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A CHANGE OF RINGS RESULT FOR MATLIS REFLEXIVITY

DOUGLAS J. DAILEY AND THOMAS MARLEY

Abstract. Let R be a commutative Noetherian ring and E the minimal injective cogen-
erator of the category of R-modules. An R-module M is (Matlis) reflexive if the natural
evaluation map M−→HomR(HomR(M,E), E) is an isomorphism. We prove that if S is
a multiplicatively closed subset of R and M is an RS-module which is reflexive as an R-
module, then M is a reflexive RS-module. The converse holds when S is the complement
of the union of finitely many nonminimal primes of R, but fails in general.

1. Introduction

Let R be a commutative Noetherian ring and E the minimal injective cogenerator of the
category of R-modules; i.e., E =

⊕
m∈ΛER(R/m), where Λ denotes the set of maximal

ideals of R and ER(−) denotes the injective hull. An R-module M is said to be (Matlis)
reflexive if the natural evaluation map M−→HomR(HomR(M,E), E) is an isomorphism.
In [1], the authors assert the following “change of rings” principal for Matlis reflexivity ([1,
Lemma 2]): Let S be a multiplicatively closed subset of R and suppose M is an RS-module.
Then M is reflexive as an R-module if and only if M is reflexive as an RS-module. However,
the proof given in [1] is incorrect (see Examples 3.1-3.3) and in fact the “if” part is false in
general (cf. Proposition 3.4). In this note, we prove the following:

Theorem 1.1. Let R be a Noetherian ring, S a multiplicatively closed subset of R, and M
an RS-module.

(a) If M is reflexive as an R-module then M is reflexive as an RS-module.
(b) If S = R \ (p1 ∪ . . .∪ pr) where each pi is a maximal ideal or a nonminimal prime ideal,

then the converse to (a) holds.

2. Main results

Throughout this section R will denote a Noetherian ring and S a multiplicatively closed
subset of R. We let ER (or just E if the ring is clear) denote the minimal injective cogener-
ator of the category of R-modules as defined in the introduction. A semilocal ring is said to
be complete if it is complete with respect to the J-adic topology, where J is the Jacobson
radical.

We will make use of the main result of [1]:
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2 DOUGLAS J. DAILEY AND THOMAS MARLEY

Theorem 2.1. ([1, Theorem 12]) Let R be a Noetherian ring, M an R-module, and I =
AnnRM . Then M is reflexive if and only if R/I is a complete semilocal ring and there
exists a finitely generated submodule N of M such that M/N is Artinian.

We remark that the validity of this theorem does not depend on [1, Lemma 2], as the
proof of [1, Theorem 12] uses this lemma only in a special case where it is easily seen to
hold. (See the proof of [1, Theorem 9], which is the only instance [1, Lemma 2] is used
critically.)

Lemma 2.2. ([1, Lemma 1]) Let M be an R-module and I an ideal of R such that IM = 0.
Then M is reflexive as an R-module if and only if M is reflexive as an R/I-module.

Proof. Since ER/I = HomR(R/I,ER), the result follows readily by Hom-tensor adjunction.
�

Lemma 2.3. Let R = R1 × · · · × Rk be a product of Noetherian local rings. Let M =
M1 × · · · ×Mk be an R-module. Then M is reflexive as an R-module if and only if Mi is
reflexive as an Ri-module for all i.

Proof. As finite sums and direct summands of reflexive modules are reflexive, it suffices to
prove that Mi is reflexive as an R-module if and only if Mi is reflexive as an Ri-module for
each i. But this follows immediately from Lemma 2.2. �

Theorem 2.4. Let S be a multiplicatively closed subset of R and M an RS-module which
is reflexive as an R-module. Then M is reflexive as an RS-module.

Proof. By Lemma 2.2, we may assume AnnRM = AnnRS
M = 0. Thus, R is semilocal and

complete by Theorem 2.1. Hence, R = R1×· · ·×Rk where each Ri is a complete local ring.
Then RS = (R1)S1 ×· · ·× (Rk)Sk

where Si is the image of S under the canonical projection
R−→Ri. Write M = M1 × · · · ×Mk, where Mi = RiM . As M is reflexive as an R-module,
Mi is reflexive as an Ri-module for all i. Thus, it suffices to show that Mi is reflexive as an
(Ri)Si-module for all i. Hence, we may reduce the proof to the case (R,m) is a complete
local ring with AnnRM = 0 by passing to R/AnnRM , if necessary. As M is reflexive as
an R-module, we have by Theorem 2.1 that there exists an exact sequence

0−→N−→M−→X−→0

where N is a finitely generated R-module and X is an Artinian R-module. If S∩m = ∅, then
RS = R and there is nothing to prove. Otherwise, as SuppRX ⊆ {m}, we have XS = 0.
Hence, M ∼= NS , a finitely generated RS-module. To see that M is RS-reflexive, it suffices to
show that RS is Artinian (hence semilocal and complete). Since AnnRNS = AnnRM = 0,
we have that AnnRN = 0. Thus, dimR = dimN . Since M is an RS-module and S∩m 6= ∅,
we have H i

m(M) ∼= H i
mRS

(M) = 0 for all i. Further, as X is Artinian, H i
m(X) = 0 for i ≥ 1.

Thus, from the long exact sequence on local cohomology, we conclude that H i
m(N) = 0 for

i ≥ 2. Thus, dimR = dimN ≤ 1, and hence, dimRS = 0. Consequently, RS is Artinian,
and M is a reflexive RS-module. �

To prove part (b) of Theorem 1.1, we will need the following result on Henselian local
rings found in [2] (in which the authors credit it to F. Schmidt). As we need a slightly
different version of this result than what is stated in [2] and the proof is short, we include
it for the convenience of the reader:
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Proposition 2.5. ([2, Satz 2.3.11]) Let (R,m) be a local Henselian domain which is not
a field and F the field of fractions of R. Let V be a discrete valuation ring with field of
fractions F . Then R ⊆ V .

Proof. Let k be the residue field of R and a ∈ m. As R is Henselian, for every positive
integer n not divisible by the characteristic of k, the polynomial xn− (1 +a) has a root b in
R. Let v be the valuation on F associated to V . Then nv(b) = v(1 + a). If v(a) < 0 then
v(1 + a) < 0 which implies v(b) ≤ −1. Hence, v(1 + a) ≤ −n. As n can be arbitrarily large,
this leads to a contradiction. Hence, v(a) ≥ 0 and a ∈ V . Thus, m ⊆ V . Now let c ∈ R be
arbitrary. Choose d ∈ m, d 6= 0. If v(c) < 0 then v(c`d) < 0 for ` sufficiently large. But this
contradicts that c`d ∈ m ⊆ V for every `. Hence v(c) ≥ 0 and R ⊆ V . �

For a Noetherian ring R, let MinR and MaxR denote the set of minimal and maximal
primes of R, respectively. Let T(R) = (SpecR \MinR) ∪MaxR.

Lemma 2.6. Let R be a Noetherian ring and p ∈ T(R). If Rp is Henselian then the natural
map ϕ : R−→Rp is surjective; i.e., R/ kerϕ ∼= Rp.

Proof. By replacing R with R/ kerϕ, we may assume ϕ is injective. Then p contains every
minimal prime of R. Let u ∈ R, u 6∈ p. It suffices to prove that the image of u in R/q is
a unit for every minimal prime q of R. Hence, we may assume that R is a domain. (Note
that (R/q)p = Rp/qRp is still Henselian.) If Rp is a field, then, as p ∈ T(R), we must have
R is a field (as p must be both minimal and maximal in a domain). So certainly u 6∈ p = (0)
is a unit in R. Thus, we may assume Rp is not a field. Suppose u is not a unit in R. Then
u ∈ n for some maximal ideal n of R. Now, there exists a discrete valuation ring V with
same field of fractions as R such that mV ∩R = n ([5, Theorem 6.3.3]). As Rp is Henselian,
Rp ⊆ V by Proposition 2.5. But as u /∈ p, u is a unit in Rp, hence in V , contradicting
u ∈ n ⊆ mV . Thus, u is a unit in R and R = Rp. �

Proposition 2.7. Let R be a Noetherian ring and S = R\ (p1∪· · ·∪pr) where p1, . . . , pr ∈
T(R). Suppose RS is complete with respect to its Jacobson radical. Then the natural map
ϕ : R−→RS is surjective.

Proof. First, we may assume that pj *
⋃

i 6=j pi for all j. Also, by passing to the ring

R/ kerϕ, we may assume ϕ is injective. (We note that if pi1 , . . . , pit are the ideals in
the set {p1, . . . , pr} containing kerϕ, it is easily seen that (R/ kerϕ)S = (R/ kerϕ)T where
T = R\(pi1∪· · ·∪pit). Hence, we may assume each pi contains kerϕ.) As RS is semilocal and
complete, the map ψ : RS−→Rp1 ×· · ·×Rpr given by ψ(u) = (u1 , . . . ,

u
1 ) is an isomorphism.

For each i, let ρi : R−→Rpi be the natural map. Since R−→RS is an injection, ∩i ker ρi =
(0). It suffices to prove that u is a unit in R for every u ∈ S. As Rpi is complete, hence
Henselian, we have that ρi is surjective for each i by Lemma 2.6. Thus, u is a unit in
R/ ker ρi for every i; i.e., (u) + ker ρi = R for i = 1, . . . , r. Then (u) = (u) + (∩i ker ρi) = R.
Hence, u is a unit in R. �

We now prove part (b) of the Theorem 1.1:

Theorem 2.8. Let R be a Noetherian ring and M a reflexive RS-module, where S is the
complement in R of the union of finitely many elements of T(R). Then M is reflexive as
an R-module.
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Proof. We may assume M 6= 0. Let S = R \ (p1∪ · · ·∪pr), where p1, . . . , pr ∈ T(R) Let I =
AnnRM , whence IS = AnnRS

M . As in the proof of Proposition 2.7, we may assume each
pi contains I. Then by Lemma 2.2, we may reduce to the case AnnRM = AnnRS

M = 0.
Note that this implies the natural map R−→RS is injective. As M is RS-reflexive, RS is
complete with respect to its Jacobson radical by Theorem 2.1. By Proposition 2.7, we have
that R ∼= RS and hence M is R-reflexive. �

3. Examples

The following examples show that HomR(RS , ER) need not be the minimal injective
cogenerator for the category of RS-modules, contrary to what is stated in the proof of [1,
Lemma 2]:

Example 3.1. Let (R,m) be a local ring of dimension at least two and p any prime which
is not maximal or minimal. By [3, Lemma 4.1], every element of SpecRp is an associated
prime of the Rp-module HomR(Rp, ER). In particular, HomR(Rp, ER) 6∼= ERp .

Example 3.2. ([3, p. 127]) Let R be a local domain such that the completion of R has
a nonminimal prime contracting to (0) in R. Let Q be the field of fractions of R. Then
HomR(Q,ER) is not Artinian.

Example 3.3. Let R be a Noetherian domain which is not local. Let m 6= n be maximal
ideals of R. By a slight modification of the proof of [3, Lemma 4.1], one obtains that (0) is
an associated prime of HomR(Rm, ER(R/n)), which is a direct summand of HomR(Rm, ER).
Hence, HomR(Rm, ER) 6∼= ERm .

We now show that the converse to part (a) of Theorem 1.1 does not hold in general. Let
R be a domain and Q its field of fractions. Of course, Q is reflexive as a Q = R(0)-module.
But as the following theorem shows, Q is rarely a reflexive R-module.

Proposition 3.4. Let R be a Noetherian domain and Q the field of fractions of R. Then
Q is a reflexive R-module if and only if R is a complete local domain of dimension at most
one.

Proof. We first suppose R is a one-dimensional complete local domain with maximal ideal
m. Let E = ER(R/m). By [4, Theorem 2.5], HomR(Q,E) ∼= Q. Since the evaluation map
of the Matlis double dual is always injective, we obtain that Q−→HomR(HomR(Q,E), E)
is an isomorphism.

Conversely, suppose Q is a reflexive R-module. By Theorem 2.1, R is a complete semilocal
domain, hence local. It suffices to prove that dimR ≤ 1. Again by Theorem 2.1, there exists
a finitely generated R-submodule N of Q such that Q/N is Artinian. Since AnnRN = 0,
dimR = dimN . Thus, it suffices to prove that H i

m(N) = 0 for i ≥ 2. But this follows
readily from the facts that H i

m(Q) = 0 for all i and H i
m(Q/N) = 0 for i ≥ 1 (as Q/N is

Artinian). �
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