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A NON-ASSOCIATIVE BAKER-CAMPBELL-HAUSDORFF

FORMULA

J. MOSTOVOY, J. M. PÉREZ-IZQUIERDO, AND I. P. SHESTAKOV

Abstract. We address the problem of constructing the non-associative ver-

sion of the Dynkin form of the Baker-Campbell-Hausdorff formula; that is,
expressing log(exp(x) exp(y)), where x and y are non-associative variables, in

terms of the Shestakov-Umirbaev primitive operations. In particular, we ob-

tain a recursive expression for the Magnus expansion of the Baker-Campbell-
Hausdorff series and an explicit formula in degrees smaller than 5. Our main

tool is a non-associative version of the Dynkin-Specht-Wever Lemma. A con-

struction of Bernouilli numbers in terms of binary trees is also recovered.

1. Introduction

The Baker-Campbell-Hausdorff formula is the expansion of log(exp(x) exp(y)) in
terms of nested commutators for the non-commuting variables x and y, where the
commutator of a and b is defined as [a, b] := ab − ba. The explicit combinatorial
form of it was given by Dynkin in his 1947 paper [5]. By considering the linear
extension of the map γ defined by γ(1) := 0, γ(x) := x, γ(y) := y, γ(ux) := [γ(u), x]
and γ(uy) := [γ(u), y] he proved that

(1) log(exp(x) exp(y)) =
∞∑
n=1

(−1)n−1

n

∑
ri+si≥1

(
∑n
j=1(rj + sj))

−1

r1!s1! · · · rn!sn!
γ(xr1ys1 · · ·xrnysn).

This series is related to Lie’s Third Theorem and the history around it is too rich
to be retold here, so we refer the reader to the recent monograph [2] and references
therein for a historical account.

The Baker-Campbell-Hausdorff formula, as well as many other results in Lie the-
ory, firmly belongs to associative algebra. However, after the work of Mikheev and
Sabinin on local analytic loops [12] and the description of the primitive operations
in non-associative algebras by Shestakov and Umirbaev [13], associativity does not
seem to be as essential for the Lie theory as previously thought [10].

In this paper we address the problem of determining BCHl(x, y) in

expl(x) expl(y) = expl(BCHl(x, y)),
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2 J. MOSTOVOY, J. M. PÉREZ-IZQUIERDO, AND I. P. SHESTAKOV

where

expl(x) =
∑
n≥0

1

n!
(((xx) · · · )x)x︸ ︷︷ ︸

n

,

in terms of Shestakov-Umirbaev operations for the primitive elements of the non-
associative algebra freely generated by x and y. Our approach uses a generalization
of the Magnus expansion (see [1] for a readable survey), that is, we will study the
differential equation

X ′(t) = X(t)A(t),

where X(t) stands for expl(Ω(t)) and both A(t) and Ω(t) belong to a non-associative
algebra. The differential equation

Ω′(t) = A(t) +
∑
J

nJPJ(Ω(t);A(t))

satisfied by Ω(t) (Corollary 3.7) is obtained with the help of a non-associative
version of the Dynkin-Specht-Wever Lemma (Lemma 3.1). This equation leads
to a recursive formula for computing the expansion of BCHl(x, y), which gives, in
degrees smaller than 5, the following expression:

BCHl(x, y) = x+ y +
1

2
[x, y]

+
1

12
[x, [x, y]]− 1

3
〈x;x, y〉 − 1

12
[y, [x, y]]− 1

6
〈y;x, y〉 − 1

2
Φ(x; y, y)

− 1

24
〈x;x, [x, y]〉 − 1

12
[x, 〈x;x, y〉]− 1

8
〈x, x;x, y〉

+
1

24
[[x, [x, y]], y]− 1

24
[x, 〈y;x, y〉]− 1

4
Φ(x, x; y, y)− 1

4
[x,Φ(x; y, y)]

− 1

24
[〈x;x, y〉, y]− 1

24
〈x; [x, y], y〉 − 1

6
〈x, y;x, y〉+

1

24
〈y, x;x, y〉

+
1

12
[Φ(x; y, y), y] +

1

24
〈y; y, [x, y]〉 − 1

24
〈y, y;x, y〉 − 1

6
Φ(x; y, y, y)

+ . . .

When all the operations apart from [ , ] vanish we recover the usual Baker-Campbell-
Hausdorff formula. A different approach to the non-associative Baker-Campbell-
Hausdorff formula has appeared in [8]; it does not explicitly use the Dynkin-Specht-
Wever Lemma or the Magnus expansion. For the treatment of the subject from the
point of view of differential geometry see [16]; actually, geometric considerations
also motivate a different type of a Baker-Campbell-Hausdorff formula, see [11];
although it is of importance for the non-associative Lie theory, we will not consider
it here.

Our results are presented for the unital k-algebra of formal power series k{{x, y}}
in two non-associative variables x and y. Readers with background in non-associa-
tive structures will realize that a more natural context for the Baker-Campbell-
Hausdorff formula is the completion of the universal enveloping algebra of a rela-
tively free Sabinin algebra on two generators. The extension of our results to that
context is rather straightforward.
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A NON-ASSOCIATIVE BAKER-CAMPBELL-HAUSDORFF FORMULA 3

1.1. Notation. Throughout this paper the characteristic of the base field k is
zero. The unital associative k-algebra freely generated by a set of generators X
will be denoted by k〈X〉 while k〈〈X〉〉 will stand for the unital associative algebra of
formal power series on X with coefficients in k. Their non-associative counterparts,
namely, the unital non-associative k-algebra freely generated by X and the unital
non-associative k-algebra of formal power series on X with coefficients in k, will be
denoted by k{X} and k{{X}} respectively. For any algebra H, H[[t]] will denote
the algebra of formal power series in t with coefficients in H. The parameter t
commutes and associates with all the elements in H[[t]]. Finally, we will stick to
the following order of parentheses for powers: xn := (((xx) · · · )x)x (n times).

2. Fundamentals

2.1. Non-associative Hopf algebras. A coalgebra (C,∆, ε) is a vector space
equipped with two linear maps ∆: C → C ⊗ C (comultiplicaton) and ε : C → k
(counit) such that ∑

ε(x(1))x(2) = x =
∑

ε(x(2))x(1),

where
∑
x(1)⊗x(2) stands for ∆(x) (Sweedler notation). Coassociative and cocom-

mutative coalgebras are those coalgebras (C,∆, ε) that, in addition, satisfy

(∆⊗ Id)∆ = (Id⊗∆)∆

(coassociativity) and τ∆ = ∆ (cocommutativity) where τ(x ⊗ y) = y ⊗ x. Coasso-
ciativity ensures that∑

x(1)(1)
⊗ x(1)(2)

⊗ x(2) =
∑

x(1) ⊗ x(2)(1)
⊗ x(2)(2)

so we can safely write
∑
x(1) ⊗ x(2) ⊗ x(3) for any of the sides of this equality. For

coassociative coalgebras the result of the iterated application n times of ∆ to x does
not depend on the selected factors and it is denoted by

∑
x(1)⊗x(2)⊗· · ·⊗x(n+1).

Cocommutativity ensures that we can freely permute the factors of
∑
x(1)⊗x(2)⊗

· · · ⊗ x(n+1) without altering the value of this expression [14].
In this paper, by a (non-associative) Hopf algebra (H,m, u, \, /,∆, ε) we will

mean a cocommutative and coassociative coalgebra (H,∆, ε) endowed with the
following linear maps: a product m : H ⊗H → H, a unit u : k→ H, a left division
\ : H ⊗ H → H and a right division / : H ⊗ H → H so that ∆(xy) = ∆(x)∆(y),
∆(1) = 1⊗ 1, ε(xy) = ε(x)ε(y), ε(1) = 1 and∑

x(1)\(x(2)y) = ε(x)y =
∑

x(1)(x(2)\y)(2) ∑
(yx(1))/x(2) = ε(x)y =

∑
(y/x(1))x(2)(3)

where xy := m(x ⊗ y) and 1 := u(1) is the unit element (see [10] for a survey on
non-associative Hopf algebras). In case that H is associative then the left and right
divisions can be written as x\y = S(x)y and x/y = xS(y) where S is the antipode.
However, non-associative Hopf algebras lack antipodes in general.

2.2. The free unital non-associative algebra k{X}. The most important ex-
ample of a non-associative Hopf algebra in this paper is the unital non-associative al-
gebra k{X} freely generated by X := {x1, x2, . . . }. The maps ∆: xi 7→ xi⊗1+1⊗xi
and ε : xi 7→ 0 (i = 1, 2, . . . ) induce homomorphisms of unital algebras ∆: k{X} →
k{X} ⊗ k{X} and ε : k{X} → k so that (k{X},∆, ε) is a coassociative and co-
commutative coalgebra. By induction on the degree of x, the formulas (2) and
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4 J. MOSTOVOY, J. M. PÉREZ-IZQUIERDO, AND I. P. SHESTAKOV

(3) uniquely determine the left and the right division in k{X}. For instance,
1\(1y) = ε(1)y implies 1\y = y and

xi\(1y) + 1\(xiy) = ε(xi)y = 0 implies xi\y = −xiy

etc. The operations ∆, ε, \ and /, together with the product and the unit, provide
k{X} with the structure of a non-associative Hopf algebra. Far from being a fancy
feature, the divisions are a valuable tool for computations.

2.3. Primitive elements of k{X} and the Shestakov-Umirbaev operations.
An element a in a Hopf algebra H such that

∆(a) = a⊗ 1 + 1⊗ a

is called primitive; the subspace of all such elements is denoted by Prim(H). While
for associative Hopf algebras this subspace is a Lie algebra with the commutator
product [x, y] := xy − yx, Shestakov and Umirbaev [13] realized that if H is non-
associative, many more operations are required to describe its algebraic structure
completely.

Let X := {x, x1, x2, . . . }, Y := {y, y1, y2, . . . } and Z := {z} be disjoint sets
of symbols that we take to be the free generators of k{X ∪ Y ∪ Z}. Write x :=
((x1x2) · · · )xm, y := ((y1y1) · · · )yn and define

(4) p(x1, . . . , xm; y1, . . . , yn; z) := p(x, y, z) :=
∑

(x(1)y(1)
)\(x(2), y(2)

, z)

in k{X ∪ Y ∪ Z}, where (x, y, z) denotes the associator (xy)z − x(yz) of x, y and
z. Each of the elements p(x, y, z) is primitive. Considered as non-associative poly-
nomials, p(x1, . . . , xm; y1, . . . , yn; z) can be evaluated in any algebra A so we can
think of them as of new multilinear operations derived from the binary product of
A. Define

[x, y] := xy − yx
〈x1, . . . , xm; y, z〉 := −p(x1, . . . , xm; y; z) + p(x1, . . . , xm; z; y)

Φ(x1, . . . , xm; y1, . . . , yn, yn+1) :=

1

m!(n+ 1)!

∑
σ∈Sn,τ∈Sm+1

p(xσ(1), . . . , xσ(m); yτ(1), . . . , yτ(n); yτ(n+1))

where m,n ≥ 1 and Sk stands for the symmetric group on {1, . . . , k}. In order to
simplify the notation, for m = 0 we write

〈y, z〉 := 〈x1, . . . , xm; y, z〉 := 〈1; y, z〉 := −[y, z].

With this convention, (4) gives

(5) (xy)z − (xz)y = −
∑

x(1)〈x(2); y, z〉.

Shestakov and Umirbaev proved that

(Prim(k{X}), 〈 ; , 〉,Φ( ; )) is generated by X.

Thus, while (1) can be written in terms of commutators, the natural language to
write its non-associative counterpart uses 〈 ; , 〉 and Φ( ; ).
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A NON-ASSOCIATIVE BAKER-CAMPBELL-HAUSDORFF FORMULA 5

2.4. Exponentials, logarithms and the Baker-Campbell-Hausdorff for-
mula. The algebra k{{x}} (respectively, k〈〈x〉〉) of formal power series in x with
coefficients in k is a topological Hopf algebra with the continuous extension of the
operations of the Hopf algebra k{x} (respectively, k〈x〉). Since Prim(k〈x〉) = kx,
the group-like elements of k〈〈x〉〉, that is, the elements g such that ∆(g) = g ⊗ g
and ε(g) = 1, are of the form exp(αx) with α ∈ k. Therefore, exp(x) is, in a
sense, canonical among all of them. However, Prim(k{{x}}) is infinite-dimensional
and k{{x}} has an infinite number of group-like elements that could rightfully be
considered as the non-associative analogs of the exponential series. Apart from the
most obvious non-associative versions of the exponential

expl(x) :=
∑
n≥0

1

n!
(((xx) · · · )x)x︸ ︷︷ ︸

n

and expr(x) :=
∑
n≥0

1

n!
x(x(· · · (xx)))︸ ︷︷ ︸

n

other series have been proposed as non-associative analogs of exp(x) :=
∑∞
n=0 x

n/n!,
each leading to a different logarithm [7].

Definition 2.1. A group-like element e(x) ∈ k{{x}} is a base for logarithms if its
homogeneous component e1(x) of degree one in x is not zero. We say that the base
for logarithms e(x) is normalized if e1(x) = x.

Associated with any base for logarithms e(x) there exists a primitive element
loge(x) ∈ k{{x}} determined by

e(loge(x)) = x = loge(e(x)).

The exponentiation on k{{X}} with base e(x) and the logarithm on k{{X}} to the
base e(x) are the maps

e : k{{X}}+ → 1 + k{{X}}+ loge : 1 + k{{X}}+ → k{{X}}+
u 7→ e(u) 1 + u 7→ loge(1 + u)

where k{{X}}+ denotes the space of formal power series with zero constant term.
Both maps are inverse to each other and give a bijection between the primitive
and the group-like elements in k{{X}}. The logarithms to the bases expl(x) and
expr(x) will be denoted by logl and logr, respectively.

Any base for logarithms e(x) determines a Baker-Campbell-Hausdorff series in
k{{x, y}}:

BCHe(x, y) := loge(e(x)e(y)).

The element BCHe(x, y) is primitive so it can be written in terms of the Shestakov-
Umirbaev operations 〈 ; , 〉 and Φ( ; ). Since these operations are defined via the
left-normed products x and y, the base expl(x) is better adapted to recursive compu-
tations. In [9] logl(1+x) has been described as follows. For τ = x set Bτ := τ ! := 1.
If τ 6= x is a non-associative monomial in x, there is only one way of writing τ as a
product (. . . ((xτ1)τ2) . . .)τk. Set Bτ := BkBτ1 . . . Bτk and τ ! := k!τ1! . . . τk! where
Bk is the kth Bernoulli number. With this notation we have

logl(1 + x) =
∑
τ

Bτ
τ !
τ ∈ k{{x}}.

Given the explicit expressions for expl and logl, there is no difficulty writing
down an explicit formula for BCHl(x, y) := BCHexpl(x, y) in terms of the non-
associative monomials in x and y. Namely, for a monomial w(x, y) its coefficient in
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6 J. MOSTOVOY, J. M. PÉREZ-IZQUIERDO, AND I. P. SHESTAKOV

BCHl(x, y) is equal to

(6)
∑

(τ,w1,...,w|τ|)

Bτ
τ !

1

i1! · · · i|τ |!
1

j1! · · · j|τ |!
,

where the sum is taken over all the non-associative monomials τ in one variable and
all the sets of monomials wq := xiqyjq such that the product w1 . . . w|τ | taken with
the parentheses as in τ equals w(x, y). The set of all such (τ, w1, . . . , w|τ |) can be
easily described; however, we will not dwell on this subject since this formula is not
nearly as useful as its associative version, for the reason explained in Remark 3.3
in the next section.

The Baker-Campbell-Hausdorff series for different bases are related in a straight-
forward manner. If e and f are two bases for logarithms, the series h(x) :=
logf (e(x)) is a primitive element of k{{x}} whose term of degree 1 is non-zero. In

particular, it has a composition inverse h−1(x) = loge(f(x)) such that h−1(h(x)) =
x. It is then clear that

BCHe(x, y) = h−1(BCHf (h(x), h(y))).

Moreover, for any Baker-Campbell-Hausdorff series BCH(x, y) and any primitive
h ∈ k{{x}} with h1 6= 0, the series h−1(BCH(h(x), h(y))) is also a Baker-Campbell-
Hausdorff series for some base.

3. A Nonassociative Baker-Campbell-Hausdorff formula

3.1. A non-associative Dynkin-Specht-Wever Lemma. Let d be a derivation
of k{X} that preserves Prim(k{X}), that is

d(Prim(k{X})) ⊆ Prim(k{X}).

Define γd(u) :=
∑
u(1)\d(u(2)); thus,

d(u) =
∑

u(1)γd(u(2))

for all u ∈ k{X}. The proof of the following result was inspired by [15].

Lemma 3.1 (The Dynkin-Specht-Wever Lemma). Let d be a derivation of k{X}
that preserves Prim(k{X}), u ∈ k{X} and a ∈ Prim(k{X}). We have

γd(ua) = ε(u)d(a) +
∑
〈u(1); a, γd(u(2))〉.

Proof. Let us compute d(ua) in two ways:

d(ua) =


∑
u(1)γd(u(2)a) +

∑
(u(1)a)γd(u(2))

d(u)a+ ud(a) =
∑

(u(1)γd(u(2)))a+ ud(a)

so that by (5)∑
u(1)γd(u(2)a) =

∑
u(1)〈u(2); a, γd(u(3))〉+

∑
u(1)ε(u(2))d(a).

Using (2), divide by u(1) to get the result. �
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A NON-ASSOCIATIVE BAKER-CAMPBELL-HAUSDORFF FORMULA 7

Example 3.2. Let us compute the expansion logl(expl(x) expl(y)) up to degree 3
in terms of the Shestakov-Umirbaev operations with the help of the Dynkin-Specht-
Wever Lemma. Since, up to the summands of degree ≥ 5, we have

logl(1 + x) =

x− 1

2
x2 +

1

12
x2x+

1

4
xx2 − 1

24
x(x2x)− 1

8
x(xx2)− 1

24
x2x2 − 1

24
(xx2)x+ · · · ,

the expansion of logl(expl(x) expl(y)) up to degree 3 is

(7) x+ y +
1

2
[x, y] +

1

3
x2y − 1

4
x(xy) +

1

4
x(yx)− 5

12
(xy)x+

1

12
(yx)x

+
1

2
xy2 − 5

12
(xy)y +

1

12
(yx)y − 1

4
y(xy)− 1

6
y2x+

1

4
y(yx) + · · ·

Now, apply Lemma 3.1 with d(u) := |u|u, where |u| denotes the degree of u, for
homogeneous u ∈ k{x, y}. First, observe that γd(ab) = 〈b, a〉,

γd((ab)c) = 〈c, 〈b, a〉〉+ 〈a; c, b〉+ 〈b; c, a〉

and

γd(a(bc)) = γd((ab)c− (a, b, c)) = 〈c, 〈b, a〉〉+ 〈a; c, b〉+ 〈b; c, a〉 − 3(a, b, c).

Applying γd to the homogeneous summands in (7) and dividing by their degree, we
can write (7) as

x+y+
1

2
[x, y]+

1

12
[x, [x, y]]− 1

3
〈x;x, y〉− 1

12
[y, [x, y]]+

1

6
〈y; y, x〉− 1

2
Φ(x; y, y)+ · · ·

�

Remark 3.3. In the associative case, the BCH formula (1) is obtained by applying
the Dynkin-Specht-Wever Lemma to the expansion of log(exp(x) exp(y)) in terms
of the monomials in x and y. In our situation, we cannot apply Lemma 3.1 to the
expansion given by (6) and get a closed formula since the monomials in (6) are not
left-normed.

3.2. A non-associative Magnus expansion. The differential equation

X ′(t) = A(t)X(t)

when X(t) and A(t) do not necessarily commute (for instance, X(t) may belong to a
matrix Lie group and A(t) to the corresponding Lie algebra) has been studied since
long ago [1]. A fruitful approach is to look for solutions of the formX(t) = exp(Ω(t))
for some Ω(t), where exp(x) denotes the usual exponential. The solution Ω(t) is
determined by the initial condition and by the differential equation

(8) Ω′(t) =
adΩ(t)

exp(adΩ(t))− Id
(A(t)) =

∞∑
n=0

Bn
n!

adnΩ(t)(A(t)),

where Bn denotes the n-th Bernoulli number. Take X(t) := exp(tx) exp(y); then

X ′(t) = (x exp(tx)) exp(y)
<1>
= x(exp(tx) exp(y)) = xX(t)

so we can use (8) in order to study Ω(t) = log(exp(tx) exp(y)). However, in a non-
associative setting there are some details to be taken care of, since, for instance,
equality <1> above requires the associativity.
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8 J. MOSTOVOY, J. M. PÉREZ-IZQUIERDO, AND I. P. SHESTAKOV

Proposition 3.4. Let H be a unital algebra, e(x) ∈ k{{x}} a base for logarithms
and X(t) := e(Ω(t)) with Ω(t) ∈ H[[t]] such that Ω(0) = 0. For any A(t) ∈ H[[t]]
the solution Ω(t) to the equation

X ′(t) = X(t)A(t)

satisfies
Ω′(t) = (τe(Ω(t)))−1(A(t))

where τe(x) is defined by

τe(x)(y) := e(x)

∖
d

ds

∣∣∣∣
s=0

e(x+ sy) ∈ k{{x, y}}.

Proof. Evaluating at x = Ω(t) and y = Ω′(t) we get

τe(Ω(t))(Ω′(t)) = e(Ω(t))

∖
d

ds

∣∣∣∣
s=0

e(Ω(t) + sΩ′(t)) = e(Ω(t))

∖
d

dt
e(Ω(t))

= X(t)\X ′(t) = A(t).

If x = 0 then τe(x)(y) = d
ds

∣∣
s=0

e(sy) = αy for some 0 6= α ∈ k and there exists

(τe(x))−1(y) ∈ k{{x, y}} such that (τe(x))−1(τe(x)(y)) = y. Therefore Ω′(t) =
(τe(Ω(t)))−1(A(t)). �

In order to compute (τe(x))−1(y) in terms of the Shestakov-Umirbaev opera-
tions, we will use the Dynkin-Specht-Wever Lemma. Consider the derivation y∂x
of k{{x, y}} determined by

(9) (y∂x)(x) := y and (y∂x)(y) := 0.

By induction on the degree |u| of u we can check that

∆((y∂x)(u)) =
∑

(y∂x)(u(1))⊗ u(2) + u(1) ⊗ (y∂x)(u(2))

so that (y∂x) preserves Prim(k{{x, y}}) and it is related to τe(x)(y) via

τe(x)(y) = e(x)

∖
d

ds

∣∣∣∣
s=0

e(x+ sy) = e(x)\(y∂x)(e(x)) = γy∂x(e(x)).

Now, in order to apply the Dynkin-Specht-Wever Lemma recursively e(x) should
be a linear combination of left-normed products of primitive elements. This is the
main reason for restricting ourselves to expl(x).

Lemma 3.5. The component τn of degree n in x of τ expl(x)(y) is
n∑
i=1

1

n+ 1

1

(n− i)!
〈xn−i;x, τi−1〉

where τ0 := y.

The expansion of (τ expl(x))−1(y) can be easily obtained from the expansion of
τ expl(x)(y). Given a tuple J = (j1, . . . , js) ∈ Zs with j1, . . . , js ≥ 1 define

PJ(x; y) := 〈x, . . . , x︸ ︷︷ ︸
j1−1

;x, 〈x, . . . , x︸ ︷︷ ︸
j2−1

;x, 〈. . . 〈x, . . . , x︸ ︷︷ ︸
js−1

;x, y〉〉〉 and

mJ :=
1

j1 + · · ·+ js + 1

1

(j1 − 1)!

1

j2 + · · ·+ js + 1

1

(j2 − 1)!
· · · 1

js + 1

1

(js − 1)!
.
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The concatenation (i1, . . . , ir, j1, . . . , js) of (i1, . . . , ir) and (j1, . . . , js) will be de-
noted by (i1, . . . , ir)||(j1, . . . , js).

Theorem 3.6. In k{{x, y}} we have

(τ expl(x))−1(y) = y +
∑
J

nJPJ(x; y)

where J runs over all possible tuples with entries ≥ 1 and

nJ :=
∑

J=J1||···||Jl

(−1)lmJ1 · · ·mJl .

Proof. Let y∂x be the derivation of k{{x, y}} determined by (9). The Dynkin-
Specht-Wever Lemma implies

1

(n+ 1)!
γy∂x(xn+1) =

1

(n+ 1)!

∑
J=(j1,...,js)
j1+···+js=n

(
n

j1 − 1

)(
n− j1
j2 − 1

)
· · ·

· · ·
(
n− j1 − · · · − js

js − 1

)
PJ(x; y)

so τ expl(x)(y) = y +
∑
J mJPJ(x; y) and

(τ expl(x))−1(y) = y +
∑
l≥1

J1,...,Jl

(−1)lmJ1 · · ·mJlPJ1(x;PJ2(x; · · · (PJl(x; y)))).

Since PJ1(x;PJ2(x; · · · (PJl(x; y)))) = PJ1||···||Jl(x; y), the result follows. �

Corollary 3.7. Let H be a unital algebra and A(t) ∈ H[[t]]. The solution Ω(t) ∈
H[[t]] of the equation

X ′(t) = X(t)A(t)

with X(t) := expl(Ω(t)) and Ω(0) = 0 satisfies

(10) Ω′(t) = A(t) +
∑
J

nJPJ(Ω(t);A(t))

where J runs over all possible tuples with the components ≥ 1.

3.3. A non-associative Baker-Campbell-Hausdorff formula. We will use the
formula for (τ expl(x))−1 in Theorem 3.6 to describe, in terms of the Shestakov-
Umirbaev operations, the differential equation satisfied by logl(expl(x) expl(ty)).

Proposition 3.8. Let e(x) be a normalized base for logarithms. In k{{x, y}} we
have

loge(e(x)e(y)) = x+ (τe(x))−1(y) +O(y2).

Proof. Consider Ω(t) := loge(e(x)e(ty)) = x+ Ω′(0)t+O(t2). Since

τe(Ω(t))(Ω′(t)) = e(Ω(t))

∖
d

dt
e(Ω(t)) = (e(x)e(ty))

∖
d

dt
(e(x)e(ty))

= (e(x)e(ty))

∖(
e(x)

d

dt
e(ty)

)
,

evaluating at t = 0, we get τe(x)(Ω′(0)) = y so Ω′(0) = (τe(x))−1(y). �

In the case when e(x) is expl(x) or expr(x), Proposition 3.8 was proved in [16].
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10 J. MOSTOVOY, J. M. PÉREZ-IZQUIERDO, AND I. P. SHESTAKOV

Example 3.9. The components of degree 0, 1, 2 and 3 of τ expl(x)(y) are τ0 = y,
τ1 = 1

2 〈x, y〉, τ2 = 1
3 〈x;x, y〉 + 1

6 〈x, 〈x, y〉〉 and τ3 = 1
8 〈x, x;x, y〉 + 1

8 〈x;x, 〈x, y〉〉 +
1
12 〈x, 〈x;x, y〉〉 + 1

24 〈x, 〈x, 〈x, y〉〉〉. Thus, the component of degree one in y in
logl(expl(x) expl(y)) is

y − 1

2
〈x, y〉+

(
1

12
〈x, 〈x, y〉〉 − 1

3
〈x;x, y〉

)
+(

1

12
〈x, 〈x;x, y〉〉+

1

24
〈x;x, 〈x, y〉〉 − 1

8
〈x, x;x, y〉

)
+ · · ·

We can compute directly the coefficient of 〈x;x, 〈x, y〉〉 in logl(expl(x) expl(y)),
for instance. Since 〈x;x, 〈x, y〉〉 = P(2,1)(x; y) then Theorem 3.6 ensures that this

coefficient equals n(2,1) = m(2)m(1) −m(2,1) = 1
3

1
1!

1
2

1
0! −

1
4

1
1!

1
2

1
0! = 1

24 . �

Proposition 3.10 (Magnus expansion for the Baker-Campbell-Hausdorff formula).
Let Ω(t) := logl(expl(x) expl(ty)). In k{{x, y}}[[t]] we have

Ω′(t) =

(
y +

∑
J

nJPJ(Ω(t); y)

)

−

(
Φ(expl(x); expl(ty), y) +

∑
J

PJ(Ω(t); Φ(expl(x); expl(ty), y)

)
.

Proof. We have

τ expl(Ω(t))(Ω′(t)) = expl(Ω(t))

∖
d

dt
expl(Ω(t))

= (expl(x) expl(ty))

∖(
expl(x)

d

dt
expl(ty)

)
= (expl(x) expl(ty)) \(expl(x)(expl(ty)y))

= y − p(expl(x); expl(ty); y)

= y − Φ(expl(x); expl(ty), y)

so Ω′(t) = (τ expl(Ω(t)))−1(y) − (τ expl(Ω(t)))−1(Φ(expl(x); expl(ty), y)). The result
follows from Theorem 3.6. �

Example 3.11. The component of logl(expl(x) expl(y)) of degree 1 in x and degree
2 in y is

Ω1,2 :=
1

2

(
n(1)〈Ω1,1, y〉+ n(1,1)〈y, 〈x, y〉〉+ n(2)〈y;x, y〉 − Φ(x; y, y)

)
= − 1

12
[y, [x, y]] +

1

6
〈y; y, x〉 − 1

2
Φ(x; y, y).

�

Based on Proposition 3.10 we can compute the initial terms of the expansion of
logl(expl(x) expl(y)).
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Theorem 3.12 (Non-associative Baker-Campbell-Hausdorff Formula). The expan-
sion of logl(expl(x) expl(y)) in k{{x, y}} is

x+ y +
1

2
[x, y]

+
1

12
[x, [x, y]]− 1

3
〈x;x, y〉 − 1

12
[y, [x, y]]− 1

6
〈y;x, y〉 − 1

2
Φ(x; y, y)

− 1

24
〈x;x, [x, y]〉 − 1

12
[x, 〈x;x, y〉]− 1

8
〈x, x;x, y〉

+
1

24
[[x, [x, y]], y]− 1

24
[x, 〈y;x, y〉]− 1

4
Φ(x, x; y, y)− 1

4
[x,Φ(x; y, y)]

− 1

24
[〈x;x, y〉, y]− 1

24
〈x; [x, y], y〉 − 1

6
〈x, y;x, y〉+

1

24
〈y, x;x, y〉

+
1

12
[Φ(x; y, y), y] +

1

24
〈y; y, [x, y]〉 − 1

24
〈y, y;x, y〉 − 1

6
Φ(x; y, y, y)

plus terms of degree ≥ 5.

4. A connection with Bernoulli numbers and binary trees

Formulas (8) and (10) give an alternative point of view on the relation between
the numbers {nJ}J and {Bk}k which has been established in [6, 17].

Theorem 4.1. We have
Bk
k!

= n(1, . . . , 1)︸ ︷︷ ︸
k

.

Proof. By definition, 〈x1, . . . , xm; y, z〉 and Φ(x1, . . . , xm; y1, . . . , yn, yn+1) vanish in
any associative algebra, with the only exception of 〈y, z〉. Thus, after projecting
from k{{x, y}}, in k〈〈x, y〉〉 we get

(τ exp(x))−1(y) = y +
∑

J=(1,...,1)

nJPJ(x; y) =

∞∑
k=0

n(1, . . . , 1)︸ ︷︷ ︸
k

(−1)k adkx(y).

Since it is well-known that (τ exp(x))−1(y) =
∑∞
k=0(−1)k Bkk! adkx(y) holds in k〈〈x, y〉〉

we get the result; the sign (−1)k in the latter formula comes from our choice
τ exp(x) := exp(x)\ d

ds

∣∣
s=0

exp(x+ sy) instead of d
ds

∣∣
s=0

exp(x+ sy)/ exp(x). �

In [17] Woon gave an algorithm to compute Bn/n! with the help of the binary
tree

[1, 2]

[−1, 3] [1, 2, 2]

level 1

level 2

[1, 4] [−1, 2, 3] [−1, 3, 2] [1, 2, 2, 2]...
...

Here, the nodes are labeled by [a1, . . . , ar]; the root is [1, 2] and at any node we
have
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12 J. MOSTOVOY, J. M. PÉREZ-IZQUIERDO, AND I. P. SHESTAKOV

[a1, . . . , ar]

[−a1, a2 + 1, . . . , ar] [a1, 2, a2, . . . , ar]

The factorial of the node N = [a1, . . . , ar] is N ! := a1(a2! · · · ar!). Woon proved the
equality

Bk
k!

=
∑
N

1

N !

for k ≥ 2, where N runs over the nodes in the level k. In [6] Fuchs extended this
construction as follows. Consider the general PI binary tree (see [6]):

(1)

(1, 1) (2)

level 1

level 2

...
(1, 1, 1) (2, 1) (1, 2) (3)...

with root (1) and at each node

(a1, . . . , ar)

(1, a1, a2, . . . , ar) (a1 + 1, a2, . . . , ar)

For any sequence (cn)n≥1 of complex numbers change the node (a1, . . . , ar) by
ca1 · · · car . Then define xk to be the sum of the nodes in the k-th level. This value
depends on the sequence (cn)n≥1. In the case when cn = −1

n+1! we get the tree

− 1
2!

1
2!2! − 1

3!

− 1
2!2!2!

1
3!2!

1
2!3! − 1

4!
...

and for each k we have xk = Bk/k!.
To relate these constructions to the numbers nJ in Theorem 3.6 we use a bi-

nary tree to collect the summands involved in nJ =
∑
J=J1||···||Jl(−1)lmJ1 · · ·mJl .

Consider associative but non-commutative indeterminates x1, x2, . . . and the tree

(x1)

(x1, x2) (x1x2)

(x1, x2, x3) (x1, x2x3) (x1x2, x3) (x1x2x3)...

level 1

level 2

...

where at any node on the level n− 1 we have
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(w1, . . . , wr)

(w1, . . . , wr, xn) (w1, . . . , wrxn)

Consider a sequence of numbers a1, a2, . . . . Define for w = xi1 · · ·xis the num-
ber mw = mxi1 ···xis = −m(ai1 ,...,ais ) and replace any node (w1, . . . , wr) with
m(w1,...,wr) = mw1

· · ·mwr . The sum of the nodes in the level n of the result-
ing tree is n(a1,...,an). In case that a1 = a2 = · · · = 1, in the previous construction
we can replace the label xi1 · · ·xis by s without losing information. With these new
labels, at any node on the level n− 1 of the tree we have

(a1, . . . , ar)

(a1, . . . , ar, 1) (a1, . . . , ar + 1)

which essentially gives the general PI binary tree. The number that we attach to
the node (a1, . . . , ar) is (−m(1, . . . , 1)︸ ︷︷ ︸

a1

) · · · (−m(1, . . . , 1)︸ ︷︷ ︸
ar

) = −1
(a1+1)! · · ·

−1
(ar+1)! , so

we recover the construction of Fuchs.
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