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THE BESSEL DIFFERENCE EQUATION

MARTIN BOHNER AND TOM CUCHTA

(Communicated by Mourad Ismail)

Abstract. We define a new difference equation analogue of the Bessel differ-
ential equation and investigate the properties of its solution, which we express
using a 2F1 hypergeometric function. We find analogous formulas for Bessel
function recurrence relations, a summation transformation which is identical
to the Laplace transform of classical Bessel functions, and oscillation.

1. Introduction

The classical Bessel functions are heavily studied special functions (see [2, 3, 11,
15, 17]) that are defined via Bessel’s differential equation

(1) t2y′′(t) + ty′(t) + (t2 − n2)y(t) = 0,

for some (possibly complex) parameter n called the order of the equation. In this
paper, we propose the following discrete analogue of (1): the second-order delay
difference equation

(2) t(t− 1)Δ2y(t− 2) + tΔy(t− 1) + t(t− 1)y(t− 2)− n2y(t) = 0

is called the Bessel difference equation.
The solutions of Bessel’s differential equation, Jn, are called Bessel functions (of

the first kind) and have series representation

(3) Jn(t) =

∞∑
k=0

(−1)kt2k+n

k!Γ(k + n+ 1)22k+n
.

We will achieve analogues for (2) of the following well-known facts about (1):

(4) tJ ′
n(t) = nJn(t)− tJn+1(t),

(5) tJ ′
n(t) = −nJn(t) + tJn−1(t),

(6) 2nJn(t) = tJn−1(t) + tJn+1(t),

(7) 2J ′
n(t) = Jn−1(t)− Jn+1(t),

and

(8)
d

dt
[tnJn(t)] = tnJn−1(t).
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The Laplace transform of the classical Bessel function Jn is

(9) L {Jn}(z) =
[
√
z2 + 1 + z]−n

√
z2 + 1

.

This fact is deduced in [16] from the differential equation

(10) (z2 + 1)y′′(z) + 3zy′(z) + (1− n2)y(z) = 0

using y(z) = L {Jn}(z).
Let u(t) = Jn(t). The function u obeys the self-adjoint equation

(11) (tu′)′ = −
(
t− n2

t

)
u.

Let u(t) =
√
tJn(t). For t ≥ 0, the function u obeys the self-adjoint equation

(12) u′′ = −
(
1− 4n2 + 4t2

4t2

)
u.

We use the notation (a)n = a(a + 1) . . . (a + n − 1) =
Γ(a+ n)

Γ(a)
. The well-known

hypergeometric series 2F1 is given by the power series

2F1 (a, b; c; z) =
∞∑
k=0

(a)k(b)k
(c)kk!

zk.

If a or b is zero or a negative integer, then 2F1 is a finite series and converges
everywhere. Otherwise, the series converges for a, b ∈ C, c ∈ C \ {0,−1,−2, . . .},
and |z| < 1, and extended by analytic continuation for |z| > 1.

2. Difference equations

Let D ⊂ C and f : D → C. The forward difference operator Δ is defined by the
formula

Δf(t) = f(t+ 1)− f(t).

We define the “nth order discrete monomial”

(−1)n(−t)n = t(t− 1) . . . (t− n+ 1).

Directly from the definition, we see that Δ[(−1)n(−t)n] = n(−1)n−1(−t)n−1 is a
discrete analogue of the power rule. We say that a function f : Z → R is oscillatory
if it changes sign or equals zero at infinitely many points. The self-adjoint form for
homogeneous second-order difference equations is

(13) Δ(p(t)Δy(t)) + q(t)y(t+ 1) = 0,

and provided that p(t) �= 0, expanding (13) yields

(14) Δ2y(t) +
Δp(t) + q(t)

p(t+ 1)
Δy(t) +

q(t)

p(t+ 1)
y(t) = 0.
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3. The discrete Bessel equation

We will now investigate the Bessel difference equation (2). Expanding this equa-
tion out by the definition of the difference operator yields the equation

(15) (t2 − n2)y(t)− t(2t− 1)y(t− 1) + 2t(t− 1)y(t− 2) = 0,

showing we are guaranteed uniqueness for t > n. Define

Jn(t) =
(−1)n(−t)n

2nn!
2F1

(
n− t

2
,
n+ 1− t

2
;n+ 1;−1

)
,

which is valid for all t, n ∈ C. Throughout the rest of the paper, we will understand
t to be a discrete variable, i.e., t ∈ Z. For t ∈ N0 ∪{−1}, we see that this definition
reduces to

Jn(t) =

∞∑
k=0

(−1)k+n(−t)2k+n

k!(n+ k)!22k+n

which appears to be very similar to the series (3). Figure 1 contains a table of
values for Jn(t) for various n, and the graphs of J0, J1, and J2 appear in Figures
2, 3, and 4 respectively. Also note that Jn(t) is a polynomial for t ≥ 0 and n ∈ N0.
However, this series representation is not optimal, because it diverges for t < −1.
At t = −1, we see that

Jn(−1) =
∞∑
k=0

(−1)k+n(1)2k+n

k!(n+ k)!22k+n
=

(−1)n

2n

∞∑
k=0

(−1)k(2k + n)!

k!(k + n)!22k
,

which converges to
(−1)n

(
√
2 + 1)n

√
2
by [9, p. 203]. We now show that Jn is a solution

of (2).

Theorem 1. The function

Jn(t) =
(−1)n(−t)n

2nn!
2F1

(
n− t

2
,
n+ 1− t

2
;n+ 1;−1

)

solves (2).

Proof. From [8, (36), p. 103], we know that the hypergeometric function 2F1 obeys
the contiguous relation

(c− a− b)F (a, b; c; z)− (c− a)F (a− 1, b; c; z) + b(1− z)F (a, b+ 1; c; z) = 0.

Taking a =
n− t

2
+ 1, b =

n− t

2
+

1

2
, c = n+ 1, z = −1, and the definition of Jn

yields(
t− 1

2

)
Jn(t− 1)

(−1)n(1− t)n
−
(
n

2
+

t

2

)
Jn(t)

(−1)n(−t)n
+ (n− t+ 1)

Jn(t− 2)

(−1)n(2− t)n
= 0.

Multiplying by −2t yields

t(1−2t)
Jn(t− 1)

(−1)n(1− t)n
+(n+t)

Jn(t)

(−1)n−1(1− t)n−1
−2t(n−t+1)

Jn(t− 2)

(−1)n(2− t)n
= 0.
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t J0(t) J1(t) J2(t)

−1 0.7071 . . . −0.2928 . . . 0.1213 . . .

0 1.000 0.000 0.000

1 1.000 0.5000 0.0000

2 0.5000 1.0000 0.2500

3 −0.5000 1.1250 0.7500

4 −1.6250 0.5000 1.2500

5 −2.1250 −0.9375 1.2500

6 −1.1875 −2.6250 0.2343

7 1.4375 −3.3359 −1.8593

8 4.7734 −1.6875 −4.1562

9 6.4609 2.7773 −4.7812

10 3.6835 8.3984 −1.6699

20 −197.6987 76.6649 186.6956

30 −2175.4364 −5144.4537 1717.9433

40 144243.0781 −57784.8851 −140126.0213

50 1724667.0284 4111518.8945 −1500198.3390

Figure 1. Table of values for various Jn.

Now multiply by (−1)n(1− t)n to see

t(1− 2t)Jn(t− 1) + (n+ t)
(−1)n(1− t)n

(−1)n−1(1− t)n−1
Jn(t)

− 2t(n− t+ 1)
(−1)n(1− t)n
(−1)n(2− t)n

Jn(t− 2) = 0.

Now notice that

(−1)n(1− t)n
(−1)n−1(1− t)n−1

= t− n
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Figure 2. Discrete Bessel function J0.

and

(n− t+ 1)
(−1)n(1− t)n
(−1)n(2− t)n

= (n− t+ 1)(t− 1)
(−1)n−1(2− t)n−1

(−1)n(2− t)n

=
(n− t+ 1)(t− 1)

(t− 1− n)

= −(t− 1),

showing that Jn satisfies (15), as was to be shown. �
Analogues of Bessel functions are not an original idea — the theory of q-Bessel

functions is well developed [10, 13]. It should be noted that our functions are not
the same as those in [6], which studies the equation

Δ2y(t) +
1

t− 1
2

Δy(t) +
4tλ

t− 1
2

y(t) = 0,

derived from discretizing Laplace’s equation in cylindrical coordinates with differ-
ence operators. A similar system is studied in [14]. It is also different from those
studied in [12], which investigates series solutions to the equation

(t+ 2n+ 2)Δ2y(t) + (2n+ 1)Δy(t) + λ(t+ 1)y(t) = 0.

Coincidentally, this equation matches our discrete Bessel equation for n = 0 and
λ = 1, but not for other values of n or λ. We now put the discrete Bessel equation
in a standard form.

Lemma 2. A function y solves (2) if and only if y solves

(16)
[
(t+ 2)2 − n2

]
Δ2y(t) +

[
t+ 2− 2n2

]
Δy(t) +

[
(t+ 2)(t+ 1)− n2

]
y(t) = 0.

Proof. In (2), we substitute t by t+ 2 to obtain

(t+ 2)(t+ 1)Δ2y(t) + (t+ 2)Δy(t+ 1) + (t+ 2)(t+ 1)y(t)− n2y(t+ 2) = 0.
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Figure 3. Discrete Bessel function J1.

Now since Δy(t + 1) = Δ2y(t) + Δy(t) and y(t+ 2) = Δ2y(t) + 2Δy(t) + y(t), we
get[

(t+ 2)2 − n2
]
Δ2y(t) +

[
(t+ 2)− 2n2

]
Δy(t) +

[
(t+ 2)(t+ 1)− n2

]
y(t) = 0,

as was to be shown. �

Recall the binomial coefficient notation(
n

k

)
=

Γ(n+ 1)

Γ(k + 1)Γ(n− k + 1)
.

The following theorem is an analogue of (11).

Theorem 3. The equation (2) is equivalent to (13) for integers t ≥ n, where

p(t) =

t−1∏
k=n

(k + 2)2 − n2

2(k + 2)(k + 1)
=

2n−t(t+ 1)(
t+1
n

)(
t+1
n+1

)
(
1 + n+ t

t− n

)

and

q(t) =
(t+ 2)(t+ 1)− n2

2(t+ 2)(t+ 1)
p(t).

Proof. Note that p(t) > 0 for all t ≥ n. First we compute

Δp(t) = −1

2

[
t(t+ 2) + n2

(t+ 2)(t+ 1)

]
p(t), t ∈ N \ {1, 2, . . . , n− 1},

and

p(t+ 1) = p(t)
(t+ 2)2 − n2

2(t+ 2)(t+ 1)
.
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Figure 4. Discrete Bessel function J2.

We start with (13) and expand the first term to get

0 = p(t+ 1)Δ2y(t) + Δp(t)Δy(t) + q(t)y(t+ 1)

=
(t+ 2)2 − n2

2(t+ 2)(t+ 1)
p(t)Δ2y(t)− 1

2

[
t(t+ 2) + n2

(t+ 2)(t+ 1)

]
p(t)Δy(t)

+
(t+ 2)(t+ 1)− n2

2(t+ 2)(t+ 1)
p(t)y(t+ 1).

Multiply this by
2(t+ 2)(t+ 1)

p(t)
to get

0 = [(t+ 2)2 − n2]Δ2y(t)− [t(t+ 2) + n2]Δy(t) + [(t+ 2)(t+ 1)− n2]y(t+ 1).

Since y(t+ 1) = Δy(t) + y(t) and (t+ 2)(t+ 1)− t(t+ 2) = (t+ 2), we see

0 = [(t+ 2)2 − n2]Δ2y(t) + [t+ 2− 2n2]Δy(t) + [(t+ 2)(t+ 1)− n2]y(t),

but this is (16) which Lemma 2 shows to be equivalent to (2). �

Theorem 4. The equation (2) is equivalent to

(17) 2(t+ 1)(t+ 2)Δ2y(t)−
[
t(t+ 2) + n2

]
Δy(t+ 1)

+
[
(t+ 1)(t+ 2)− n2

]
y(t+ 1) = 0.

Proof. In (2) replace t by t+ 2 to get

(t+ 2)(t+ 1)Δ2y(t) + (t+ 2)Δy(t+ 1) + (t+ 2)(t+ 1)y(t)− n2y(t+ 2) = 0.

Now note as a consequence of the definition of Δ that

y(t) = y(t+ 1)−Δy(t+ 1) + Δ2y(t)

and

y(t+ 2) = Δy(t+ 1) + y(t+ 1).
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Substituting in these formulas and algebraically simplifying yields the result. �

4. Properties of Jn

We now derive various recurrence relations that Jn obey. First, we present an
analogue of (4).

Theorem 5. For all n ∈ C \ {−1,−2, . . .}, we have

tΔJn(t− 1) = nJn(t)− tJn+1(t− 1).

Proof. First calculate

ΔJn(t) =
n(−1)n−1(−t)n−1

2nn!
2F1

(
n− (t+ 1)

2
,
n− (t+ 1)

2
+

1

2
;n+ 1;−1

)

+
(−1)n(−t)n

2nn!
Δ2F1

(
n− t

2
,
n− t

2
+

1

2
;n+ 1;−1

)
.

Hence

tΔJn(t− 1) = nJn(t) +
t(−1)n(1− t)n

2nn!

∞∑
k=0

(−1)k
(
n−t
2

+ 1
2

)
k

k!(n+ 1)k

[(
n−t
2

)
k
−

(
n−t
2

+ 1
)
k

]

= nJn(t)−
(−1)n(−t)n+1

2nn!

∞∑
k=1

(−1)k
(
n−t
2

+ 1
2

)
k

(
n−t
2

+ 1
)
k−1

(k − 1)!(n+ 1)k

= nJn(t) +
(−1)n(−t)n+1

2nn!

∞∑
k=0

(−1)k
(
n−t
2

+ 1
2

)
k+1

(
n−t
2

+ 1
)
k

k!(n+ 1)k+1

= nJn(t)−
(−1)n+1(−t)n+2

2n+1(n+ 1)!
2F1

(
n− t

2
+ 1,

n− t

2
+

1

2
+ 1;n+ 1;−1

)
.

Observing that

tJn+1(t− 1) =
(−1)n+2(−t)n+2

2n+1(n+ 1)!
2F1

(
n− t

2
+ 1;

n− t

2
+

1

2
+ 1;n+ 1;−1

)

completes the proof. �

Now we prove an analogue of (5).

Theorem 6. For all n ∈ C \ {−1,−2, . . .}, we have

tΔJn(t− 1) = −nJn(t) + tJn−1(t− 1).

Proof. Compute

tΔJn(t− 1) = nJn(t) +
(−1)n+1(−t)n+1

2nn!

∞∑
k=0

(−1)k
(
n−t
2

+ 1
2

)
k

k!(n+ 1)k

[(
n− t

2

)
k

−
(
n− t

2
+ 1

)
k

]

= nJn(t) +
(−1)n(−t)n(t− n)

2nn!

∞∑
k=0

(−1)k
(
n−t
2

+ 1
2

)
k

(
n−t
2

)
k

k!(n+ 1)k

[
2k

t− n

]

= −nJn(t) +
(−1)n(−t)n

2n(n− 1)!

∞∑
k=0

(−1)k
(
n−t
2

+ 1
2

)
k

(
n−t
2

)
k

k!(n)k+1
[2k + 2n]

= −nJn(t) +
(−1)n(−t)n

2n−1(n− 1)!

∞∑
k=0

(−1)k
(
n−t
2

+ 1
2

)
k

(
n−t
2

)
k

k!(n)k

= −nJn(t) + tJn−1(t− 1),

as was to be shown. �
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The formulas in the following corollary are analogues of (6) and (7) and come
directly from the two previously derived recurrence relations. For the first one, we
subtract the formulas, and for the second one, we add the formulas, divide by t,
and replace t− 1 with t.

Corollary 7. For all n ∈ C \ {−1,−2, . . .}, we have

2nJn(t) = t[Jn−1(t− 1) + Jn+1(t− 1)]

and

2ΔJn(t) = Jn−1(t)− Jn+1(t).

Now we prove an analogue of (8).

Theorem 8. For all n ∈ C \ {−1,−2 . . .}, we have

Δ[(−t)nJn(t− n)] = (−t)nJn−1(t− n).

Proof. Compute

Δ[(−t)nJn(t− n)] = (−1− t)nJn(t+ 1− n)− (−t)nJn(t− n)

=
(−1− t)n(−1)n(n− t− 1)n

2nn!

∞∑
k=0

(−1)k
(
2n−t

2
− 1

2

)
k

(
2n−t

2

)
k

k!(n+ 1)k

− (−t)n(−1)n(n− t)n

2nn!

∞∑
k=0

(−1)k
(
2n−t

2

)
k

(
2n−t

2
+ 1

2

)
k

k!(n+ 1)k

=
(−t)n(−1)n−1(n− t)n−1

2n(n− 1)!

∞∑
k=0

(−1)k
(
2n−t

2

)
k

(
2n−t

2
− 1

2

)
k
(2n+ 2k)

k!(n)k+1

=
(−t)n(−1)n−1(n− t)n−1

2n−1(n− 1)!

∞∑
k=0

(−1)k
(
2n−t

2

)
k

(
2n−t

2
− 1

2

)
k

k!(n)k

= (−t)nJn−1(t− n),

as was to be shown. �

5. The Z̃-transform of discrete Bessel functions

The well-known Z-transform of a function f is defined by

Z{f}(z) :=
∞∑
k=0

f(k)

zk
.

We will make use of a modified Z-transform which we will call the Z̃-transform
(see [4, 5]), given by the formula

Z̃{f}(z) = Z{f}(z + 1)

z + 1
=

∞∑
k=0

f(k)

(z + 1)k+1
.

It is known [7, Exercise 13, p. 281] that

Z{Δnf}(z) = (z − 1)nZ{f}(z)− z
n−1∑
j=0

(z − 1)n−j−1Δjf(0),
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and so by definition, we see

Z̃{Δnf}(z) =
znZ{f}(z + 1)

z + 1
−

(z + 1)
n−1∑
j=0

zn−j−1Δjf(0)

z + 1

= znZ̃{f}(z)−
n−1∑
j=0

zn−j−1Δjf(0).

To get a formula for the Z̃-transform of Jn, we want to know how to relate the
Z̃-transform of (−1)k(−t)kf(t− k) to derivatives with respect to z of the function

Z̃{f}(z).

Lemma 9. If f(t) =
∞∑
j=0

ak(−1)k(−t)k, then

(Z̃{f})(n)(z) = (−1)nZ̃{fn}(z),
where fn(t) = (−1)n(−t)nf(t− n).

Proof. The computation

(Z̃{f})(n)(z) =
dn

dzn

∞∑
k=0

f(k)

(z + 1)k+1

= (−1)n
∞∑
k=0

(k + 1)(k + 2) . . . (k + n)f(k)

(z + 1)k+n+1

= (−1)n
∞∑

k=n

(k − n+ 1)(k − n+ 2) . . . (k − 1)kf(k − n)

(z + 1)k+1

= (−1)n
∞∑
k=0

(−1)n(−k)nf(k − n)

(z + 1)k+1

= (−1)nZ̃{fn}(z)

proves the claim. �
We now demonstrate an analogue of (9) by showing that (10) holds for the

function y(z) = Z̃{Jn}(z).
Theorem 10. For all n ∈ C \ {0,−1, . . .}, we have

Z̃{Jn}(z) =
[
√
z2 + 1 + z]−n

√
z2 + 1

.

Proof. Using Lemma 9 in (2), we get

(Z̃{Δ2Jn})′′(z)− (Z̃{ΔJn})′(z) + (Z̃{Jn})′′(z)− n2Z̃{Jn}(z) = 0.

Now we apply the formula for the Z̃-transform of differences to get

d2

dz2

[
z2Z̃{Jn}(z)− zJn(0)−ΔJn(0)

]
− d

dz

[
zZ̃{Jn}(z)− Jn(0)

]

+
d2

dz2
Z̃{Jn}(z)− n2Z̃{Jn}(z) = 0.
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We compute the derivatives and simplify to obtain

(z2 + 1)(Z̃{Jn})′′(z) + 3z(Z̃{Jn})′(z) + (1− n2)Z̃{Jn}(z).

This is simply (10) with y(z) = Z̃{Jn}(z). Therefore

Z̃{y}(z) = [
√
z2 + 1 + z]−n

√
z2 + 1

,

as claimed. �

6. Oscillatory behavior of Jn

From the self-adjoint form (13), the oscillation of y can be deduced using the
Leighton–Wintner theorem [5, Theorem 4.64] which says if there exists t0 ∈ Z such
that

(18)

∞∑
k=t0

1

p(k)
=

∞∑
k=t0

q(k) = ∞,

then the solution y is oscillatory. First we present a lemma that will help us prove
that discrete Bessel functions are oscillatory.

Lemma 11. Let n ∈ N0 be fixed. The function v : {n, n+1, n+2, . . .} → R defined
by

v(t) =
2

t−n
2(
t

t−n
2

)

satisfies the recurrence relation

v(t+ 2) =
(t+ 2)2 − n2

2(t+ 1)(t+ 2)
v(t).

Moreover,

lim
t→∞

v(t)

v(t+ 1)
=

√
2.

Proof. Calculate

v(t+ 2) =
2

t+2−n
2(

t+ 2
t+2−n

2

)

=
21+

t−n
2

Γ(t+3)

Γ(2+ t−n
2 )Γ(2+ t+n

2 )

=
2

(t+2)(t+1)

(1+ t−n
2 )(1+ t+n

2 )

2
t−n
2

Γ(t+1)

Γ(1+ t−n
2 )Γ(1+ t+n

2 )

=
2

(t+2)(t+1)

(1+ t−n
2 )(1+ t+n

2 )

2
t−n
2(
t

t−n
2

)

=
(t+ 2)2 − n2

2(t+ 1)(t+ 2)
v(t),



1578 MARTIN BOHNER AND TOM CUCHTA

as was to be shown. Now calculate

(19)

v(t)

v(t+ 1)
=

t+ 1

2

Γ( t−n
2 + 1)Γ( t+n

2 + 1)Γ(t+ 2)

Γ( t−n
2 + 1 + 1

2 )Γ(
t+n
2 + 1 + 1

2 )Γ(t+ 1)

=
√
2(t+1)√

(t−n+2)(t+n+2)

(
Γ( t−n

2
+1)

√
t−n
2

+1

Γ( t−n
2

+1+ 1
2 )

)(
Γ( t+n

2
+1)

√
t+n
2

+1

Γ( t+n
2

+1+ 1
2 )

)
.

Notice that the first factor on the right-hand side of (19) tends to
√
2 as t → ∞.

By [1, (6.1.47), p. 257], we see that

lim
z→∞

Γ(z + a)

zaΓ(z)
= lim

z→∞

zaΓ(z)

Γ(z + a)
= 1,

and so the second and third factors on the right-hand side of (19) tend to 1 as
t → ∞, as was to be shown. �
Theorem 12. For all n ∈ R \ {0,−1, . . .}, Jn is oscillatory.

Proof. Let y solve (17) so that

(20) Δ2y(t) =
t(t+ 2) + n2

2(t+ 1)(t+ 2)
Δy(t+ 1)− (t+ 1)(t+ 2)− n2

2(t+ 1)(t+ 2)
y(t+ 1).

By putting u = vy, it follows that

Δu(t) = y(t+ 1)Δv(t) + v(t)Δy(t)

and

Δ2u(t) = y(t+ 1)Δ2v(t) + (Δv(t+ 1) + Δv(t))Δy(t+ 1) + v(t)Δ2y(t).

Using (20), we see

(21) Δ2u(t) =

[
Δ2v(t)

v(t+ 1)
− v(t)

v(t+ 1)

(t+ 1)(t+ 2)− n2

2(t+ 1)(t+ 2)

]
u(t+ 1)

+

[
Δv(t+ 1) + Δv(t) + v(t)

t(t+ 2) + n2

2(t+ 1)(t+ 2)

]
Δy(t+ 1).

We now define the function v to be a solution of the difference equation

Δv(t+ 1) + Δv(t) + v(t)
t(t+ 2) + n2

2(t+ 1)(t+ 2)
= 0,

i.e.,

(22) v(t+ 2) =
(t+ 2)2 − n2

2(t+ 1)(t+ 2)
v(t).

We have freedom to pick the initial conditions, and so we pick them to match the
function v from Lemma 11. Consequently, (21) implies the self-adjoint difference
equation (an analogue of (12)),

Δ2u(t) +

[
v(t)

v(t+ 1)

(t+ 1)(t+ 2)− n2

2(t+ 1)(t+ 2)
− Δ2v(t)

v(t+ 1)

]
u(t+ 1) = 0,

where the functions p and q in (13) obey the formulas

p(t) = 1

and

q(t) =
v(t)

v(t+ 1)

(t+ 1)(t+ 2)− n2

2(t+ 1)(t+ 2)
− Δ2v(t)

v(t+ 1)
.
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Using the difference operator identity Δ2f(t) = f(t+2)−2f(t+1)+f(t) and (22),
we may compute

(23)

q(t) =
v(t)

v(t+ 1)

(t+ 1)(t+ 2)− n2

2(t+ 1)(t+ 2)
− v(t+ 2)− 2v(t+ 1) + v(t)

v(t+ 1)

=
v(t)

v(t+ 1)

[
(t+ 1)(t+ 2)− n2

2(t+ 1)(t+ 2)
− 1

]
− (t+ 2)2 − n2

2(t+ 1)(t+ 2)

v(t)

v(t+ 1)
+ 2

=
v(t)

v(t+ 1)

[
−(t+ 2)(t+ 1)− n2 − (t+ 2)2 + n2

2(t+ 1)(t+ 2)

]
+ 2

= 2− v(t)

v(t+ 1)

2t+ 3

2t+ 2
.

From (23) and Lemma 11, we see

lim
t→∞

q(t) = 2−
√
2 > 0,

showing that q is eventually bounded below by
1

2
. Therefore u = vy is oscillatory,

and since v is positive, y = Jn is oscillatory. �
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Inc., Boston, MA, 2001. An introduction with applications. MR1843232

[6] R. H. Boyer, Discrete Bessel functions, J. Math. Anal. Appl. 2 (1961), 509–524. MR0145218
[7] Saber Elaydi, An introduction to difference equations, 3rd ed., Undergraduate Texts in Math-

ematics, Springer, New York, 2005. MR2128146
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