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ABSTRACT. In this paper, we construct a partially hyperbolic skew-product
diffeomorphism on T3, which is accessible and chain transitive, but not tran-
sitive.

1. INTRODUCTION

Let M be a closed Riemannian manifold, and f : M — M a diffeomorphism.
We say f is transitive, if for any two non-empty open sets U,V C M, there exists
n > 0, such that f"(U)NV # 0. The transitivity of f is equivalent to the existence
of a point = whose positive orbit {f™(z) : n > 0} is dense in M.

We call a point £ € M a non-wandering point of f, if for any neighborhood U,
of z, there exists n > 0, such that f"(U,) N U, # 0. The non-wandering set Q(f)
is the set of all non-wandering points of f.

For two points z,y € M, we say y is chain attainable from z, if for any
e > 0, there exists a finite sequence {z;}", with o = = and z,, = y, such that
d(f(x;),xi41) < eforany 0 <i<n-—1. A point z € M is called a chain recurrent
point, if it is chain attainable from itself. The set of chain recurrent points is called
a chain recurrent set of f, denoted by CR(f). If every point is chain recurrent, we
say f is chain transitive.

It is clear that every non-wandering point is chain recurrent and if f is transitive,
then it is chain transitive, but not vice versa. However, from the powerful chain
connecting lemma [3], there exists a residual subset R C Diff' (M), such that for
any f € R, we have Q(f) = CR(f) and if f is chain transitive, then f is transitive.

A diffeomorphism f : M — M is partially hyperbolic, if the tangent bundle T'M
splits into three continuous non-trivial D f-invariant bundles TM = E**@ E‘®E"",
such that Df|gss is uniformly contracting, D f|gu« is uniformly expanding, and
Df|ge lies between them:

I Dflgss @y 1<l DFHpe(rean 17

| Df g <l DS

It is known ([12, (4.1) Theorem]) that there is a unique f-invariant foliation W**
(resp. W¥¥) tangent to E*®® (resp. E%*).

An important geometric property of partially hyperbolic diffeomorphisms is ac-
cessibility. A partially hyperbolic diffeomorphism f is accessible, if any two points

B (f(x)) ||71, for all x € M.
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in M can be joined by an arc consisting of finitely many segments contained in the
leaves of foliations W?® and W"". Accessibility plays a key role for proving the
ergodicity of partially hyperbolic diffeomorphisms ([7,[I1]). Moreover, it has been
observed ([68l[11]) that most of partially hyperbolic diffeomorphisms are accessible.

M. Brin [5] has proved that for a partially hyperbolic diffecomorphism f : M —
M, if f is accessible and Q(f) = M, then f is transitive. See also [I]. So it is
natural to ask the following question: if a partially hyperbolic diffeomorphism f is
accessible and CR(f) = M, is f transitive? In this paper, we construct an example
which gives a negative answer to this question. This implies Brin’s result could not
be generalized to the case where CR(f) = M.

Let A : T? — T? be a hyperbolic automorphism over T2?. We say f : T? — T? is
a partially hyperbolic skew-product over A, if for every (z,t) € T3 = T? x S!, we
have

fla,t) = (Az,¢p(t))  and  [JATH|7" <[l (D)l < [[A].-

We will consider S! = R/2Z, and usually use the coordinate S' = [~1,1]/{-1,1}.
Our main result is the following theorem.

Theorem 1. There exists a partially hyperbolic skew-product C* diffeomorphism
f:T3 — T3, such that f is accessible and chain transitive, but not transitive.

2. CONSTRUCTION OF DIFFEOMORPHISM

We will first construct a chain transitive partially hyperbolic skew-product dif-
feomorphism on T3, such that its non-wandering set is not the whole T? and not
transitive. Then a small perturbation will achieve the accessibility, and still preserve
the dynamical properties.

First we need a diffeomorphism on S' that is chain transitive but the non-
wandering set is not the whole circle.

Let 6 : S* — S! be defined as

0(t) = —cos(2nt) + 1, t € R/2Z.

It is a C™ function on S'. We can see that # > 0 on S', and it has two zero points
0 and —1 = 1. The vector field {6(t)- 2} is a C> vector field on S, and its time-r
map for 0 < r < 1 is the diffeomorphism we need on the circle (see Figure 1), i.e.,
the time-r map of 6(t) - (‘% is chain transitive, and its non-wandering set consists of
only two fixed points 0 and —1 = 1. Using the product structure, we can define a

vector field X on T2 = T2 x S.

Lemma 2.1.
0
ot’
is a C™ wvector field on T3. Moreover, for every r > 0, the time-r map X, of the
flow generated by X satisfies the following properties:

o X, (x,t) = (z,0(t)) for every (z,t) € T3.

e Fori=0,1, X,(x,i) = (x,i) for every x € T?.

e For every 6 € (0,1/2), for every (z,t) € T® with t ¢ {0,1}, we have

o(t) > t. In particular, there exists 0 < 7 = 7(r,0) < 6/2, such that

e(t) >t+T, Y(z,t) € T? x {=6,1 — §}.

X(x,t) =0(t) - Y(z,t) € T® =T? x S,
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FIGURE 1. Chain transitive systems with non-empty wandering sets.

For r > 0, define f,. = X, o (A xid) : T*> — T*:
fr(@,t) = (Az, o(1)),

where A : T2 — T? is a hyperbolic automorphism, and ¢(¢) is the function in the
last lemma. Then for every ¢ € (0,1/2) and 7 = 7(d,r) in the last lemma, if r is
small enough, f, satisfies the following properties (Figure 1):

e f,. is a partially hyperbolic skew-product diffeomorphism on T3. Let the
partially hyperbolic splitting be:
TTS — [55 D E° e Euu,
and denote by W*s/4% the stable/unstable manifolds generated by Ess/uu,
e Let p € T? be a fixed point of A. Then in the fixed center fiber S, = {p} xS*,
frls, is chain transitive and has two fixed points P; = (p,i) € T? x S! for
i=0,1.
e For i = 0,1, f. preserves T; = T? x {i} invariant, and f,|r, = A|r,. More-
over,

T; = Wss(-Pivfr) = Wuu(P“ fr)
e For every (z,t) € T? x {—4,1 — 6}, we have ¢(t) >t + 7.

Now f, is a chain transitive but non-transitive partially hyperbolic diffeomor-
phism on T3. However, f, is not accessible, since the sum of stable and unstable
bundles of f, is integrable. We will make another perturbation to achieve the
accessibility, and preserve other dynamical properties.

Let p € T? be a fixed point of the hyperbolic automorphism A. Take a small
enough neighborhood U(p) of p in T2, such that

o for every z € U(p)\W; .(p), there exists some n > 0, such that A"z ¢ U(p);
o forevery z € U(p)\W}.(p), there exists some n < 0, such that A"z ¢ U(p).

Now take a local coordinate {(xs,x,)} in U(p) with p = (0,0), so that
A(xg,2y) = (V- 26, X1 - 2),

for every (zs,z,) € [—10,10]s x [-10,10],, C U(p). Here A is the eigenvalue of A
with 0 < |A| < 1, and we assume 1/10 < A < 1 for simplicity. In the rest of this
paper, the local coordinate of (U(p); (x5, x,)) is the only coordinate we will use in
T2.
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Now we define a C* function a : T? — [0, 1], such that

0, T € [_171]5 X [_17 1]u C U(p),
OZ(ZL') = 17 HARS TZ \ [_373]8 X [_373]’1“
€ (0,1), otherwise.

The function « prescribes the perturbation region on T?. And the next function
~ shows the way of perturbations along fibers.
Let v : St =[-1,1]/{—1 = 1} — R be a C*® function, such that

[ >0, te[-1,-14+71)U(—7,7)U(1—7,1],
(t)'{:Q te[-1+7,—7]U[r,1-1].

Here, 7 = 7(d,7) < §/2 is determined by Lemma 211
We define a C™ vector field Y on T? by

9
ot’

Y(z,t) = —a(z)y(t) - Y(z,t) € T® = T? x S*.

[=1,1]sx[—1,1], xS1

U(p) x S!

FIGURE 2. The perturbation made by Y,,.

For p > 0, the time-p map Y, satisfies the following properties (see Figure 2):

o Yy(z,t) = (z,¢:(t)), and Y,(z,t) = (x,t) for every (z,t) € [-1,1]; X
[-1,1], x S*.



A PARTIALLY HYPERBOLIC DIFFEOMORPHISM 227

e Fori=0,1, ¢,(i) <i for every € T2. Precisely, for i =0, 1,
— (i) =i, for every x € [—1,1]5 x [—1, 1]y;
— (i) < i, for every z € T? \ [-1,1]s X [~1,1]4.
e For every (z,t) € T? x ([-1+7,—7] U [r,1 — 7]), we have Y, (z,t) = (z,1).
Now the composition diffeomorphism f = Y,of, : T3 — T3 is the diffeomorphism
we promised in our main theorem.

Proposition 2.2. If p and r are small enough, then the diffeomorphism f =Y, of, :
T3 — T3 satisfies the following properties:

(1) f is a partially hyperbolic skew-product diffeomorphism:
f(z,t) = (Az, Y az 0 (1)), V(z,t) € T3.

(2) When restricted in the fived fiber Sy, fl|s, has two fived points Py, Py, and
is chain transitive.

(3) Fori=0,1, f(T? x [i —§,i]) CT? x [i — 6 + T, 1].

(4) For i = 0,1, Wuu(P, f) C [i — 6 + myil; W*(Po,f) € [0,1 — 6] and
wes(Py, f) C [-1,—4].

(5) For i = Oa 17 Wuu(Ptvf) N WSS(Pia f) = {PZ}

Proof. We prove these five properties one by one:

(1) From the definition of f, we have that for every (z,t) € T3,
flz,t)=Y,0X, 0 (Ax1Id) =Y, 0 fr(z,t) = Y,(Az, ¢(t)) = (Az, Yz 0 p(t)).
Moreover, if p and r are small enough, f is a C'°° small perturbation of the
partially hyperbolic diffeomorphism A xId. Thus f is a partially hyperbolic
skew-product diffeomorphism on T3.

(2) From its definition, the vector field Y is zero in a neighborhood of S, and
hence Y, is the identity map in a neighborhood of S,. This implies f|s, =
fr|s, which is chain transitive and has two fix points P; = (p,i) € T x S
for i =0, 1.

(3) Since we have ¢(i) =1, for i =0, 1, then 4, 0 (i) = Y4, (i) < i for every
x € T2

Fort = —§ or t = 1 — 4, we have ¢(t) > ¢t + 7. Since 7 < /2, and
Y,(z,t) = (x,t) for every (z,t) € T? x ([-1+ 7, —7] U [r,1 — 7]), we have
Y,(z,t) = (x,¢(t)) = (x,1), V(z,t) e T> x {6+ 7,1 =5+ 7}

Since 1), preserves the orientation, 14, o (t) > Ya.(t +7) =t + 7, for
every (z,t) € T? x {=§,1 - 6}.

Since both v, and ¢ preserve the orientation, the conclusion follows.

(4) From the construction of v, we have that for i=0, 1,

Yz 0 0(i) =i, Yo € [-A7L A7 s x [=A, M.
This implies
WY (P, £) N ({05} x [=1,1], x §Y) = {05} x [-1,1], x {i} & WX(P;, f).
Since W (P;, f)=U, >0 " (Wi (P, f)), by item 3, we have W"*(P;, f)

loc
Cli—d+m,1.
Similarly,

W (P, f) 0 ([=1,1]s x {0u} x S') = [=1, 1], x {0} x {i} £ Wi (P),
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and W**(P;, f) = U, s0 /T (Wi (P, f)). From item 3, we have
FTHT? x 0,1~ 8]) € [0,1 4]

and f~Y(T? x [-1,-4]) C [~1,—6]. Hence W*$(Py, f) C [0,1 — §] and
Wes(Py, f) C [-1, =4].
(5) By the construction of v,

VYaz 0 (i) <i, Yo € T2\ [-A1 A7 s x [=A, A
We claim that
W™ (P;, f) N (T? x i) = {05} x [-1,1], x {i}.

In fact, the right hand side is clearly contained in the left hand side. On
the other hand, take any point (x,i) € W"*(FP;, f). Denote f~"(z,i) =
(Zn,tn). Then for n large enough, ¢, = i. Hence t,, = i for all n. But
this implies that z, € [-A71 A7y x [-A\, A, for n > 1. Thus z,, €
{05} x [\, Al for n > 1. So, (x,%) is in the right hand side.

Similarly, we can show that

W= (Py, f) N (T? x i) = [=A7H A7 x {0, x {i}-
Item 4 implies that W““(P;, f) N W*$(P;, f) C T? x i and hence
WPy, fYNW?(P;, ) = {F}.

3. DYNAMICAL AND GEOMETRICAL PROPERTIES OF f

Now we can prove the main theorem from the following three lemmas (Lemmas

B.1 B2 B3).
Lemma 3.1. The diffeomorphism f : T3 — T3 is chain transitive.

Proof. From the first and second properties of f in Proposition 22 we know that
f is a partially hyperbolic skew-product diffeomorphism on T3, and thus the stable
and unstable manifolds of the fixed fiber S, are dense on T®. The density of
WH(S,) implies that every point in T? is chain attainable from some point in S,;
the density of W*(S,) implies that every point in T3 is chain attainable to a point
in S,. Since f|s, is chain transitive, every point in T3 is chain attainable from
itself, i.e., CR(f) = T?, and f is chain transitive on T3. |

Lemma 3.2. The diffeomorphism f : T3 — T3 is accessible.

Proof. Since f is a partially hyperbolic skew-product diffeomorphism on T3, if f is
not accessible, then from theorem 1.6 of [9], f has a compact us-leaf. Here a us-leaf
is a complete 2-dimensional submanifold which is tangent to E°° & E** of f. It
is a torus transverse to the S'-fiber of T2. Since the compact us-leaf is saturated
by W?** and W"", it intersects every S'-fiber of T2. Moreover, this us-leaf must
intersect every S!-fiber with only finitely many points since it is a compact and
complete submanifold.

If f does not have any periodic us-torus, then theorem 1.9 of [9] shows that f
is semi-conjugate to A times an irrational rotation on S', which implies f has no
periodic points. This contradicts that Py and P; are two fixed points of f, and thus
f must have a periodic compact us-leaf T,.
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From the periodicity of T, we know that T,s NS, only contains Py or P;, and
f(Tys) = Tys. Assuming Py € Ty, then from Theorem 1.7 of [9], we have
Tus = WSS(P07 f) = W’U.u(PO’ f)

In particular, W**(Py, f) and W"*(Py, f) have strong homoclinic intersections,
which contradicts item 5 of Proposition[Z.2l The same argument works for P; € T,
and thus f must be accessible. O

Proposition 3.3. Let g : T3 — T3 be a partially hyperbolic skew-product diffeo-
morphism. If g preserves the orientation of center foliation, and has two disjoint
g-invariant compact u-saturated sets, then g is not transitive. In particular, if g is
transitive, it has only one g-invariant minimal u-saturated set.

Proof. Let A; and As be two disjoint g-invariant compact u-saturated sets. Then
for every point 2 € T? and every center fiber S, = {x} x St C T3, S, N A; # 0, for
i=1,2.
Now we define a function ® : T3> — R. For every (z,t) € T? = T? x S!, the value
®(x,t) is defined as follows:
o If (z,t) € Ay UAsg, then ®(x,t) = 0.
o If (z,t) ¢ A1 U Ay, following the natural orientations “<” in S!-fibers, let
t; <t < tg, such that ({I} X (tl, tg)) N (A1 UAQ) = @, and (l‘,ti) e AqUAs,
fori=1,2.
— If (z,t1) € A1, and (z,t2) € Ag, then

O(x,t)=(t—t1) (b2 —1) > 0.
— If (x,t1) € Ao, and (z,t2) € Ay, then
O(x,t)=—(t—t1) (ta—t) <O0.
— If (z,t1), (x,t2) € Ay or (z,t1), (z,t2) € Ag, then
O(z,t) =0.
The function ® is well defined, since Ay N Ay = (), and A; NS, # 0 for i = 1,2

and every x € T?. Moreover, given a point 2 € T2, ® is continuous in S,. Denote
two sets

Ut ={(x,t) € T : ®(x,t) > 0} and U™ ={(z,t) € T*: &(x,t) < 0}.

Since both A; and Ay are g-invariant, and g preserves the orientation of center
fibers, we can see that both U+ and U~ are g-invariant. So we only need to show
that they are open sets, which will imply that g is not transitive.

From the definition of ®, if (x,t) € T? with ®(z,t) > 0, then there exists
t1 <t < tg, such that

(z,t1) € A1, (z,t2) € Ag and ®(x,s) > 0 for every s € (t1,12).

Since A1 and Ay are compact and disjoint, there exists § > 0, such that to —¢; > 4.
This implies for every x € T?, every connected component of S, N U* has length
> §. Denote by k(x) the number of connected components of S, N U™ and by
(a;(x),bi(z)),i=1,2, -+, k(z) the connected components of S, NU™, i.e.,

k()

Se NUT = {z} x | J(ai(), bs(x)),

i=1

where a;(z) € A1, b;(z) € Ap for i =1,2,--- | k(x).
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Claim 3.4. k: T? — N is a constant function, i.e., there exists ky € N such that
k(z) =ky,  VoeT2
Moreover, kg < 2/4.

Proof of the claim. For every x € T? and every s; < 89, if (z,s1) € Ay and (z, s2) €
Ag, then there must exist some point s € (s1, $2), such that ®(z,s) > 0.

We will first show that the function k is upper semi-continuous, i.e., if lim,,_, o
=z, then k(z) > limsup,, , . k(z,). Actually, by taking subsequence if necessary,
we can assume that

!
S, NUT ={x,} x U(ai(:vn), bi(zn)), for I = limsup k(x,,),

and

lim (z,,,a;(z,)) = (x,a;) € Sy N Aq, ILm (Tn,bi(x,)) = (x,b;) € Sz N Ag.

n— oo
This implies there exists some ¢; € (a4, b;), such that ®(x,¢;) > 0, fori =1,2,--- 1.
Since ®(z,a;) = ®(x,b;) =0, S, N U™ has at least | connected components, i.e.,
k(z) > 1, which implies k : T? — N is upper semi-continuous.

Assume that g is a skew-product diffeomorphism over a hyperbolic automor-
phism A : T? — T2, Then, for any y € W"(z, A) C T?, we have k(y) = k(z) since
both Ay and Ay are u-saturated. In fact, if S, NUT = {z} x U (a;(z), bi(2)),
then h*(a;(z)) € Ay NSy and h*(bj(xz)) € Ay N Sy, where h* : S, — S, is
the holonomy map of the unstable foliation of g. We have S, N UT = {y} x
Ui (h(ai()), h* (bi(=))), and thus k(y) = k().

Since every connected component of S, N U™ has length larger than 6, k is
uniformly bounded by 2/5. So we can choose the point z € T?, where k takes the
maximal value ko at z. Then, for very w € W¥(z, A) C T?, k(w) = ko. Since
W¥(z, A) is dense in T? and k is upper semi-continuous, we have k(z) = kg for
every z € T2. ]

Now we will show the set U™ is open in T3. Suppose on the contrary that there
exists a point (x,t) € T3 with ®(x,t) > 0, and a sequence of points (z,,,t,) — (z,1)
with ®(x,,t,) < 0. Denote that

ko
Se, NUY = {an} x | J(ai(zn), bi(zn)).
i=1
Since ®(zn,,t,) < 0, we may assume t,, € [b;(xy), aj41(xy,)] for some 1 < j < kg by
taking subsequence when necessary.

By taking subsequence when necessary, we may assume that (z,,a;(z,)) —
(z,a;) € A1 and (xy,,b;(z,)) — (z,b;) € Ay Moreover, we have t € [b;, aj41].
Since ®(x,t) > 0, (x,a;) € A1, and (x,b;) € Ay, we must have t € (b;, aj41).

Now we have (z,a;) € A1 and (z,b;) € Ay, which implies there exists some ¢; €
(ai,b;), such that ®(z,¢;) > 0, for i = 1,2,--- , kg. Moreover, we have ®(z,t) > 0
for t € (bj,aj+1). However, ®(z,a;) = ®(x,b;) = 0, which implies S, N U™ has at
least ko + 1 connected components. This is a contradiction to our claim. Thus U™+
is open in T3.

The same argument can show that U~ is open in T?. Since U+ and U~ are both
non-empty g-invariant open sets and disjoint, g is not transitive. (Il
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Lemma 3.5. The diffeomorphism f : T3 — T3 is not transitive.

Proof. By Proposition 3.3, we only need to show that f has two disjoint compact
invariant u-saturated sets. Denote

AO = Wuu(P(),f) and A1 = Wuu(Pl, f)

Since both Py and P; are fixed points, W*%( Py, f) and W**(Py, f) are two invariant
u-saturated sets. This implies Ag and A; are two compact f-invariant u-saturated
sets.

According to item 4 of Proposition 2.2}

Ay =Ww (P, f) C i — 8+ 7,1, fori=0,1.

Hence, we have Ag N A; = (). This finishes the proof of this lemma. O
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