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ON SEQUENTIAL ANALYTIC GROUPS
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Abstract. We answer a question of S. Todorčević and C. Uzcátegui from their
2005 work by showing that the only possible sequential orders of sequential
analytic groups are 1 and ω1. Other results on the structure of sequential
analytic spaces and their relation to other classes of spaces are given as well.
In particular, we provide a full topological classification of sequential analytic
groups by showing that all such groups are either metrizable or kω-spaces,
which, together with a result by Zelenyuk, implies that there are exactly ω1

non-homeomorphic analytic sequential group topologies.

1. Introduction

Spaces with definable topologies are ubiquitous in mathematics. They often
appear as examples when the topology construction does not use the axiom of choice
and frequently show up inside function spaces (see [17] for references and further
motivation). To make the notion of ‘definable’ more precise recall that a family of
subsets of some countable set X viewed as a subset of 2X in the natural product
topology is called analytic (see [7]) if it is a continuous image of the irrationals Nω.

A variety of reasons to study analytic spaces, i.e., countable topological spaces
whose topology is analytic is given in [17], [18], and [16]. The authors of [18] coined
the term effective topology for the research involving such spaces and presented a
number of questions whose answers depend on various set-theoretic assumptions in
the realm of general topological spaces (such as the Malykhin problem; see [5]) that
have effective counterparts that can be resolved in ZFC alone.

Recall that a space X is called sequential if whenever A\A �= ∅ for some A ⊆ X
there exists a convergent sequence S ⊆ A such that S → x ∈ A \ A. If X is
sequential one naturally defines the sequential closure of a subset A of X as the
set [A]′ of all the limits of all the convergent sequences in A. Recursively putting
[A]0 = A, [A]α+1 = [[A]α]

′, and taking unions at the limit stages, one arrives at
the concept of an iterated sequential closure. It is well known that for any A ⊆ X
where X is sequential, there exists an α ≤ ω1 such that [A]α = A. This observation
naturally leads to the definition of the sequential order so(X) of a sequential space
X as the smallest ordinal γ ≤ ω1 such that A = [A]γ for every A ⊆ X. Fréchet
spaces are defined as sequential spaces of sequential order ≤ 1.

In [17] S. Todorčević and C. Uzcátegui show among other results that a countable
topological group is metrizable if and only if it is analytic and Fréchet thus solving
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the effective version of Malykhin’s question on the existence of a non-metrizable
countable Fréchet group (the non-effective version of this question was answered
in [5]). In the same paper they pose a question about the sequential orders of
sequential analytic groups which can be considered an effective version of a question
of Nyikos (see [10] and [13]).

In this paper we answer this question by showing that the only possible sequen-
tial orders of sequential analytic groups are 1 and ω1. In addition, we show that
such groups have a very well-defined topological structure and their topologies are
completely described by an ordinal invariant that measures the scatteredness of
their compact subspaces (see below for a more precise discussion).

We assume that all topological spaces appearing below are regular and use the
standard set-theoretic notation and terminology (see [8] and [7]). We proceed by
defining some of the less common concepts.

A space X is called a kω-space if there exists a {Kn : n ∈ ω } where each Kn is
a compact subset of X such that a set U ⊆ X is open if and only if each U ∩Kn

is relatively open. The class of kω-spaces is stable under taking products, i.e., the
product of two (or any finite number of) kω-spaces is again kω.

Countable kω-spaces are sequential and analytic (more precisely, their topology
is Fσδ), and form a subclass of ℵ0-spaces (see [9]). Instead of the original definition
we shall use the following characterization that describes ℵ0-spaces in the narrow
case when X is sequential.

Lemma 1. A sequential space X is an ℵ0-space if and only if there exists a count-
able collection {An : n ∈ ω } of subsets of X such that for any open U ⊆ X and
any converging sequence S ⊆ U such that S → x ∈ U there is an n ∈ ω such that
An ⊆ U and An ∩ S is infinite.

Sequential ℵ0-spaces are exactly the quotient images of separable metric spaces
([9]). Even in the case of a countable X, not every ℵ0-space is a kω-space, however,
when X is a countable sequential non-Fréchet topological group, a corollary of
a more general result in [1] implies that X is a kω-space if and only if X is an
ℵ0-space. A result in [15] shows that for each such group so(X) = ω1. Perhaps
the most surprising property of the class of all kω countable group topologies is
that there are exactly ω1 of them, moreover, the topological type of such group
is uniquely described by the supremum of Cantor-Bendixson ranks of its compact
subspaces (see [19] and [6]).

Recall that a collection of open subsets of a topological space is called a π-base if
every open subset of the space contains a member of the collection. Furthermore,
a collection of open subsets is called a local π-base at x ∈ X if every neighborhood
of x contains a set in the collection. It is an easy observation that a collection of
open subsets of X that is a local π-base at every point in some dense subset of X
is a π-base of X. The following lemma is well known (the second statement is the
famous Birkhoff-Kakutani metrization theorem).

Lemma 2. Every topological group with a countable local π-base at any point is
first countable and every first countable topological group is metrizable.

The countable sequential fan S(ω) is defined as the set ω2 ∪ {ω} equipped with
the topology in which every (n, i) ∈ ω2 is isolated and the basic neighborhoods of
ω are Uf = { (n, i) : i ≥ f(n) } where f : ω → ω.
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Definition 1. Let X be a topological space. Let x ∈ X and 〈Dn : n ∈ ω〉 be a
collection of infinite countable closed discrete subsets of X such that for every open
U ⊆ X such that x ∈ U there exists an n ∈ ω such that U ∩Dn is infinite. Then
Y =

⋃
{Dn : n ∈ ω } ∪ {x} is called a wvD subspace of X.

The utility of the previous definition is illustrated by the following lemma. A
similar phenomenon was first noted by E. van Douwen in [3] (incidentally, wvD
stands for weak van Douwen space).

Lemma 3. If X has a wvD subspace, X × S(ω) is not sequential.

Proof. Let Y =
⋃
{Dn : n ∈ ω } ∪ {x} be a wvD subset of X where x ∈ X and

Dn = { dni : i ∈ ω } be as in Definition 1. Define

A =
⋃

{
⋃

{ (dni , (n, i)) : i ∈ ω } : n ∈ ω } ⊆ X × S(ω).

Now (x, ω) ∈ A \ A but there is no infinite S ⊆ A such that S → y for some
y ∈ X. Indeed, otherwise the projection π2(S) ⊆ S(ω) contains an infinite ‘di-
agonal’ convergent subsequence in S(ω) or one of the closed discrete subspaces
{ (dni , (n, i)) : i ∈ ω } contains an infinite convergent subsequence. �

The following lemma is a corollary of Lemma 16 and Corollary 2 of [13].

Lemma 4. Let τ be a sequential group topology on N such that so(τ ) < ω1. If
{Ni : i ∈ ω } is a collection of nowhere dense subsets of N there exists an S ⊆ N

such that S → x for some x ∈ N and S ∩Ni is finite for all i ∈ ω.

2. Analytic and other classes of spaces

In the arguments below, we shall assume that τ stands for some analytic topology
on a countable setX. To simplify the notation we will assume thatX = N whenever
it is convenient. All the references to topological operations and properties such as
convergence, etc., are relative to this topology.

We shall also fix a subtree T of [N]<ω ⊗ [N]<ω (see [16] for the definition of
the tree order) that defines τ , i.e., such that U = π1(f) for some branch f of T
whenever U ∈ τ is infinite. Given a P ⊆ 2N and a σ ∈ T we will use the notation

σ ↑ P =
⋂

{π1(f) : f is a branch of T that extends σ such that π1(f) ∈ P }

if such f exist; otherwise we put σ ↑ P = ∅.

Lemma 5. Let P ⊆ 2N and S → x for some infinite S ⊆ N. Suppose there is an
open U � x such that U ∈ P . Then there exists a σ ∈ T such that S ⊆∗ σ ↑ P .

Proof. Let f be a branch of T such that π1(f) = U . Pick σ−1 ∈ T such that f
extends σ−1 and x ∈ π1(σ−1). Suppose no σ ∈ T with the property stated in the
lemma exists. Using this one can inductively construct a sequence 〈σi : i ∈ ω〉 of
elements of T and a strictly increasing sequence 〈ni : i ∈ ω〉 ⊆ S such that for every
i ∈ ω

(1) σi+1 extends σi;
(2) ni < max π1(σi) and ni �∈ π1(σi);
(3) there exists a branch fi of T that extends σi such that π1(fi) ∈ P .



4090 ALEXANDER Y. SHIBAKOV

Put f−1 = f . Let i ∈ ω ∪ {−1} and note that (3) holds for i = −1. By the
assumption and (3) S �⊆∗ σi ↑ P �= ∅ so one can pick a branch fi+1 of T that
extends σi such that ni+1 �∈ π1(fi) for some ni+1 ∈ S, ni+1 > ni. Let σi+1 be such
that fi+1 extends σi+1 and max σi+1 > max σi, maxσi+1 > ni+1.

Put f ′ =
⋃
〈σi : i ∈ ω〉. Then S �⊆∗ π1(f

′) � x, a contradiction. �

As usual, a set function F : 2X → 2X will be called monotone if F (A) ⊆ F (B)
whenever A ⊆ B and F (∅) = ∅.

Lemma 6. Let F : 2N → 2N be a monotone set function and let {Qα : α ∈ ω1 } be
such that each Qα ⊆ 2N and Qβ ⊆ Qα when β ≤ α. Define

Pα = {B ⊆ N : q \ F (B) �= ∅ for every q ∈ Qα}.
Then there exists a γ ∈ ω1 such that q �⊆ F (σ ↑ Pγ′) for any q ∈

⋃
{Qα : α ∈ ω1 },

any γ′ ≥ γ, and any σ ∈ T .

Proof. Since T is countable, it is enough to show that σ ↑ Pα = ∅ whenever there
is a q ∈ Qα such that q ⊆ F (σ ↑ Pβ) for some β < ω1. Assuming such a q exists,
suppose σ ↑ Pα �= ∅. Then α > β, otherwise q ∈ Qα ⊆ Qβ and q \ F (σ ↑ Pβ) �= ∅,
since each Pβ is closed under taking subsets, which contradicts q ⊆ F (σ ↑ Pβ).

There exists a branch f of T that extends σ such that π1(f) ∈ Pα ⊆ Pβ so
q \ F (π1(f)) �= ∅. Now F (π1(f)) ⊇ F (σ ↑ Pβ ∩ π1(f)) = F (σ ↑ Pβ) ⊇ q, a
contradiction. �

In all applications of Lemma 6 below, the families Pα and Qα are constructed
recursively by starting with Q0 = ∅ and P0 = 2N, defining Pα as in the statement
of the lemma above and defining Qα in terms of Pβ for β < α.

Lemma 7. Let τ be an analytic sequential topology on N. Then there exists a
countable family U of open in τ sets and a countable family Ξ of nowhere dense
subsets of N such that at least one of the following alternatives holds for every
x ∈ N:

(1) for any infinite sequence S ⊆ N such that S → x there is a ξ ∈ Ξ such that
S ⊆∗ ξ;

(2) U is a local π-base at x.

Proof. Put F (B) = B and define Qα = { Int(σ ↑ Pβ) : σ ∈ T, β < α } where Pβ is
defined as in Lemma 6. Find γ ∈ ω1 as in Lemma 6. It follows from the construction
of Qα that every σ ↑ Pγ is nowhere dense.

Put P = Pγ , Ξ = {σ ↑ Pγ : σ ∈ T }, U = Qγ , and let S → x for some x ∈ N. If

U is not a local π-base at x there exists an open U � x such that q \ U �= ∅ for
every q ∈ Qγ . Thus U ∈ Pγ and Lemma 5 implies that there is a σ ∈ T such that
S ⊆∗ σ ↑ Pγ ∈ Ξ. �

The following is an immediate corollary of Lemma 4, Lemma 2, and Lemma 7.
It answers Question 7.1 from [17]. See also the remark immediately following The-
orem 2 for an alternative proof of Corollary 1 that does not use Lemma 4.

Corollary 1. A countable topological group is metrizable if and only if it has a
sequential analytic topology with the sequential order less than ω1.

The following result is mentioned (with proof) in [5] where it is attributed to [2]
(and appears there as part of the proof of one of the results).
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Lemma 8 ([2]). Let X be a Fréchet space without isolated points, let x ∈ X and let
M be a countable family of nowhere dense subsets of X. Then there is an infinite
sequence Cx converging to x with only finite intersection with every element of M.

Lemma 8 and a simple argument result in the following corollary to Lemma 7.

Corollary 2. Every analytic Fréchet space has a countable π-base.

Proof. Let X be an analytic Fréchet space and put U = X \ P where P is the set
of all isolated points of X. Observe that Lemma 8 shows that the first alternative
of Lemma 7 does not hold in Fréchet spaces without isolated points so U has a
countable π-base B. Adding all the singletons from P to B one obtains a countable
π-base for X. �

A similar proof shows that the conclusion of Lemma 7 can be sharpened for
homogeneous spaces.

Corollary 3. Let X be a homogeneous analytic sequential space. Then X has
either a countable π-base or a countable collection Ξ of nowhere dense subsets such
that for any x ∈ X and any infinite sequence S ⊆ X such that S → x there is a
ξ ∈ Ξ such that S ⊆∗ ξ.

A quick observation reveals that a disjoint union Q∪Sω of a copy of the rationals
and the Arkhangel’skii-Franklin space Sω (see [17] for a nice definition of Sω and
further references) does not satisfy the dichotomy of Corollary 3. Therefore the
restrictions in the corollaries above cannot be removed.

Lemma 9. Let X be an analytic sequential space. Then X is a kω-space or there
exists a wvD subspace of X.

Proof. Put F (B) = B. As usual, we put Q0 = ∅, P0 = 2N, and define Qα

and Pα recursively as Qα = {σ ↑ Pβ : σ ∈ T, σ ↑ Pβ is not compact, β < α } and
Pα = {B ⊆ N : q \ F (B) �= ∅ for every q ∈ Qα }. Let γ ∈ ω1 be as in Lemma 5.
The construction of Qα implies that every σ ↑ Pγ is compact.

Suppose X has no wvD subspace. Put P = Pγ , define a countable family

K = {σ ↑ Pγ : σ ∈ T, σ ↑ Pγ is compact }, and let S → x for some x ∈ X. For
each q ∈ Qγ pick a closed infinite discrete subset Dq ⊆ q. Call the collection just
constructed D. Suppose D is infinite. Since

⋃
D ∪ {x} is not a wvD subspace of N

there exists an open U � x such that Dq \ U ⊆ q \ U �= ∅ for every q ∈ Qγ . If D is
finite (i.e. Qγ is finite) the union

⋃
D is a closed discrete subset of X which implies

the existence of an open U with the properties above. Thus U ∈ Pγ and it follows

from Lemma 5 that there exists a σ ∈ T such that S ⊆∗ σ ↑ Pγ ⊆ σ ↑ Pγ ∈ K. �
The next corollary follows from Lemma 9 and Lemma 4.

Corollary 4. Let X be an analytic space. Then X×S(ω) is sequential if and only
if X is a kω-space.

Let C be a closed copy of S(ω) in X. If X is a topological group, it is convenient
to assume that 1X is the limit point of C and write C =

⋃
{Cn : n ∈ ω } ∪ {1X}

where Cn = 〈cni : i ∈ ω〉 → 1X are disjoint subsets of X that do not contain 1X ,
such that each A ⊆

⋃
Cn satisfying |A ∩ Cn| < ω for every n ∈ ω is closed in X.

We will refer to this representation of C as a natural closed copy of S(ω) in X and
will use the notation above for the sake of brevity below.
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Lemma 10. Let X be an analytic group and let
⋃
{Cn : n ∈ ω } be a natural closed

copy of S(ω) in X. There exists a countable family Ξ of subsets of X with the
following properties:

(1) for each p ∈ Ξ there exists an Mp ∈ ω such that |p ∩ a · Cn| = ω implies
n ≤ Mp for any a ∈ X;

(2) for each infinite S ⊆ X where S → x for some x ∈ X there exists a p ∈ Ξ
such that S ⊆∗ p.

Proof. Put F (B) = (B)−1B, define Q0 = ∅, P0 = 2N and let

Qα = {F (σ ↑ Pβ) : σ ∈ T, β < α, |{n ∈ ω : F (σ ↑ Pβ) ∩ Cn �= ∅ }| = ω }

for α<ω1, where Pα={B ⊆ N : q \ F (B) �= ∅ for every q ∈ Qα } is as in Lemma 6.
Let γ < ω1 be the index provided by Lemma 6 and Ξ = {σ ↑ Pγ : σ ∈ T }. Note

that for p = σ ↑ Pγ ∈ Ξ the set {n ∈ ω : F (p) ∩ Cn �= ∅ } is finite. Otherwise
q = F (p) ∈ Qγ+1 contrary to the choice of γ. Pick Mp ∈ ω so that F (p) ∩ Cn = ∅

for n ≥ Mp. Now if |p ∩ a · Cn| = ω for some n ∈ ω and a ∈ X, then a ∈ p thus
F (p) ∩ Cn = (p)−1p ∩ Cn ⊇ a−1 · p ∩ Cn �= ∅ so n ≤ Mp.

Let S → x ∈ X. Put P = Pγ . One can construct a set D ⊆
⋃
{Cn : n ∈ ω } by

induction such that |D ∩ Cn| ≤ 1 for each n ∈ ω and D ∩ q �= ∅ for each q ∈ Qγ .
Note that D is a closed discrete subset of X and x−1x = 1X �∈ D. Therefore
there exists an open neighborhood U of x such that F (U) ∩D = (U)−1U ∩D = ∅

and thus U ∈ P . Now Lemma 5 implies the existence of a σ ∈ T such that
S ⊆∗ σ ↑ P ∈ Ξ. �

Lemma 11. Let X be an analytic non-Fréchet group. If X contains a wvD sub-
space, then X is not sequential.

Proof. Suppose X is sequential. Since X is not Fréchet, X contains a closed
copy of S(ω) (see [10]) so let

⋃
{Cn : n ∈ ω } be a natural closed copy of S(ω)

in X. Let Ξ = { pn : n ∈ ω } be the family provided by Lemma 10 and put
Mn = max {Mi : i ≤ n }+ n+ 1 where Mi have the property of Lemma 10(2).

Let D =
⋃
{Dn : n ∈ ω } ∪ {1X} be a wvD subspace of X where Dn = {dni :

i ∈ ω}. are disjoint closed discrete subspaces of X. Now Mn is a strictly increasing
sequence and by the construction the set a · CMn ∩ (

⋃
{ pi : i ≤ n }) is finite for

every n ∈ ω and a ∈ X. Pick a strictly increasing sequence 〈rni : i ∈ ω〉 ⊆ ω
such that eni = dni · cMn

rni
�∈

⋃
{ pk : k ≤ n } and all eni �= 1X are distinct. Define

E = { eni : n, i ∈ ω } and suppose there is an infinite S ⊆ E such that S → x for
some x ∈ X.

Note that for every n ∈ ω the set { eni : i ∈ ω } ⊆ Dn ·CMn is closed and discrete
in X so we can assume that S = { eni

mi
: i ∈ ω } for some strictly increasing 〈ni : i ∈

ω〉 ⊆ ω. Now S ⊆∗ pn for some pn ∈ Ξ by Lemma 10(2) but eni
mi

�∈ pn for ni > n,
a contradiction. Thus E is sequentially closed.

Let V be an open neighborhood of 1X in X and U � 1X be an open subset of
X such that U · U ⊆ V . Pick n ∈ ω such that Dn ∩ U is infinite and choose k ∈ ω
large enough so that cM

n

rnk
∈ U and dnk ∈ Dn ∩ U . Now enk = dnk · cMn

rnk
∈ U · U ⊆ V .

Thus 1X ∈ E \ E, a contradiction. �

Lemmas 11 and 9 imply the following theorem.
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Theorem 1. Let X be a countable sequential group. Then the following are equiv-
alent:

(1) the topology of X is analytic;
(2) the topology of X is Fσδ;
(3) X is either first countable or kω.

The following theorem was proved in [15].

Theorem 2 ([15]). Let G be a Hausdorff sequential topological group with a point-
countable k-network. If so(G) < ω1 then G is metrizable.

Using the fact that every countable kω is an ℵ0-space and therefore has a count-
able k-network (see [9]), Corollary 1 immediately follows from Theorem 1 and
Theorem 2.

The result of Zelenyuk (see [19] or [12]) mentioned in the introduction together
with Theorem 1 imply

Corollary 5. There are exactly ω1 non-homeomorphic analytic sequential group
topologies. Moreover, if X is an infinite analytic sequential group, then all finite
powers Xn are such and are homeomorphic to each other.

3. Examples and questions

It has been demonstrated by a number of authors that sequential ℵ0-spaces have
a number of properties resembling those of separable metric spaces.

On the other hand, the properties that diferentiate between the two classes of
spaces are strikingly similar to those that separate analytic spaces and countable
metrizable ones. As an example, it is easy to show that a sequential ℵ0-space with
a weak diagonal sequence property is first countable (see [9] and [18]). The following
example shows that analytic sequential spaces are not necessarily ℵ0-spaces, thus
the statement of Theorem 1 is limited to topological groups.

Example 1. Consider the following basis for a topology on [N]<ω, viewed as a tree
with the usual order of end extension. Every point x ∈ [N]<ω \ {∅} is isolated and
the basis of neighborhoods of ∅ consists of complements of finite unions of branches
together with ∅. It is shown in [18], Example 5.6 (see also [17], Remark 4.8) that
the resulting topology is Fσ and Fréchet with the weak diagonal sequence property
but not first countable. Thus the space constructed is not an ℵ0-space.

A partial result going in the opposite direction is possible. The next lemma is an
easy corollary of the result that each quotient image of the rationals is determined
(see [9]) by a countable family of metrizable subspaces.

Lemma 12. If X is a quotient image of a countable metric space (equivalently, the
rationals Q), then X is analytic (more precisely, X has an Fσδ topology).

One might hope that due to their ‘tame’ convergence structure, ℵ0-spaces form
a subfamily of all analytic spaces. The next simple example shows that this is not
the case.

Example 2. There are 2c countable Fréchet ℵ0-spaces with a single non-isolated
point. In particular, there are non-analytic spaces of such kind.
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Proof. Let A ⊆ R be an arbitrary subset of the real line. Put

M(A) = ({0} ×A) ∪ {(1/n, q) : n ∈ N, q ∈ Q}.

Define a topology on M(A) by making the Euclidean neighborhoods of points (0, a),
a ∈ A the new basic neighborhoods and making all other points isolated. The space
just constructed is a separable metrizable one. Consider the quotient map that
sends {0} ×A into a single point ∞ and is 1-1 on the rest of M(A). Its image is a
Fréchet ℵ0-space P (A) with a single non-isolated point.

Let A ⊆ R and B ⊆ R be two different subsets of the real line, and let, say,
a ∈ A be such that a �∈ B. Given any sequence of rationals 〈qn : n ∈ ω〉 ⊆ Q

that converges to a the set { (1/n, qn) : n ∈ ω } is a convergent sequence in P (A)
and is a closed discrete subset of P (B). Hence, the topologies of P (A) and P (B)
differ, resulting in exactly 2c different Fréchet ℵ0-topologies with a single non-
isolated point. Noting that there are at most c possible homeomorphisms between
topologies on a given countable set, one can pick 2c pairwise non-homeomorphic
spaces P (A). Given that there are at most c analytic topologies on any countable
set, most P (A) are non-analytic. �

Remark 1. The rather crude construction of the example above does not produce
any ‘explicit’ A ⊆ R such that P (A) is not analytic. A more precise proof is possible
that shows that A is a projection of a Borel subset of the product of the irrationals
and the topology of P (A) viewed as the subset of the irrationals giving one more
control over the complexity of P (A).

The final example shows that the property established in Lemma 7 is not enough
to show that the group is a kω-space.

Example 3 (CH). There exists a countable sequential group G and a countable
collection Ξ of nowhere dense subsets of G such that G is not a kω-space and for
every convergent sequence S ⊆ G there is a ξ ∈ Ξ such that S ⊆ ξ.

Proof. The full details of the construction are somewhat tedious and are of limited
interest. We therefore present just a sketch of the proof. A number of similar
arguments can be found in [14].

One starts with a non-discrete first countable topology τ0 onQ (any topologizable
countable group would suffice; it is easy to see that a similar construction just as
readily gives an example of a topological field with these properties). Pick a compact
subsetK of Q such that 0 ∈ K has Cantor-Bendixson rank ω inK. Pick a countable
collection of convergent sequences in τ0 that witness the Cantor-Bendixson rank of
each point of K. Let η0 be the finest group topology on Q in which each of these
sequences converges. The existence of such a topology can be established by an
easy argument (see, for example, [14]). Let {Aα : α ∈ ω1 } = 2Q.

The construction proceeds by induction on α ∈ ω1 where at stage α one defines
a pair of topologies τα ⊆ ηα such that τα is first countable and ηα is determined by
countably many compact subsets of finite Cantor-Bendixson rank. At limit stages
the construction proceeds in a natural (and trivial) way.

At stage α + 1 one picks τα+1 ⊇ τα such that τα+1 contains enough open in
ηα subsets to show that a given Aα ⊆ Q is closed in τα+1 provided it is closed in
ηα and not compact in τα+1 provided it is not compact in ηα. Now ηα+1 ⊆ ηα is
chosen as the finest topology coarser than ηα in which S → 0 for some S ⊆ K such



ON SEQUENTIAL ANALYTIC GROUPS 4095

that S → 0 in τα+1 and S is discrete in ηα. Such an S can be built inductively by
first finding a compact (in τα+1) K

′ ⊆ K of infinite Cantor-Bendixson rank.
Define

τ =
⋃

{ τα : α ∈ ω1 } =
⋂

{ ηα : α ∈ ω1 }
and put

Ξ = {d+ (−1)δ0K + · · ·+ (−1)δnK : δi ∈ {0, 1}, d ∈ [Q]<ω, n ∈ ω}.
It is easy to see that the choice of τα ensures that τ is sequential and the choice of
ηα and τα+1 prevents τ from being kω. Moreover, each compact in τ subset of Q
is compact in some ηα and therefore resides in some ‘monomial’ over K. Thus the
family Ξ has the desired property. �

Finally, it seems natural to ask whether Lemma 11 can be generalized to non-
analytic groups.

Question 1. Do there exist (countable) sequential non-Fréchet groups that contain
a (closed) wvD subspace?
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