ideal; therefore

〈yx
bi1

i1 , . . . , yx
bik

ik
〉r = [yx

bi1

i1 , . . . , yx
bik

ik
]

and

I = ∩[yx
bi1

i1 , . . . , yx
bik

ik
].

After deleting unnecessary members in the intersection, we can assume that the
intersection is irredundant. Using an argument similar to the proof of Dickson’s
lemma, we see that this irredundant intersection must be finite. So there exist
b1, . . . ,bs ∈ (N ∪ {−1})n such that

I = mb1 ∩ . . . ∩mbs .

Let mb1 ∩ . . . ∩ mbs = ma1 ∩ . . . ∩ mat be two irredundant decompositions of I.
We will show that for each i ∈ [s], there exists j ∈ [t] such that maj ⊆ mbi . By
symmetry, we then also have that for each k ∈ [t], there exists l ∈ [s] such that
mbl ⊆ mak . This implies that s = t and {mb1 , . . . ,mbs} = {ma1 , . . . ,mat}.

In fact, let i ∈ [s]. We can assume that mbi = [yx
bi1

1 , . . . , yx
bir

r ]. Suppose

maj � mbi for all j ∈ [t]. Then for each j there exists yx
cj

lj
∈ maj\mbi . It follows

that either lj /∈ [r] or cj < bilj . Let

a =

t∏
j=1

yx
cj

lj .

We have a ∈
⋂t

j=1 m
aj ⊆ mbi . Therefore, there exists j ∈ [t] such that lj ∈ [r] and

bilj ≤ cj . This is impossible. �

If I is a radical well-mixed monomial σ-ideal, then the irredundant prime decom-
position of I obtained in Theorem 5.4 is called the standard prime decomposition
of I and each mbi is called an irreducible component of I.

Corollary 5.5. The radical well-mixed closure of a monomial σ-ideal is still a
monomial σ-ideal.

Proof. Suppose I is a monomial σ-ideal. By Theorem 5.4, there exist b1, . . . ,bs ∈
(N∪{−1})n such that 〈I〉r =

⋂s
i=1 m

bi . Since every mbi is a monomial σ-ideal and
the intersection of monomial σ-ideals is a monomial σ-ideal, it follows that 〈I〉r is
a monomial σ-ideal. �

Corollary 5.6. Every radical well-mixed monomial σ-ideal in R is generated by
finitely many monomials as a radical well-mixed σ-ideal.

Proof. Suppose I is a radical well-mixed monomial σ-ideal. Let I =
⋂s

i=1 m
bi be

the standard prime decomposition of I. By Proposition 5.2,
⋂s

i=1 m
bi equals a

radical well-mixed σ-ideal which is generated by finitely many monomials, so I is
finitely generated as a radical well-mixed σ-ideal. �
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By Corollary 5.6, for a radical well-mixed monomial σ-ideal I of R, there exist
a1, . . . , am ∈ (N ∩ {−1})n with aj = (aji)

n
i=1, j = 1, . . . ,m, such that

I = 〈
n∏

i=1

yx
a1i

i , . . . ,

n∏
i=1

yx
ami

i 〉r,

where we set x−1 = 0. We call {a1, . . . , am} the character vectors of I and call
{
∏n

i=1 y
xa1i

i , . . . ,
∏n

i=1 y
xami

i } the set of minimal generators of I, denoted by G(I).

Corollary 5.7. Any strictly ascending chain of radical well-mixed monomial σ-
ideals in R is finite.

Proof. Assume that I1 ⊆ I2 ⊆ . . . ⊆ Ik . . . is an ascending chain of radical
well-mixed monomial σ-ideals. Then

⋃∞
i=1 Ii is also a radical well-mixed mono-

mial σ-ideal. By Corollary 5.6,
⋃∞

i=1 Ii is finitely generated by monomials, say
{a1, . . . , am}. Then there exists k ∈ N large enough such that {a1, . . . , am} ⊂ Ik.
It follows that Ik = Ik+1 = . . . =

⋃∞
i=1 Ii. �

Remark 5.8. By Corollary 5.7, Conjecture 1.1 is valid for radical well-mixed mono-
mial σ-ideals.

In the following, we give a criterion to check if a monomial σ-ideal is radical
well-mixed using its support set.

Lemma 5.9. An intersection of prime σ-ideals is radical well-mixed.

Proof. A prime σ-ideal is radical well-mixed, and an intersection of radical well-
mixed σ-ideals is radical well-mixed. �

Corollary 5.10. Let I = k[S] be a monomial σ-ideal of R. Then I is radical
well-mixed if and only if the following conditions are satisfied:

(a) For m ∈ N∗ and u ∈ N[x]n, mu ∈ S implies u ∈ S.
(b) For u,v ∈ N[x]n, u+ v ∈ S implies u+ xv ∈ S.

Proof. “⇒” is clear.
“⇐”. For u = (u1, . . . , un) ∈ N[x]n, define deg(u) = (deg(u1), . . . , deg(un)) and

set deg(0) = −1. If b = (b1, . . . , bn) ∈ (N ∪ {−1})n, then let xb = (xb1 , . . . , xbn)
and set x−1 = 0. So from (a) and (b), we obtain

∀u ∈ S ⇒ xdeg(u) ∈ S.

Let U be the subset of S which is the set of minimal elements in {xdeg(u) | u ∈ S}
with respect to the order �(u = (ui)

n
i=1 � v = (vi)

n
i=1 if and only if deg(ui) �

deg(vi) for all i). Using an argument similar to the proof of Dickson’s lemma, we
see that U is a finite set. Moreover,

(5.1) S = {v ∈ N[x]n | u � v for some u ∈ U},

or equivalently,

(5.2) S =
⋃
u∈U

n⋂
i=1

{v ∈ N[x]n | deg(ui) � deg(vi)}.
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Exchange
⋃

and
⋂

in (5.2), and we obtain b1, . . . ,bs ∈ (N ∪ {−1})n with bi =
{bij}nj=1, i = 1, . . . , s such that

(5.3) S =
s⋂

i=1

n⋃
j=1

{v ∈ N[x]n | bij � deg(vi)}.

Because of (5.3), we have

I = k[S] =

s⋂
i=1

m
bi .

Since all mbi are prime σ-ideals, I is radical well-mixed. �

Suppose S is a subset of N[x]n. Let

S′ = {u+ xv | u+ v ∈ S,u,v ∈ N[x]n}.
Let S[0] = S, and recursively we define S[k] = [S[k−1]]′(k = 1, 2, . . .). Denote

〈S〉 =
∞⋃
k=0

S[k].

Corollary 5.11. Let I = k[S] be a monomial σ-ideal of R. Then 〈I〉r = k[
√

〈S〉].

Proof. Clearly, 〈I〉r ⊇ k[
√

〈S〉]. We just need to show that k[
√

〈S〉] is already a

radical well-mixed σ-ideal. It is easy to check that k[
√
〈S〉] is a σ-ideal. To show

that it is radical well-mixed, we need to check that
√
〈S〉 satisfies the conditions

(a) and (b) of Corollary 5.10. (a) is obvious. For (b), let u,v ∈ N[x]n such that

u + v ∈
√
〈S〉; then there exists m ∈ N∗ such that m(u + v) ∈ 〈S〉 =

⋃∞
k=0 S

[k].

So there exists k ∈ N such that m(u+ v) ∈ S[k]. Hence m(u+ xv) ∈ S[k+1] ⊆ 〈S〉.
Therefore, u+ xv ∈

√
〈S〉. �

Corollary 5.12. Suppose S1, S2 ⊆ N[x]n. Then k[
√

〈S1 ∪ S2〉] = k[
√

〈S1〉] ∪
k[

√
〈S2〉].

Proof. Clearly k[
√

〈S1 ∪ S2〉] ⊇ k[
√

〈S1〉] ∪ k[
√

〈S2〉]. We only need to show that

k[
√
〈S1〉 ∪

√
〈S2〉] is already a radical well-mixed σ-ideal.

Obviously,
√
〈S1〉∪

√
〈S2〉 is a character set. Let u,v ∈ N[x]n such that u+v ∈√

〈S1〉 ∪
√
〈S2〉; then u + v ∈

√
〈S1〉 or

√
〈S2〉 and hence u + xv ∈

√
〈S1〉 or√

〈S2〉. So u + xv ∈
√
〈S1〉 ∪

√
〈S2〉, which proves the condition (b) of Corollary

5.10. Similarly for the condition (a) of Corollary 5.10. Therefore, the corollary
follows from Corollary 5.10. �

Corollary 5.13. Let I, J be two monomial σ-ideals. Then 〈I + J〉r = 〈I〉r + 〈J〉r.

Proof. Suppose I = k[S1], J = k[S2]. Then 〈I + J〉r = k[
√

〈S1 ∪ S2〉] and 〈I〉r +
〈J〉r = k[

√
〈S1〉 ∪

√
〈S2〉]. So the equality follows from Corollary 5.12. �

6. σ-prime decomposition of perfect monomial σ-ideals

It is well known that in a σ-polynomial ring, any perfect σ-ideal is a finite inter-
section of σ-prime σ-ideals. In this section, we will give a σ-prime decomposition
of perfect monomial σ-ideals in a σ-polynomial ring. The following lemma is taken
from [7, Proposition 1.2.20].



MONOMIAL DIFFERENCE IDEALS 1495

Proposition 6.1. Let F and G be subsets of any σ-ring R. Then

{F} ∩ {G} = {FG}.

Lemma 6.2. Let I be a perfect σ-ideal of R. Suppose that Yu1 ,Yu2 are two mono-
mials in R such that Yu1+u2 ∈ I. Then

I = {I,Yu1} ∩ {I,Yu2}.

Proof. By Proposition 6.1,

{I,Yu1} ∩ {I,Yu2} = {I,Yu1+u2} = I.

�
For b = (b1, . . . , bn) ∈ {0, 1}n, we define

pb := [yi | bi 	= 0],

which is a σ-prime σ-ideal.

Theorem 6.3. Let I = {Yu : u ∈ S} where S ⊆ N[x]n. Then I can be written
as a finite intersection of σ-prime σ-ideals of the forms pb. That is, there exist
b1, . . . ,bs ∈ {0, 1}n such that

I = p
b1 ∩ . . . ∩ p

bs .

Moreover, if the decomposition is irredundant, then it is unique.

Proof. For u = (u1, . . . , un) ∈ N[x]n, define a vector a = (a1, . . . , an) ∈ {0, 1}n
such that ai = 1 if ui 	= 0 and ai = 0 otherwise, for i = 1, . . . , n. It is easy to
see that if Yu ∈ I, then Ya ∈ I. So without loss of generality, we can assume
that S ⊆ {0, 1}n. By Lemma 6.2, if a monomial Yu ∈ I and u = u1 + u2, then
I = {I,Yu1} ∩ {I,Yu2}. Iterating this process eventually write I as follows:

I = ∩{yi1 , . . . , yik} = ∩[yi1 , . . . , yik ].
After deleting unnecessary members in the intersection, we can assume that the

intersection is irredundant. It is easy to see that this irredundant intersection is
finite. Thus there exist b1, . . . ,bs ∈ {0, 1}n such that

I = pb1 ∩ . . . ∩ pbs .

The uniqueness is similar to Theorem 5.4. �
Remark 6.4. In fact, it is more straightforward to get the σ-prime decomposition
of perfect monomial σ-ideals by using Theorem 5.4. Assume S ⊆ {0, 1}n. Then by
Theorem 5.4, 〈Yu : u ∈ S〉r = ∩〈yi1 , . . . , yik〉r = ∩[yi1 , . . . , yik ]. Since [yi1 , . . . , yik ]
are σ-prime σ-ideals, it follows that 〈Yu : u ∈ S〉r is a perfect σ-ideal. Thus

I = {Yu : u ∈ S} = 〈Yu : u ∈ S〉r = ∩[yi1 , . . . , yik ].
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