PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 146, Number 1, January 2018, Pages 223–232 http://dx.doi.org/10.1090/proc/13708 Article electronically published on July 28, 2017

A CHAIN TRANSITIVE ACCESSIBLE PARTIALLY HYPERBOLIC DIFFEOMORPHISM WHICH IS NON-TRANSITIVE

SHAOBO GAN AND YI SHI

(Communicated by Yingfei Yi)

ABSTRACT. In this paper, we construct a partially hyperbolic skew-product diffeomorphism on \mathbb{T}^3 , which is accessible and chain transitive, but not transitive.

1. Introduction

Let M be a closed Riemannian manifold, and $f: M \to M$ a diffeomorphism. We say f is transitive, if for any two non-empty open sets $U, V \subset M$, there exists n > 0, such that $f^n(U) \cap V \neq \emptyset$. The transitivity of f is equivalent to the existence of a point x whose positive orbit $\{f^n(x): n > 0\}$ is dense in M.

We call a point $x \in M$ a non-wandering point of f, if for any neighborhood U_x of x, there exists n > 0, such that $f^n(U_x) \cap U_x \neq \emptyset$. The non-wandering set $\Omega(f)$ is the set of all non-wandering points of f.

For two points $x, y \in M$, we say y is chain attainable from x, if for any $\epsilon > 0$, there exists a finite sequence $\{x_i\}_{i=0}^n$ with $x_0 = x$ and $x_n = y$, such that $d(f(x_i), x_{i+1}) < \epsilon$ for any $0 \le i \le n-1$. A point $x \in M$ is called a chain recurrent point, if it is chain attainable from itself. The set of chain recurrent points is called a chain recurrent set of f, denoted by CR(f). If every point is chain recurrent, we say f is chain transitive.

It is clear that every non-wandering point is chain recurrent and if f is transitive, then it is chain transitive, but not vice versa. However, from the powerful chain connecting lemma [3], there exists a residual subset $\mathcal{R} \subset \operatorname{Diff}^1(M)$, such that for any $f \in \mathcal{R}$, we have $\Omega(f) = \operatorname{CR}(f)$ and if f is chain transitive, then f is transitive.

A diffeomorphism $f: M \to M$ is partially hyperbolic, if the tangent bundle TM splits into three continuous non-trivial Df-invariant bundles $TM = E^{ss} \oplus E^c \oplus E^{uu}$, such that $Df|_{E^{ss}}$ is uniformly contracting, $Df|_{E^{uu}}$ is uniformly expanding, and $Df|_{E^c}$ lies between them:

$$|| Df|_{E^{ss}(x)} || < || Df^{-1}|_{E^{c}(f(x))} ||^{-1},$$

$$|| Df|_{E^{c}(x)} || < || Df^{-1}|_{E^{uu}(f(x))} ||^{-1}, \text{ for all } x \in M.$$

It is known ([12, (4.1) Theorem]) that there is a unique f-invariant foliation W^{ss} (resp. W^{uu}) tangent to E^{ss} (resp. E^{uu}).

An important geometric property of partially hyperbolic diffeomorphisms is accessibility. A partially hyperbolic diffeomorphism f is accessible, if any two points

Received by the editors December 30, 2016 and, in revised form, February 19, 2017. 2010 Mathematics Subject Classification. Primary 37C20, 37D30.

in M can be joined by an arc consisting of finitely many segments contained in the leaves of foliations W^{ss} and W^{uu} . Accessibility plays a key role for proving the ergodicity of partially hyperbolic diffeomorphisms ([7,11]). Moreover, it has been observed ([6,8,11]) that most of partially hyperbolic diffeomorphisms are accessible.

M. Brin [5] has proved that for a partially hyperbolic diffeomorphism $f: M \to M$, if f is accessible and $\Omega(f) = M$, then f is transitive. See also [1]. So it is natural to ask the following question: if a partially hyperbolic diffeomorphism f is accessible and $\operatorname{CR}(f) = M$, is f transitive? In this paper, we construct an example which gives a negative answer to this question. This implies Brin's result could not be generalized to the case where $\operatorname{CR}(f) = M$.

Let $A: \mathbb{T}^2 \to \mathbb{T}^2$ be a hyperbolic automorphism over \mathbb{T}^2 . We say $f: \mathbb{T}^3 \to \mathbb{T}^3$ is a partially hyperbolic skew-product over A, if for every $(x,t) \in \mathbb{T}^3 = \mathbb{T}^2 \times \mathbb{S}^1$, we have

$$f(x,t) = (Ax, \varphi_x(t))$$
 and $||A^{-1}||^{-1} < ||\varphi'_x(t)|| < ||A||$.

We will consider $\mathbb{S}^1 = \mathbb{R}/2\mathbb{Z}$, and usually use the coordinate $\mathbb{S}^1 = [-1, 1]/\{-1, 1\}$. Our main result is the following theorem.

Theorem 1. There exists a partially hyperbolic skew-product C^{∞} diffeomorphism $f: \mathbb{T}^3 \to \mathbb{T}^3$, such that f is accessible and chain transitive, but not transitive.

2. Construction of diffeomorphism

We will first construct a chain transitive partially hyperbolic skew-product diffeomorphism on \mathbb{T}^3 , such that its non-wandering set is not the whole \mathbb{T}^3 and not transitive. Then a small perturbation will achieve the accessibility, and still preserve the dynamical properties.

First we need a diffeomorphism on \mathbb{S}^1 that is chain transitive but the non-wandering set is not the whole circle.

Let $\theta: \mathbb{S}^1 \to \mathbb{S}^1$ be defined as

$$\theta(t) = -\cos(2\pi t) + 1, \qquad t \in \mathbb{R}/2\mathbb{Z}.$$

It is a C^{∞} function on \mathbb{S}^1 . We can see that $\theta \geq 0$ on \mathbb{S}^1 , and it has two zero points 0 and -1=1. The vector field $\{\theta(t)\cdot\frac{\partial}{\partial t}\}$ is a C^{∞} vector field on \mathbb{S}^1 , and its time-r map for $0< r\ll 1$ is the diffeomorphism we need on the circle (see Figure 1), i.e., the time-r map of $\theta(t)\cdot\frac{\partial}{\partial t}$ is chain transitive, and its non-wandering set consists of only two fixed points 0 and -1=1. Using the product structure, we can define a vector field X on $\mathbb{T}^3=\mathbb{T}^2\times\mathbb{S}^1$.

Lemma 2.1.

$$X(x,t) = \theta(t) \cdot \frac{\partial}{\partial t}, \qquad \forall (x,t) \in \mathbb{T}^3 = \mathbb{T}^2 \times \mathbb{S}^1,$$

is a C^{∞} vector field on \mathbb{T}^3 . Moreover, for every r > 0, the time-r map X_r of the flow generated by X satisfies the following properties:

- $X_r(x,t) = (x,\varphi(t))$ for every $(x,t) \in \mathbb{T}^3$.
- For i = 0, 1, $X_r(x, i) = (x, i)$ for every $x \in \mathbb{T}^2$.
- For every $\delta \in (0,1/2)$, for every $(x,t) \in \mathbb{T}^3$ with $t \notin \{0,1\}$, we have $\varphi(t) > t$. In particular, there exists $0 < \tau = \tau(r,\delta) < \delta/2$, such that

$$\varphi(t) > t + \tau, \qquad \forall (x, t) \in \mathbb{T}^2 \times \{-\delta, 1 - \delta\}.$$

FIGURE 1. Chain transitive systems with non-empty wandering sets.

For r > 0, define $f_r = X_r \circ (A \times id) : \mathbb{T}^3 \to \mathbb{T}^3$:

$$f_r(x,t) = (Ax, \varphi(t)),$$

where $A: \mathbb{T}^2 \to \mathbb{T}^2$ is a hyperbolic automorphism, and $\varphi(t)$ is the function in the last lemma. Then for every $\delta \in (0, 1/2)$ and $\tau = \tau(\delta, r)$ in the last lemma, if r is small enough, f_r satisfies the following properties (Figure 1):

• f_r is a partially hyperbolic skew-product diffeomorphism on \mathbb{T}^3 . Let the partially hyperbolic splitting be:

$$T\mathbb{T}^3 = E^{ss} \oplus E^c \oplus E^{uu},$$

and denote by $W^{ss/uu}$ the stable/unstable manifolds generated by $E^{ss/uu}$.

- Let $p \in \mathbb{T}^2$ be a fixed point of A. Then in the fixed center fiber $S_p = \{p\} \times \mathbb{S}^1$, $f_r|_{S_p}$ is chain transitive and has two fixed points $P_i = (p, i) \in \mathbb{T}^2 \times \mathbb{S}^1$ for i = 0, 1.
- For $i=0,1,\,f_r$ preserves $\mathbb{T}_i=\mathbb{T}^2\times\{i\}$ invariant, and $f_r|_{\mathbb{T}_i}=A|_{\mathbb{T}_i}$. Moreover,

$$\mathbb{T}_i = \overline{W^{ss}(P_i, f_r)} = \overline{W^{uu}(P_i, f_r)}.$$

• For every $(x,t) \in \mathbb{T}^2 \times \{-\delta, 1-\delta\}$, we have $\varphi(t) > t+\tau$.

Now f_r is a chain transitive but non-transitive partially hyperbolic diffeomorphism on \mathbb{T}^3 . However, f_r is not accessible, since the sum of stable and unstable bundles of f_r is integrable. We will make another perturbation to achieve the accessibility, and preserve other dynamical properties.

Let $p \in \mathbb{T}^2$ be a fixed point of the hyperbolic automorphism A. Take a small enough neighborhood U(p) of p in \mathbb{T}^2 , such that

- for every $x \in U(p) \setminus W^s_{loc}(p)$, there exists some n > 0, such that $A^n x \notin U(p)$;
- for every $x \in U(p) \setminus W^u_{loc}(p)$, there exists some n < 0, such that $A^n x \notin U(p)$.

Now take a local coordinate $\{(x_s, x_u)\}$ in U(p) with p = (0, 0), so that

$$A(x_s, x_u) = (\lambda \cdot x_s, \lambda^{-1} \cdot x_u),$$

for every $(x_s, x_u) \in [-10, 10]_s \times [-10, 10]_u \subset U(p)$. Here λ is the eigenvalue of A with $0 < |\lambda| < 1$, and we assume $1/10 < \lambda < 1$ for simplicity. In the rest of this paper, the local coordinate of $(U(p); (x_s, x_u))$ is the only coordinate we will use in \mathbb{T}^2 .

Now we define a C^{∞} function $\alpha: \mathbb{T}^2 \to [0,1]$, such that

$$\alpha(x) = \begin{cases} 0, & x \in [-1,1]_s \times [-1,1]_u \subset U(p), \\ 1, & x \in \mathbb{T}^2 \setminus [-3,3]_s \times [-3,3]_u, \\ \in (0,1), & \text{otherwise.} \end{cases}$$

The function α prescribes the perturbation region on \mathbb{T}^2 . And the next function γ shows the way of perturbations along fibers.

Let $\gamma: \mathbb{S}^1 = [-1,1]/\{-1=1\} \to \mathbb{R}$ be a C^{∞} function, such that

$$\gamma(t): \left\{ \begin{array}{ll} >0, & t\in [-1,-1+\tau)\cup (-\tau,\tau)\cup (1-\tau,1],\\ =0, & t\in [-1+\tau,-\tau]\cup [\tau,1-\tau]. \end{array} \right.$$

Here, $\tau = \tau(\delta, r) < \delta/2$ is determined by Lemma 2.1.

We define a C^{∞} vector field Y on $\mathbb{T}^{\tilde{3}}$ by

$$Y(x,t) = -\alpha(x)\gamma(t) \cdot \frac{\partial}{\partial t}, \qquad \forall (x,t) \in \mathbb{T}^3 = \mathbb{T}^2 \times \mathbb{S}^1.$$

FIGURE 2. The perturbation made by Y_{ρ} .

For $\rho > 0$, the time- ρ map Y_{ρ} satisfies the following properties (see Figure 2):

• $Y_{\rho}(x,t)=(x,\psi_{x}(t))$, and $Y_{\rho}(x,t)=(x,t)$ for every $(x,t)\in[-1,1]_{s}\times[-1,1]_{u}\times\mathbb{S}^{1}$.

- For $i = 0, 1, \psi_x(i) < i$ for every $x \in \mathbb{T}^2$. Precisely, for i = 0, 1, $- \psi_x(i) = i$, for every $x \in [-1, 1]_s \times [-1, 1]_u$; $-\psi_x(i) < i$, for every $x \in \mathbb{T}^2 \setminus [-1,1]_s \times [-1,1]_u$.
- For every $(x,t) \in \mathbb{T}^2 \times ([-1+\tau,-\tau] \cup [\tau,1-\tau])$, we have $Y_{\rho}(x,t) = (x,t)$.

Now the composition diffeomorphism $f = Y_{\rho} \circ f_r : \mathbb{T}^3 \to \mathbb{T}^3$ is the diffeomorphism we promised in our main theorem.

Proposition 2.2. If ρ and r are small enough, then the diffeomorphism $f = Y_{\rho} \circ f_r$: $\mathbb{T}^3 \to \mathbb{T}^3$ satisfies the following properties:

(1) f is a partially hyperbolic skew-product diffeomorphism:

$$f(x,t) = (Ax, \psi_{Ax} \circ \varphi(t)), \quad \forall (x,t) \in \mathbb{T}^3.$$

- (2) When restricted in the fixed fiber S_p , $f|_{S_p}$ has two fixed points P_0, P_1 , and is chain transitive.
- (3) For i = 0, 1, $f(\mathbb{T}^2 \times [i \delta, i]) \subset \mathbb{T}^2 \times [i \delta + \tau, i]$.
- (4) For $i = 0, 1, W^{uu}(P_i, f) \subset [i \delta + \tau, i]; W^{ss}(P_0, f) \subset [0, 1 \delta]$ and $W^{ss}(P_1, f) \subset [-1, -\delta].$ (5) For $i = 0, 1, W^{uu}(P_i, f) \cap W^{ss}(P_i, f) = \{P_i\}.$

Proof. We prove these five properties one by one:

(1) From the definition of f, we have that for every $(x,t) \in \mathbb{T}^3$,

$$f(x,t) = Y_{\rho} \circ X_{r} \circ (A \times \mathrm{Id}) = Y_{\rho} \circ f_{r}(x,t) = Y_{\rho}(Ax,\varphi(t)) = (Ax,\psi_{Ax} \circ \varphi(t)).$$

Moreover, if ρ and r are small enough, f is a C^{∞} small perturbation of the partially hyperbolic diffeomorphism $A \times Id$. Thus f is a partially hyperbolic skew-product diffeomorphism on \mathbb{T}^3 .

- (2) From its definition, the vector field Y is zero in a neighborhood of S_p , and hence Y_{ρ} is the identity map in a neighborhood of S_p . This implies $f|_{S_p} \equiv$ $f_r|_{S_p}$, which is chain transitive and has two fix points $P_i = (p,i) \in \mathbb{T}^2 \times \mathbb{S}^1$ for i = 0, 1.
- (3) Since we have $\varphi(i) = i$, for i = 0, 1, then $\psi_{Ax} \circ \varphi(i) = \psi_{Ax}(i) \leq i$ for every $x \in \mathbb{T}^2$.

For $t = -\delta$ or $t = 1 - \delta$, we have $\varphi(t) > t + \tau$. Since $\tau < \delta/2$, and $Y_{\rho}(x,t) = (x,t)$ for every $(x,t) \in \mathbb{T}^2 \times ([-1+\tau,-\tau] \cup [\tau,1-\tau])$, we have

$$Y_{\rho}(x,t) = (x,\psi_x(t)) = (x,t), \qquad \forall (x,t) \in \mathbb{T}^2 \times \{-\delta + \tau, 1 - \delta + \tau\}.$$

Since ψ_x preserves the orientation, $\psi_{Ax} \circ \varphi(t) > \psi_{Ax}(t+\tau) = t+\tau$, for every $(x,t) \in \mathbb{T}^2 \times \{-\delta, 1-\delta\}.$

Since both ψ_x and ϕ preserve the orientation, the conclusion follows.

(4) From the construction of ψ , we have that for i=0, 1,

$$\psi_{Ax} \circ \varphi(i) = i, \ \forall x \in [-\lambda^{-1}, \lambda^{-1}]_s \times [-\lambda, \lambda]_u.$$

This implies

$$W^{uu}(P_i, f) \cap (\{0_s\} \times [-1, 1]_u \times \mathbb{S}^1) = \{0_s\} \times [-1, 1]_u \times \{i\} \triangleq W^{uu}_{loc}(P_i, f).$$

Since $W^{uu}(P_i, f) = \bigcup_{n>0} f^n(W^{uu}_{loc}(P_i, f))$, by item 3, we have $W^{uu}(P_i, f)$ $\subset [i-\delta+\tau,i].$ Similarly,

$$W^{ss}(P_i, f) \cap ([-1, 1]_s \times \{0_u\} \times \mathbb{S}^1) = [-1, 1]_s \times \{0_u\} \times \{i\} \triangleq W^{ss}_{loc}(P_i),$$

and
$$W^{ss}(P_i, f) = \bigcup_{n>0} f^{-n}(W^{ss}_{loc}(P_i, f))$$
. From item 3, we have $f^{-1}(\mathbb{T}^2 \times [0, 1 - \delta]) \subset [0, 1 - \delta]$

and $f^{-1}(\mathbb{T}^2 \times [-1, -\delta]) \subset [-1, -\delta]$. Hence $W^{ss}(P_0, f) \subset [0, 1 - \delta]$ and $W^{ss}(P_1, f) \subset [-1, -\delta]$.

(5) By the construction of ψ ,

$$\psi_{Ax} \circ \varphi(i) < i, \ \forall x \in \mathbb{T}^2 \setminus [-\lambda^{-1}, \lambda^{-1}]_s \times [-\lambda, \lambda]_u.$$

We claim that

$$W^{uu}(P_i, f) \cap (\mathbb{T}^2 \times i) = \{0_s\} \times [-1, 1]_u \times \{i\}.$$

In fact, the right hand side is clearly contained in the left hand side. On the other hand, take any point $(x,i) \in W^{uu}(P_i,f)$. Denote $f^{-n}(x,i) = (x_n,t_n)$. Then for n large enough, $t_n=i$. Hence $t_n=i$ for all n. But this implies that $x_n \in [-\lambda^{-1},\lambda^{-1}]_s \times [-\lambda,\lambda]_u$ for $n \geq 1$. Thus $x_n \in \{0_s\} \times [-\lambda,\lambda]_u$ for $n \geq 1$. So, (x,i) is in the right hand side.

Similarly, we can show that

$$\begin{split} W^{ss}(P_i,f) \cap (\mathbb{T}^2 \times i) &= [-\lambda^{-1},\lambda^{-1}]_s \times \{0_u\} \times \{i\}. \end{split}$$
 Item 4 implies that $W^{uu}(P_i,f) \cap W^{ss}(P_i,f) \subset \mathbb{T}^2 \times i$ and hence
$$W^{uu}(P_i,f) \cap W^{ss}(P_i,f) = \{P_i\}.$$

3. Dynamical and geometrical properties of f

Now we can prove the main theorem from the following three lemmas (Lemmas 3.1, 3.2, 3.5).

Lemma 3.1. The diffeomorphism $f: \mathbb{T}^3 \to \mathbb{T}^3$ is chain transitive.

Proof. From the first and second properties of f in Proposition 2.2, we know that f is a partially hyperbolic skew-product diffeomorphism on \mathbb{T}^3 , and thus the stable and unstable manifolds of the fixed fiber S_p are dense on \mathbb{T}^3 . The density of $W^u(S_p)$ implies that every point in \mathbb{T}^3 is chain attainable from some point in S_p ; the density of $W^s(S_p)$ implies that every point in \mathbb{T}^3 is chain attainable to a point in S_p . Since $f|_{S_p}$ is chain transitive, every point in \mathbb{T}^3 is chain attainable from itself, i.e., $CR(f) = \mathbb{T}^3$, and f is chain transitive on \mathbb{T}^3 .

Lemma 3.2. The diffeomorphism $f: \mathbb{T}^3 \to \mathbb{T}^3$ is accessible.

Proof. Since f is a partially hyperbolic skew-product diffeomorphism on \mathbb{T}^3 , if f is not accessible, then from theorem 1.6 of [9], f has a compact us-leaf. Here a us-leaf is a complete 2-dimensional submanifold which is tangent to $E^{ss} \oplus E^{uu}$ of f. It is a torus transverse to the \mathbb{S}^1 -fiber of \mathbb{T}^3 . Since the compact us-leaf is saturated by \mathcal{W}^{ss} and \mathcal{W}^{uu} , it intersects every \mathbb{S}^1 -fiber of \mathbb{T}^3 . Moreover, this us-leaf must intersect every \mathbb{S}^1 -fiber with only finitely many points since it is a compact and complete submanifold.

If f does not have any periodic us-torus, then theorem 1.9 of [9] shows that f is semi-conjugate to A times an irrational rotation on \mathbb{S}^1 , which implies f has no periodic points. This contradicts that P_0 and P_1 are two fixed points of f, and thus f must have a periodic compact us-leaf \mathbb{T}_{us} .

From the periodicity of \mathbb{T}_{us} , we know that $\mathbb{T}_{us} \cap S_p$ only contains P_0 or P_1 , and $f(\mathbb{T}_{us}) = \mathbb{T}_{us}$. Assuming $P_0 \in \mathbb{T}_{us}$, then from Theorem 1.7 of [9], we have

$$\mathbb{T}_{us} = \overline{W^{ss}(P_0, f)} = \overline{W^{uu}(P_0, f)}.$$

In particular, $W^{ss}(P_0, f)$ and $W^{uu}(P_0, f)$ have strong homoclinic intersections, which contradicts item 5 of Proposition 2.2. The same argument works for $P_1 \in \mathbb{T}_{us}$, and thus f must be accessible.

Proposition 3.3. Let $g: \mathbb{T}^3 \to \mathbb{T}^3$ be a partially hyperbolic skew-product diffeomorphism. If g preserves the orientation of center foliation, and has two disjoint g-invariant compact u-saturated sets, then g is not transitive. In particular, if g is transitive, it has only one g-invariant minimal u-saturated set.

Proof. Let Λ_1 and Λ_2 be two disjoint g-invariant compact u-saturated sets. Then for every point $x \in \mathbb{T}^2$ and every center fiber $S_x = \{x\} \times \mathbb{S}^1 \subset \mathbb{T}^3$, $S_x \cap \Lambda_i \neq \emptyset$, for i = 1, 2

Now we define a function $\Phi: \mathbb{T}^3 \to \mathbb{R}$. For every $(x,t) \in \mathbb{T}^3 = \mathbb{T}^2 \times \mathbb{S}^1$, the value $\Phi(x,t)$ is defined as follows:

- If $(x,t) \in \Lambda_1 \cup \Lambda_2$, then $\Phi(x,t) = 0$.
- If $(x,t) \notin \Lambda_1 \cup \Lambda_2$, following the natural orientations "<" in \mathbb{S}^1 -fibers, let $t_1 < t < t_2$, such that $(\{x\} \times (t_1,t_2)) \cap (\Lambda_1 \cup \Lambda_2) = \emptyset$, and $(x,t_i) \in \Lambda_1 \cup \Lambda_2$, for i = 1, 2.
 - If $(x, t_1) \in \Lambda_1$, and $(x, t_2) \in \Lambda_2$, then

$$\Phi(x,t) = (t - t_1) \cdot (t_2 - t) > 0.$$

- If $(x, t_1) \in \Lambda_2$, and $(x, t_2) \in \Lambda_1$, then

$$\Phi(x,t) = -(t - t_1) \cdot (t_2 - t) < 0.$$

- If $(x, t_1), (x, t_2) \in \Lambda_1$ or $(x, t_1), (x, t_2) \in \Lambda_2$, then

$$\Phi(x,t) = 0.$$

The function Φ is well defined, since $\Lambda_1 \cap \Lambda_2 = \emptyset$, and $\Lambda_i \cap S_x \neq \emptyset$ for i = 1, 2 and every $x \in \mathbb{T}^2$. Moreover, given a point $x \in \mathbb{T}^2$, Φ is continuous in S_x . Denote two sets

$$U^+ = \{(x,t) \in \mathbb{T}^3 : \Phi(x,t) > 0\}$$
 and $U^- = \{(x,t) \in \mathbb{T}^3 : \Phi(x,t) < 0\}.$

Since both Λ_1 and Λ_2 are g-invariant, and g preserves the orientation of center fibers, we can see that both U^+ and U^- are g-invariant. So we only need to show that they are open sets, which will imply that g is not transitive.

From the definition of Φ , if $(x,t) \in \mathbb{T}^3$ with $\Phi(x,t) > 0$, then there exists $t_1 < t < t_2$, such that

$$(x,t_1) \in \Lambda_1, (x,t_2) \in \Lambda_2$$
 and $\Phi(x,s) > 0$ for every $s \in (t_1,t_2)$.

Since Λ_1 and Λ_2 are compact and disjoint, there exists $\delta > 0$, such that $t_2 - t_1 \ge \delta$. This implies for every $x \in \mathbb{T}^2$, every connected component of $S_x \cap U^+$ has length $\ge \delta$. Denote by k(x) the number of connected components of $S_x \cap U^+$ and by $(a_i(x), b_i(x)), i = 1, 2, \dots, k(x)$ the connected components of $S_x \cap U^+$, i.e.,

$$S_x \cap U^+ = \{x\} \times \bigcup_{i=1}^{k(x)} (a_i(x), b_i(x)),$$

where $a_i(x) \in \Lambda_1, b_i(x) \in \Lambda_2$ for $i = 1, 2, \dots, k(x)$.

Claim 3.4. $k: \mathbb{T}^2 \to \mathbb{N}$ is a constant function, i.e., there exists $k_0 \in \mathbb{N}$ such that

$$k(x) \equiv k_0, \quad \forall x \in \mathbb{T}^2.$$

Moreover, $k_0 \leq 2/\delta$.

Proof of the claim. For every $x \in \mathbb{T}^2$ and every $s_1 < s_2$, if $(x, s_1) \in \Lambda_1$ and $(x, s_2) \in \Lambda_2$, then there must exist some point $s \in (s_1, s_2)$, such that $\Phi(x, s) > 0$.

We will first show that the function k is upper semi-continuous, i.e., if $\lim_{n\to\infty} x_n = x$, then $k(x) \ge \limsup_{n\to\infty} k(x_n)$. Actually, by taking subsequence if necessary, we can assume that

$$S_{x_n} \cap U^+ = \{x_n\} \times \bigcup_{i=1}^l (a_i(x_n), b_i(x_n)), \quad \text{for } l = \limsup_{n \to \infty} k(x_n),$$

and

$$\lim_{n \to \infty} (x_n, a_i(x_n)) = (x, a_i) \in S_x \cap \Lambda_1, \qquad \lim_{n \to \infty} (x_n, b_i(x_n)) = (x, b_i) \in S_x \cap \Lambda_2.$$

This implies there exists some $c_i \in (a_i, b_i)$, such that $\Phi(x, c_i) > 0$, for $i = 1, 2, \dots, l$. Since $\Phi(x, a_i) = \Phi(x, b_i) = 0$, $S_x \cap U^+$ has at least l connected components, i.e., $k(x) \geq l$, which implies $k : \mathbb{T}^2 \to \mathbb{N}$ is upper semi-continuous.

Assume that g is a skew-product diffeomorphism over a hyperbolic automorphism $A: \mathbb{T}^2 \to \mathbb{T}^2$. Then, for any $y \in W^u(x,A) \subset \mathbb{T}^2$, we have k(y) = k(x) since both Λ_1 and Λ_2 are u-saturated. In fact, if $S_x \cap U^+ = \{x\} \times \bigcup_{i=1}^{k(x)} (a_i(x), b_i(x))$, then $h^u(a_i(x)) \in \Lambda_1 \cap S_y$ and $h^u(b_i(x)) \in \Lambda_2 \cap S_y$, where $h^u: S_x \to S_y$ is the holonomy map of the unstable foliation of g. We have $S_y \cap U^+ = \{y\} \times \bigcup_{i=1}^{k(x)} (h^u(a_i(x)), h^u(b_i(x)))$, and thus k(y) = k(x). Since every connected component of $S_x \cap U^+$ has length larger than δ , k is

Since every connected component of $S_x \cap U^+$ has length larger than δ , k is uniformly bounded by $2/\delta$. So we can choose the point $z \in \mathbb{T}^2$, where k takes the maximal value k_0 at z. Then, for very $w \in W^u(z,A) \subset \mathbb{T}^2$, $k(w) = k_0$. Since $W^u(z,A)$ is dense in \mathbb{T}^2 and k is upper semi-continuous, we have $k(x) \equiv k_0$ for every $x \in \mathbb{T}^2$.

Now we will show the set U^+ is open in \mathbb{T}^3 . Suppose on the contrary that there exists a point $(x,t) \in \mathbb{T}^3$ with $\Phi(x,t) > 0$, and a sequence of points $(x_n,t_n) \to (x,t)$ with $\Phi(x_n,t_n) \leq 0$. Denote that

$$S_{x_n} \cap U^+ = \{x_n\} \times \bigcup_{i=1}^{k_0} (a_i(x_n), b_i(x_n)).$$

Since $\Phi(x_n, t_n) \leq 0$, we may assume $t_n \in [b_j(x_n), a_{j+1}(x_n)]$ for some $1 \leq j \leq k_0$ by taking subsequence when necessary.

By taking subsequence when necessary, we may assume that $(x_n, a_i(x_n)) \to (x, a_i) \in \Lambda_1$ and $(x_n, b_i(x_n)) \to (x, b_i) \in \Lambda_2$. Moreover, we have $t \in [b_j, a_{j+1}]$. Since $\Phi(x, t) > 0$, $(x, a_i) \in \Lambda_1$, and $(x, b_i) \in \Lambda_2$, we must have $t \in (b_j, a_{j+1})$.

Now we have $(x, a_i) \in \Lambda_1$ and $(x, b_i) \in \Lambda_2$, which implies there exists some $c_i \in (a_i, b_i)$, such that $\Phi(x, c_i) > 0$, for $i = 1, 2, \dots, k_0$. Moreover, we have $\Phi(x, t) > 0$ for $t \in (b_j, a_{j+1})$. However, $\Phi(x, a_i) = \Phi(x, b_i) = 0$, which implies $S_x \cap U^+$ has at least $k_0 + 1$ connected components. This is a contradiction to our claim. Thus U^+ is open in \mathbb{T}^3 .

The same argument can show that U^- is open in \mathbb{T}^3 . Since U^+ and U^- are both non-empty g-invariant open sets and disjoint, g is not transitive.

Lemma 3.5. The diffeomorphism $f: \mathbb{T}^3 \to \mathbb{T}^3$ is not transitive.

Proof. By Proposition 3.3, we only need to show that f has two disjoint compact invariant u-saturated sets. Denote

$$\Lambda_0 = \overline{W^{uu}(P_0, f)}$$
 and $\Lambda_1 = \overline{W^{uu}(P_1, f)}$.

Since both P_0 and P_1 are fixed points, $W^{uu}(P_0, f)$ and $W^{uu}(P_1, f)$ are two invariant u-saturated sets. This implies Λ_0 and Λ_1 are two compact f-invariant u-saturated sets.

According to item 4 of Proposition 2.2,

$$\Lambda_i = \overline{W^{uu}(P_i, f)} \subset [i - \delta + \tau, i], \quad \text{for } i = 0, 1.$$

Hence, we have $\Lambda_0 \cap \Lambda_1 = \emptyset$. This finishes the proof of this lemma.

References

- Flavio Abdenur, Christian Bonatti, and Lorenzo J. Díaz, Non-wandering sets with nonempty interiors, Nonlinearity 17 (2004), no. 1, 175–191, DOI 10.1088/0951-7715/17/1/011. MR 2023438
- Flavio Abdenur and Sylvain Crovisier, Transitivity and topological mixing for C¹ diffeomorphisms, Essays in mathematics and its applications, Springer, Heidelberg, 2012, pp. 1–16, DOI 10.1007/978-3-642-28821-0_1. MR2975581
- [3] Christian Bonatti and Sylvain Crovisier, Récurrence et généricité (French, with English and French summaries), Invent. Math. 158 (2004), no. 1, 33–104, DOI 10.1007/s00222-004-0368-1. MR2090361
- [4] Christian Bonatti, Lorenzo J. Díaz, and Marcelo Viana, Dynamics beyond uniform hyperbolicity, Encyclopaedia of Mathematical Sciences, vol. 102, Springer-Verlag, Berlin, 2005. A global geometric and probabilistic perspective; Mathematical Physics, III. MR2105774
- [5] M. I. Brin, Topological transitivity of a certain class of dynamical systems, and flows of frames on manifolds of negative curvature (Russian), Funkcional. Anal. i Priložen. 9 (1975), no. 1, 9–19. MR0370660
- [6] Keith Burns, Federico Rodriguez Hertz, María Alejandra Rodriguez Hertz, Anna Talitskaya, and Raúl Ures, Density of accessibility for partially hyperbolic diffeomorphisms with one-dimensional center, Discrete Contin. Dyn. Syst. 22 (2008), no. 1-2, 75–88, DOI 10.3934/dcds.2008.22.75. MR2410948
- [7] Keith Burns and Amie Wilkinson, On the ergodicity of partially hyperbolic systems, Ann. of Math. (2) 171 (2010), no. 1, 451–489, DOI 10.4007/annals.2010.171.451. MR2630044
- [8] Dmitry Dolgopyat and Amie Wilkinson, Stable accessibility is C¹ dense, Astérisque 287 (2003), xvii, 33–60. Geometric methods in dynamics. II. MR2039999
- [9] Andy Hammerlindl, Ergodic components of partially hyperbolic systems, Comment. Math. Helv. 92 (2017), no. 1, 131–184, DOI 10.4171/CMH/409. MR3615038
- [10] A. Hammerlindl and R. Potrie, Pointwise partial hyperbolicity in three-dimensional nil-manifolds, J. Lond. Math. Soc. (2) 89 (2014), no. 3, 853–875, DOI 10.1112/jlms/jdu013. MR3217653
- [11] F. Rodriguez Hertz, M. A. Rodriguez Hertz, and R. Ures, Accessibility and stable ergodicity for partially hyperbolic diffeomorphisms with 1D-center bundle, Invent. Math. 172 (2008), no. 2, 353–381, DOI 10.1007/s00222-007-0100-z. MR2390288
- [12] M. W. Hirsch, C. C. Pugh, and M. Shub, Invariant manifolds, Lecture Notes in Mathematics, Vol. 583, Springer-Verlag, Berlin-New York, 1977. MR0501173
- [13] Rafael Potrie, Partial hyperbolicity and foliations in \mathbb{T}^3 , J. Mod. Dyn. 9 (2015), 81–121, DOI 10.3934/jmd.2015.9.81. MR3395262
- [14] R. Ures and C. H. Vasquez, On the robustness of intermingled basins, arXiv:1503.07155v2.

School of Mathematical Sciences, Peking University, Beijing 100871, People's Republic of China

 $E ext{-}mail\ address: gansb@pku.edu.cn}$

School of Mathematical Sciences, Peking University, Beijing 100871, People's Republic of China

 $E\text{-}mail\ address: \verb|shiyi@math.pku.edu.cn||$