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ON THE LARGEST PRIME FACTORS

OF CONSECUTIVE INTEGERS IN SHORT INTERVALS

ZHIWEI WANG

(Communicated by Matthew A. Papanikolas)

Abstract. For an integer n > 1, let P (n) be the largest prime factor of n.
We prove that, for x → ∞, there exists a positive proportion of consecutive
integers n and n + 1 such that P (n) < P (n + 1) in short intervals (x, x + y]

with x7/12 < y � x. In particular, we have
∣
∣{n � x : P (n) < P (n+ 1)}

∣
∣ > 0.1063x.

This improves a previous result of La Bretèche, Pomerance and Tenenbaum.

1. Introduction

For each integer n � 1, let P (n) denote the largest prime factor of n with the
convention that P (1) = 1. In 1930, Dickman [2] obtained the well-known result:
the following asymptotic formula

Ψ(x, y) = |{n � x : P (n) � y}| ∼ x�(u) (u � 1)(1.1)

holds for x → ∞ with u = log x/ log y fixed, where �(u) is the Dickman function.
Furthermore, one conjectured that the largest prime factors of consecutive integers
n and n + 1 are “independent events” and the density of integers n with P (n) <
P (n+1) is 1/2. In this direction, in 1978 Erdős and Pomerance [3] proved that there
exists a positive proportion of integers n with P (n) < P (n + 1). More precisely,
they proved that

Theorem (A). For x → ∞, we have

|{n � x : P (n) < P (n+ 1)}| > 0.0099x.

Another important problem on consecutive integers is the following. Let
{εn}1�n<N be a finite sequence with each εn ∈ {−1, 0, 1}, and write

(1.2)
a

b
=

∏
1�n<N

(
n

n+ 1

)εn

,

where the fraction is in its smallest terms, then define A(N) as the maximal value
of a as {εn}1�n<N runs through all possible 3N−1 sequences of −1, 0, 1. In 1988,
Nicolas [7] showed that

logA(N) �
{2

3
+ o(1)

}
N logN,
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and further a brief argument of M. Langevin is presented that

logA(N) � {log 4 + o(1)}N.

In 2005, La Bretèche, Pomerance and Tenenbaum [1] improved the lower bound of
logA(N) to the same order of magnitude as the upper bound:

logA(N) � {0.107005 + o(1)}N logN.(1.3)

In order to prove this lower bound, they studied the quantity

(1.4) S(x, c) := |{n � x : P (n) > x1−c and P (n+ 1) > x1−c}|
and proved by the sieve methods that

(1.5) S(x, c) � 2x

∫ c

0

log

(
1− v

1− v − 2c

)
dv

1− v
+ o(x)

for any c ∈ (0, 15 ) and x → ∞. Clearly this is of independent interest. As they
indicated, (1.3) is an immediate consequence of (1.5). As another application of
(1.5), they also can improve the result of Theorem (A) and obtain

Theorem (B). For x → ∞, we have

|{n � x : P (n) < P (n+ 1)}| > 0.05544x.

In addition, in their paper they also indicated that the constant 0.05544 can
be improved to 0.05866 by using more sophisticated sieve methods thanks to an
observation of Fouvry, and so the constant 0.107005 in (1.3) can also be improved
to 0.112945.

The purpose of this short note is to prove that there exists again a positive
proportion of consecutive integers n and n+1 with P (n) < P (n+1) when n varies
in short intervals. It seems the largest prime factors of consecutive integers are
also “independent events” in short intervals. Moreover, we can improve Fouvry’s
constant 0.05866.

Our results are as follows.

Theorem 1.
(i) Let

(1.6) 3
5 < θ � 1 and 0 < c < min

{
5θ−3

2 , θ − 1
2

}
.

Then for x → ∞ and y = xθ, we have∣∣{x < n � x+ y : P (n) < P (n+ 1)}
∣∣ � {g(θ; c) + oθ,c(1)}y,(1.7)

where

(1.8) g(θ; c) := log
1

1− c
− 2

∫ c

0

log(1− v)−1

θ − 1
2 − v

dv.

(ii) For 3
5 < θ � 1, there is a unique c(θ) ∈

(
0,min

{
5θ−3

2 , θ − 1
2

})
such that

g(θ) := max
0<c<min{ 5θ−3

2 , θ− 1
2}

g(θ; c) = g(θ; c(θ)) > 0.

In particular, we have g(1) > g(1; 0.1778) > 0.1063.
(iii) For x → ∞, we have

(1.9)
∣∣{n � x : P (n) < P (n+ 1)}

∣∣ > 0.1063x.
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One of the principal tools for proving Theorem 1 is Wu’s mean value theorem of
convolution type in short intervals [10, Theorem 2] (see Lemma 2.2 below). With
the help of [9, Theorem 1] (see Lemma 2.3 below), we can also get a similar Theorem
2 for 7

12 < θ � 1. Obviously, Theorem 2 allows a wider range for θ, but we have⎧⎨
⎩

g(θ) > h(θ) if θ ∈ ( 35 + δ0, 1],

g(θ) � h(θ) if θ ∈ ( 35 ,
3
5 + δ0],

where δ0 is a very small positive constant, and h(θ) is defined by (1.12) below.
Hence Theorem 1 gives a better lower bound than Theorem 2 for θ ∈ ( 35 + δ0, 1],

and Theorem 2 gives a better lower bound than Theorem 1 for θ ∈ ( 35 ,
3
5 + δ0].

Theorem 2.
(i) Let

7
12 < θ � 1.

Then for x → ∞ and y = xθ, we have∣∣{x < n � x+ y : P (n) < P (n+ 1)}
∣∣ � {h(θ; c) + oθ,c(1)}y,

where h(θ; c) is defined by

h(θ; c) := log
1

1− c
− 2

∫ c

0

log
(θ − 1/2)(1− v)

(θ − 1/2)(1− v)− c
· dv

θ − v

if

0 < c < min{ 2θ−1
2θ+3 ,

12θ−7
5 }, 3

5 < θ � 1,(1.10)

and

h(θ; c) := log
1

1− c
− 2

∫ c

0

log
(θ − 11/20)(1− v)

(θ − 11/20)(1− v)− c
· dv

θ − v

if

0 < c < min{ 20θ−11
20θ+29 ,

12θ−7
5 }, 7

12 < θ � 3
5 .(1.11)

(ii) For 7
12 < θ � 1, there is a unique c(θ) satisfying (1.10) and (1.11) such that

(1.12) h(θ) := max
c

h(θ; c) = h(θ; c(θ)) > 0.

Remark. Similarly to the proof of [1, Theorem 1.1], we can easily extend (1.3) to the
short intervals by following Fouvry’s argument [1]. Define A(N,Nθ) as the maximal
value of a as {εn}1�n<N runs through all possible 3N−1 sequences of −1, 0, 1 with

a

b
=

∏
N<n�N+Nθ

(
n

n+ 1

)εn

(0 < θ � 1).

Then for N → ∞ and θ, c satisfying (1.6), we have

logA(N,Nθ) � 2{h(θ; c) + oθ,c(1)}Nθ logN,

where

h(θ; c) := c− 2(1− c) log(1− c) log
(
1− 2c

2θ−1

)
− 2

∫ c

0

log(1− u) log
(
1− 2u

2θ−1

)
du.
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For Theorem 1, we shall follow Fouvry’s argument [1]. Let y = xθ with 3
5 < θ � 1.

The starting point is the inequality∑
x<n�x+y

P (n−1)<P (n)

1 �
∑

x<n�x+y
P (n)>n1−c

1−
∑

x<n�x+y
P (n−1)>P (n)>n1−c

1 =: SA − SB(1.13)

with 0 < c � 1
2 . So we only need to give a lower bound of SA and an upper bound

of SB.
To estimate SA, we shall use the asymptotic formula about the distribution of

friable numbers in short intervals.
For SB, it counts the number of n satisfying n = ap+1 = bp′ with p > p′ > n1−c,

namely a < b � nc. So we have

SB � |{x < n � x+ y : n = ap+ 1 = bp′, a < b � (x+ y)c}|

=
∑

b�(x+y)c

|{x < n � x+ y : n = ap+ 1 = bp′, a < b}|

=
∑

b�(x+y)c

|{n ∈ A (b) : n is prime}|,

where

A (b) :=

{
ap+ 1

b
: x < ap � x+ y, a < b, ap+ 1 ≡ 0(mod b)

}
.(1.14)

For Theorem 1, we consider SB with the condition “a < b � (x+y)c ” by substitut-
ing for “a � xc, b � xc ” in Fouvry’s arguments [1, Further remarks], so in fact we
sieve only half of the sequence from before. This is why we can improve Fouvry’s
constant “0.05866” to “0.1063”.

But for A(N,Nθ) in the Remark, we should consider the sum∑
x<n�x+y

P (n−1)>n1−c, P (n)>n1−c

1

with the condition “a � (x + y)c, b � (x + y)c ”, not the sum SB with “a < b �
(x + y)c ”, if n is of the form n = ap + 1 = bp′, so unfortunately when θ = 1 we
can’t improve Fouvry’s constant 0.112945 in Theorem (B).

Then for SB we will use Rosser-Iwaniec’s sieve [5, 6] to sieve A (b) by the set of
primes

P = {p : p is prime},(1.15)

and then give an upper bound of SB. In addition, we also need some generalized
Bombieri-Vinogradov theorems in short intervals [10].

Throughout this paper, we denote by ε an arbitrarily small positive constant,
and p, p′ primes. For convenience, we write L := log x.

2. Lemmas

Let A be a finite sequence of integers, P a set of primes, z � 2 a real number
and d a squarefree integer with all its prime factors belonging to P, and denote

Ad := {a ∈ A : d | a}, P (z) :=
∏

p<z, p∈P
p.
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We shall evaluate

S(A;P, z) := |{a ∈ A : (a, P (z)) = 1}|.

Assume that |Ad| may be written in the form

|Ad| =
ω(d)

d
X + r(A, d) for d | P (z),

where X is an approximation to |A| independent of d, ω is a multiplicative function
satisfying 0 < ω(p) < p for p ∈ P, ω(d)d−1X is considered as a main term and
r(A, d) is an error term which we expect to be small on average over d.

The first lemma is a simple consequence of [5, Theorem 1].

Lemma 2.1. Suppose that there exists a constant K � 2 such that

∏
w�p<v

(
1− ω(p)

p

)−1

<
log v

logw

(
1 +

K

logw

)

for all v > w � 2. Then for any D � z � 2, we have

S(A;P, z) � XV (z)

{
F (s) +O

(
1

(log y)1/3

)}
+

∑
d<D, d|P (z)

|r(A, d)|,

where s := logD/ log z, γ is the Euler constant and

V (z) :=
∏

p<z, p∈P

(
1− ω(p)p−1

)
, F (s) := 2eγs−1 (0 < s � 3).

For (a, q) = 1 and � � 1, we define

π(z; q, a, �) =
∑
�p�z

�p≡a(mod q)

1.

The second lemma is [10, Theorem 2].

Lemma 2.2. Let g(�) be an arithmetic function satisfying∑
��x

|g(�)|2�−1 � L λ

for some positive constant λ > 0. Define

H(z, h; q, a, �) := π(z + h; q, a, �)− π(z; q, a, �)− 1

ϕ(q)

∫ (z+h)/�

z/�

dt

log t
·(2.1)

Then for any A > 0 and ε > 0, there exists a constant B = B(A, λ) > 0 such that
the estimate∑

q�Q

max
(a, q)=1

max
h�y

max
x/2<z�x

∣∣∣ ∑
��L

(�, q)=1

g(�)H(z, h; q, a, �)
∣∣∣ �A,λ,ε yL

−A

holds uniformly for 3
5 + ε � θ � 1, Q = xθ−1/2L −B and L = x(5θ−3)/2−ε.
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In particular, we can easily see that Lemma 2.2 covers the result of Perelli, Pintz
and Salerno [8, Theorem], which states that if π(z; q, a) := π(z; q, a, 1), then for
any A > 0 we have

∑
q�Q

max
(a, q)=1

max
h�y

max
x/2<z�x

∣∣∣∣π(z + h; q, a)− π(z; q, a)− 1

ϕ(q)

∫ z+h

z

dt

log t

∣∣∣∣ � yL −A

(2.2)

uniformly for 3
5 < θ � 1 and Q = xθ−1/2L −B, where B = B(A) is a positive

constant.
The third lemma [9, Theorem 1] allows a wider range for y than [8, Theorem],

which states that by an equivalent version:

Lemma 2.3. Given any positive constants A, ε and δ, (2.2) is valid for x7/12+ε �
y � x with Q = yx−11/20−δ, and for x3/5(log x)2(A+64)+1 � y � x with Q =
yx−1/2(log x)(A+64), where the implied constants depend only on A, ε and δ.

The fourth lemma is [4, Theorem 3].

Lemma 2.4. As Ψ(x, y) is defined by (1.1), then the asymptotic formula

Ψ(x+ z, y)−Ψ(x, y) ∼ z

x
Ψ(x, y) ∼ z�(u)(2.3)

holds uniformly for 1 � x/z � y5/12 and exp
{
(logL )5/3+ε

}
� y � x.

3. Proofs of Theorem 1 and Theorem 2

To prove Theorem 1, recall that SA,SB,A (b) and P are defined in (1.13),
(1.14) and (1.15) respectively. First, we shall give an upper bound of SB, and then
estimate SA.

For SB, we first sieve A (b) by P and then sum over b. Let θ and c be two
positive real numbers satisfying (1.6) respectively, and z = xθ−1/2/(bL B0), where
B0 is an appropriate positive constant. So for b � (x+ y)c and d | P (z), we have

|Ad(b)| =
∣∣∣∣
{
ap+ 1

b
: x < ap � x+ y, a < b, ap+ 1 ≡ 0 (mod bd)

}∣∣∣∣
=

∑
a<b

∑
x<ap�x+y

ap+1≡0(mod bd)

1.

With the notation (2.1) we can write

|Ad(b)| =
∑
a<b

∑
x<ap�x+y

ap+1≡0(mod bd)

1

=
∑
a<b

(a, bd)=1

1

ϕ(bd)

∫ (x+y)/a

x/a

dt

log t
+

∑
a<b

(a, bd)=1

H(x, y; bd,−1, a).(3.1)
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For the first sum on the right hand side of (3.1), we have

∑
a<b

(a, bd)=1

1

ϕ(bd)

∫ (x+y)/a

x/a

dt

log t
=

∑
a<b

(a, bd)=1

y

aϕ(bd)

{
1

log x
a

+O

(
1

log x
a

− 1

log x+y
a

)}

=

{
1 +O

(
1

L

)}
y

ϕ(bd)

∑
a<b

(a, bd)=1

1

a log(x/a)
·

By the Möbius inversion, we have

∑
a<b

(a, bd)=1

1

ϕ(bd)

∫ (x+y)/a

x/a

dt

log t
=

{
1 +O

(
1

L

)}
y

ϕ(bd)

∑
a<b

1

a log(x/a)

∑
q|(a, bd)

μ(q)

=

{
1 +O

(
1

L

)}
y

ϕ(bd)

∑
q|bd

μ(q)

q

∑
aq<b

1

a log(x/aq)

=

{
1 +O

(
1

L

)}
y

ϕ(bd)

(
S1 + S2

)
,(3.2)

where

S1 :=
∑

q|bd, q<L 9

μ(q)

q

∑
a<b/q

1

a log(x/aq)
, S2 :=

∑
q|bd, q�L 9

μ(q)

q

∑
a<b/q

1

a log(x/aq)
·

Denoting by τ (n) the number of divisors of n, we have

S2 �
∑

q|bd, q�L 9

q−1 � τ (bd)L −9.(3.3)

And for S1, by the partial summation we have

S1 =
∑

q|bd, q<L 9

μ(q)

q

{∫ b/q

1

dt

t log(x/tq)
+O

(
1

L

)}

=
∑

q|bd, q<L 9

μ(q)

q

{
log

(
log x− log q

log x− log b

)
+ O

(
1

L

)}

=
∑

q|bd, q<L 9

μ(q)

q

{
log

(
log x

log(x/b)

)
+O

(
logL

L

)}
;

owing to the condition q < L 9, we can separate the above log q from the main
term. Thus we have

S1 =

(∑
q|bd

μ(q)

q
−

∑
q|bd

q�L 9

μ(q)

q

){
log

(
log x

log(x/b)

)
+O

(
logL

L

)}

=
ϕ(bd)

bd

{
log

(
log x

log(x/b)

)
+O

(
logL

L

)}
+O

(
τ (bd)

L 9

)
.(3.4)

So we infer from (3.1), (3.2), (3.3) and (3.4) that

|Ad(b)| =
ω(d)

d
X + r(A (b), d)
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with ω(d) = 1 and

X =
y

b
log

(
log x

log(x/b)

){
1 +O

(
logL

L

)}
,

r(A (b), d) =
∑
a<b

(a, bd)=1

H(x, y; bd,−1, a) +O

(
yτ (bd)

ϕ(bd)L 9

)
.

Thus we can apply Lemma 2.1 with D = z = xθ−1/2/(bL B0) to write

S(A (b);P, z) � {1 + o(1)} 2X

log(xθ−1/2/b)
+

∑
d<z, d|P (z)

|r(A (b), d)|,

where we have used Mertens’ formula to evaluate

V (z) =
∏

p<xθ−1/2b−1L −B0

(
1− 1

p

)
=

e−γ

log(xθ−1/2/b)

{
1 + O

(
logL

L

)}
.

From this and the trivial inequality

|{n ∈ A (b) : n is prime}| � S(A (b);P, z) + z,

we deduce that

SB �
∑

b�(x+y)c

(S(A (b);P, z) + z) � {1 + o(1)}S3 + S4 +O
(
yL −1

)
,(3.5)

where

S3 :=
∑

b�(x+y)c

2y

b log(xθ−1/2/b)
log

( log x

log(x/b)

)
,

S4 :=
∑

b�(x+y)c

∑
d<z

∣∣∣ ∑
a<b

(a, bd)=1

H(x, y; bd,−1, a)
∣∣∣,

and we have used the standard estimation
∑

m�x τ (m)2/ϕ(m) � L 4 to bound

yL −9
∑

b�(x+y)c

∑
d<xθ−1/2/(bL B0 )

τ (bd)

ϕ(bd)
� yL −9

∑
m<x1/2L −B0

τ (m)2

ϕ(m)
� yL −5.

First we evaluate the error term S4. By the Cauchy-Schwarz inequality, it follows
that

S4 �
∑

m<xθ−1/2L −B0

τ (m)
∣∣∣ ∑

a<b
(a,m)=1

H(x, y; m,−1, a)
∣∣∣ � (S41S42)

1/2,

where

S41 :=
∑

m<xθ−1/2L −B0

∣∣∣ ∑
a<b

(a,m)=1

H(x, y; m,−1, a)
∣∣∣,

S42 :=
∑

m<xθ−1/2L −B0

τ (m)2
∣∣∣ ∑

a<b
(a,m)=1

H(x, y; m,−1, a)
∣∣∣.
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For S42, we use a trivial estimate, and for S41, we shall apply Lemma 2.2 with

g(�) =

{
1 if 0 < � � b,

0 if b < � � x(5θ−3)/2−ε,

since b � (x+ y)c � x(5θ−3)/2−ε thanks to hypothesis (1.6). So we obtain

S4 �
( y

L A

)1/2( ∑
m<xθ−1/2L −B0

τ (m)2
∑
a<b

{ y

am
+O(1)

})1/2

�
( y

L A

)1/2(
yL 5 + bxθ−1/2L −B0+3

)1/2

� y

L A/2−3
(3.6)

since y1/2x(c+θ−1/2)/2 � yx−(1/2−c)/2 � y with c < θ − 1
2 � 1

2 .
Next we evaluate S3. By partial summation we get

S3 = 2y{1 + o(1)}
∫ (x+y)c

1

log
( log x

log(x/t)

) dt

t log(xθ−1/2/t)

= y

{
2

∫ c

0

log(1− v)−1

θ − 1
2 − v

dv + oθ, c(1)

}
.(3.7)

So from (3.5), (3.6) and (3.7) we obtain

SB � y

{
2

∫ c

0

log(1− v)−1

θ − 1
2 − v

dv + oc, θ(1)

}
.(3.8)

Finally we evaluate SA. Noticing that 3
5 < θ � 1, 0 < c < θ − 1

2 � 1
2 and

�(u) = 1− log u for 1 � u � 2, Lemma 2.4 gives us immediately

SA = y
{
log

1

1− c
+ oc, θ(1)

}
.(3.9)

Now, the required inequality (1.7) follows from (1.13), (3.8) and (3.9).

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.02

0.04

0.06

0.08

0.1

0.12

θ

g(
θ)

Figure 1. g(θ)

Then for Theorem 1, part (ii), we have

∂g

∂c
(θ; c) =

1

1− c
− 2

log(1− c)−1

θ − 1
2 − c

,

∂2g

∂c2
(θ; c) = − 1

1− c

(
2

θ − 1
2 − c

− 1

1− c

)
− 2

log(1− c)−1

(θ − 1
2 − c)2

·
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It’s obvious that ∂2g
∂c2 (θ; c) < 0 for 3

5 < θ � 1 and 0 � c < θ − 1
2 . Thus c �→

∂g
∂c (θ; c)

is decreasing. Since ∂g
∂c (θ; 0) = 1 and limc→(θ− 1

2 )−
∂g
∂c (θ; c) = −∞, there is a unique

c(θ) ∈
(
0, min{ 5θ−3

2 , θ − 1
2}

)
such that ∂g

∂c (θ; c(θ)) = 0 and

g(θ) := max
0�c<min{ 5θ−3

2 ,θ− 1
2 }

g(θ; c) = g(θ; c(θ)) > g(θ; 0) = 0

for 3
5 < θ � 1. Figure 1 gives the graph of g(θ).
By Mathematica 9.0, we can find c(1) ≈ 0.1778 and g(1) = g(1, c(1)) > 0.1063.
Theorem 1, part (iii), is an immediate consequence of Theorem 1, parts (i) and

(ii), via a simple dyadic summation.
This completes the proof of Theorem 1.
For Theorem 2, part (i), the proof is similar to [1, Theorem 1.2] by Lemma 2.3,

and for Theorem 2, part (ii), the proof is similar to Theorem 1, part (ii). Here we
have omitted the details.
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