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A CHAIN TRANSITIVE ACCESSIBLE PARTIALLY

HYPERBOLIC DIFFEOMORPHISM

WHICH IS NON-TRANSITIVE

SHAOBO GAN AND YI SHI

(Communicated by Yingfei Yi)

Abstract. In this paper, we construct a partially hyperbolic skew-product
diffeomorphism on T3, which is accessible and chain transitive, but not tran-
sitive.

1. Introduction

Let M be a closed Riemannian manifold, and f : M → M a diffeomorphism.
We say f is transitive, if for any two non-empty open sets U, V ⊂ M , there exists
n > 0, such that fn(U)∩V �= ∅. The transitivity of f is equivalent to the existence
of a point x whose positive orbit {fn(x) : n > 0} is dense in M .

We call a point x ∈ M a non-wandering point of f , if for any neighborhood Ux

of x, there exists n > 0, such that fn(Ux) ∩ Ux �= ∅. The non-wandering set Ω(f)
is the set of all non-wandering points of f .

For two points x, y ∈ M , we say y is chain attainable from x, if for any
ε > 0, there exists a finite sequence {xi}ni=0 with x0 = x and xn = y, such that
d(f(xi), xi+1) < ε for any 0 ≤ i ≤ n− 1. A point x ∈ M is called a chain recurrent
point, if it is chain attainable from itself. The set of chain recurrent points is called
a chain recurrent set of f , denoted by CR(f). If every point is chain recurrent, we
say f is chain transitive.

It is clear that every non-wandering point is chain recurrent and if f is transitive,
then it is chain transitive, but not vice versa. However, from the powerful chain
connecting lemma [3], there exists a residual subset R ⊂ Diff1(M), such that for
any f ∈ R, we have Ω(f) = CR(f) and if f is chain transitive, then f is transitive.

A diffeomorphism f : M → M is partially hyperbolic, if the tangent bundle TM
splits into three continuous non-trivial Df -invariant bundles TM = Ess⊕Ec⊕Euu,
such that Df |Ess is uniformly contracting, Df |Euu is uniformly expanding, and
Df |Ec lies between them:

‖ Df |Ess(x) ‖<‖ Df−1|Ec(f(x)) ‖−1,

‖ Df |Ec(x) ‖<‖ Df−1|Euu(f(x)) ‖−1, for all x ∈ M.

It is known ([12, (4.1) Theorem]) that there is a unique f -invariant foliation Wss

(resp. Wuu) tangent to Ess (resp. Euu).
An important geometric property of partially hyperbolic diffeomorphisms is ac-

cessibility. A partially hyperbolic diffeomorphism f is accessible, if any two points
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in M can be joined by an arc consisting of finitely many segments contained in the
leaves of foliations Wss and Wuu. Accessibility plays a key role for proving the
ergodicity of partially hyperbolic diffeomorphisms ([7, 11]). Moreover, it has been
observed ([6,8,11]) that most of partially hyperbolic diffeomorphisms are accessible.

M. Brin [5] has proved that for a partially hyperbolic diffeomorphism f : M →
M , if f is accessible and Ω(f) = M , then f is transitive. See also [1]. So it is
natural to ask the following question: if a partially hyperbolic diffeomorphism f is
accessible and CR(f) = M , is f transitive? In this paper, we construct an example
which gives a negative answer to this question. This implies Brin’s result could not
be generalized to the case where CR(f) = M .

Let A : T2 → T
2 be a hyperbolic automorphism over T2. We say f : T3 → T

3 is
a partially hyperbolic skew-product over A, if for every (x, t) ∈ T3 = T2 × S1, we
have

f(x, t) = (Ax, ϕx(t)) and ‖A−1‖−1 < ‖ϕ′
x(t)‖ < ‖A‖.

We will consider S1 = R/2Z, and usually use the coordinate S1 = [−1, 1]/{−1, 1}.
Our main result is the following theorem.

Theorem 1. There exists a partially hyperbolic skew-product C∞ diffeomorphism
f : T3 → T3, such that f is accessible and chain transitive, but not transitive.

2. Construction of diffeomorphism

We will first construct a chain transitive partially hyperbolic skew-product dif-
feomorphism on T3, such that its non-wandering set is not the whole T3 and not
transitive. Then a small perturbation will achieve the accessibility, and still preserve
the dynamical properties.

First we need a diffeomorphism on S1 that is chain transitive but the non-
wandering set is not the whole circle.

Let θ : S1 → S1 be defined as

θ(t) = − cos(2πt) + 1, t ∈ R/2Z.

It is a C∞ function on S
1. We can see that θ ≥ 0 on S

1, and it has two zero points
0 and −1 = 1. The vector field {θ(t) · ∂

∂t} is a C∞ vector field on S1, and its time-r
map for 0 < r � 1 is the diffeomorphism we need on the circle (see Figure 1), i.e.,
the time-r map of θ(t) · ∂

∂t is chain transitive, and its non-wandering set consists of
only two fixed points 0 and −1 = 1. Using the product structure, we can define a
vector field X on T

3 = T
2 × S

1.

Lemma 2.1.

X(x, t) = θ(t) · ∂

∂t
, ∀(x, t) ∈ T

3 = T
2 × S

1,

is a C∞ vector field on T3. Moreover, for every r > 0, the time-r map Xr of the
flow generated by X satisfies the following properties:

• Xr(x, t) = (x, ϕ(t)) for every (x, t) ∈ T3.
• For i = 0, 1, Xr(x, i) = (x, i) for every x ∈ T

2.
• For every δ ∈ (0, 1/2), for every (x, t) ∈ T3 with t /∈ {0, 1}, we have
ϕ(t) > t. In particular, there exists 0 < τ = τ (r, δ) < δ/2, such that

ϕ(t) > t+ τ, ∀(x, t) ∈ T
2 × {−δ, 1− δ}.
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θ(t) · ∂/∂t
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T1

T1

fr : T
3 → T3

Figure 1. Chain transitive systems with non-empty wandering sets.

For r > 0, define fr = Xr ◦ (A× id) : T3 → T
3:

fr(x, t) = (Ax, ϕ(t)),

where A : T2 → T2 is a hyperbolic automorphism, and ϕ(t) is the function in the
last lemma. Then for every δ ∈ (0, 1/2) and τ = τ (δ, r) in the last lemma, if r is
small enough, fr satisfies the following properties (Figure 1):

• fr is a partially hyperbolic skew-product diffeomorphism on T3. Let the
partially hyperbolic splitting be:

TT3 = Ess ⊕ Ec ⊕ Euu,

and denote by W ss/uu the stable/unstable manifolds generated by Ess/uu.
• Let p ∈ T2 be a fixed point of A. Then in the fixed center fiber Sp = {p}×S1,
fr|Sp

is chain transitive and has two fixed points Pi = (p, i) ∈ T2 × S1 for
i = 0, 1.

• For i = 0, 1, fr preserves Ti = T2 × {i} invariant, and fr|Ti
= A|Ti

. More-
over,

Ti = W ss(Pi, fr) = Wuu(Pi, fr).

• For every (x, t) ∈ T2 × {−δ, 1− δ}, we have ϕ(t) > t+ τ .

Now fr is a chain transitive but non-transitive partially hyperbolic diffeomor-
phism on T

3. However, fr is not accessible, since the sum of stable and unstable
bundles of fr is integrable. We will make another perturbation to achieve the
accessibility, and preserve other dynamical properties.

Let p ∈ T2 be a fixed point of the hyperbolic automorphism A. Take a small
enough neighborhood U(p) of p in T

2, such that

• for every x ∈ U(p)\W s
loc(p), there exists some n > 0, such that Anx /∈ U(p);

• for every x ∈ U(p)\Wu
loc(p), there exists some n < 0, such that Anx /∈ U(p).

Now take a local coordinate {(xs, xu)} in U(p) with p = (0, 0), so that

A(xs, xu) = (λ · xs, λ
−1 · xu),

for every (xs, xu) ∈ [−10, 10]s × [−10, 10]u ⊂ U(p). Here λ is the eigenvalue of A
with 0 < |λ| < 1, and we assume 1/10 < λ < 1 for simplicity. In the rest of this
paper, the local coordinate of (U(p); (xs, xu)) is the only coordinate we will use in
T2.
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Now we define a C∞ function α : T2 → [0, 1], such that

α(x) =

⎧⎨
⎩

0, x ∈ [−1, 1]s × [−1, 1]u ⊂ U(p),
1, x ∈ T2 \ [−3, 3]s × [−3, 3]u,
∈ (0, 1), otherwise.

The function α prescribes the perturbation region on T2. And the next function
γ shows the way of perturbations along fibers.

Let γ : S1 = [−1, 1]/{−1 = 1} → R be a C∞ function, such that

γ(t) :

{
> 0, t ∈ [−1,−1 + τ ) ∪ (−τ, τ ) ∪ (1− τ, 1],
= 0, t ∈ [−1 + τ,−τ ] ∪ [τ, 1− τ ].

Here, τ = τ (δ, r) < δ/2 is determined by Lemma 2.1.
We define a C∞ vector field Y on T

3 by

Y (x, t) = −α(x)γ(t) · ∂

∂t
, ∀(x, t) ∈ T

3 = T
2 × S

1.

P1

P0

P1

Sp

Y (x, t) = −α(x)γ(t) · ∂
∂t

[−1,1]s×[−1,1]u×S1

U(p)× S1

Figure 2. The perturbation made by Yρ.

For ρ > 0, the time-ρ map Yρ satisfies the following properties (see Figure 2):

• Yρ(x, t) = (x, ψx(t)), and Yρ(x, t) = (x, t) for every (x, t) ∈ [−1, 1]s ×
[−1, 1]u × S1.
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• For i = 0, 1, ψx(i) ≤ i for every x ∈ T2. Precisely, for i = 0, 1,
– ψx(i) = i, for every x ∈ [−1, 1]s × [−1, 1]u;
– ψx(i) < i, for every x ∈ T

2 \ [−1, 1]s × [−1, 1]u.
• For every (x, t) ∈ T2 × ([−1 + τ,−τ ] ∪ [τ, 1− τ ]), we have Yρ(x, t) = (x, t).

Now the composition diffeomorphism f = Yρ◦fr : T3 → T3 is the diffeomorphism
we promised in our main theorem.

Proposition 2.2. If ρ and r are small enough, then the diffeomorphism f = Yρ◦fr :
T3 → T3 satisfies the following properties:

(1) f is a partially hyperbolic skew-product diffeomorphism:

f(x, t) = (Ax, ψAx ◦ ϕ(t)), ∀(x, t) ∈ T
3.

(2) When restricted in the fixed fiber Sp, f |Sp
has two fixed points P0, P1, and

is chain transitive.
(3) For i = 0, 1, f(T2 × [i− δ, i]) ⊂ T2 × [i− δ + τ, i].
(4) For i = 0, 1, Wuu(Pi, f) ⊂ [i − δ + τ, i]; W ss(P0, f) ⊂ [0, 1 − δ] and

W ss(P1, f) ⊂ [−1,−δ].
(5) For i = 0, 1, Wuu(Pi, f) ∩W ss(Pi, f) = {Pi}.

Proof. We prove these five properties one by one:

(1) From the definition of f , we have that for every (x, t) ∈ T3,

f(x, t) = Yρ ◦Xr ◦ (A× Id) = Yρ ◦ fr(x, t) = Yρ(Ax, ϕ(t)) = (Ax, ψAx ◦ ϕ(t)).
Moreover, if ρ and r are small enough, f is a C∞ small perturbation of the
partially hyperbolic diffeomorphism A×Id. Thus f is a partially hyperbolic
skew-product diffeomorphism on T3.

(2) From its definition, the vector field Y is zero in a neighborhood of Sp, and
hence Yρ is the identity map in a neighborhood of Sp. This implies f |Sp

≡
fr|Sp

, which is chain transitive and has two fix points Pi = (p, i) ∈ T2 × S1

for i = 0, 1.
(3) Since we have ϕ(i) = i, for i = 0, 1, then ψAx ◦ ϕ(i) = ψAx(i) ≤ i for every

x ∈ T
2.

For t = −δ or t = 1 − δ, we have ϕ(t) > t + τ . Since τ < δ/2, and
Yρ(x, t) = (x, t) for every (x, t) ∈ T2 × ([−1 + τ,−τ ] ∪ [τ, 1− τ ]), we have

Yρ(x, t) = (x, ψx(t)) = (x, t), ∀(x, t) ∈ T
2 × {−δ + τ, 1− δ + τ}.

Since ψx preserves the orientation, ψAx ◦ ϕ(t) > ψAx(t + τ ) = t + τ , for
every (x, t) ∈ T

2 × {−δ, 1− δ}.
Since both ψx and φ preserve the orientation, the conclusion follows.

(4) From the construction of ψ, we have that for i=0, 1,

ψAx ◦ ϕ(i) = i, ∀x ∈ [−λ−1, λ−1]s × [−λ, λ]u.

This implies

Wuu(Pi, f) ∩ ({0s} × [−1, 1]u × S
1) = {0s} × [−1, 1]u × {i} � Wuu

loc (Pi, f).

Since Wuu(Pi, f)=
⋃

n>0 f
n(Wuu

loc (Pi, f)), by item 3, we have Wuu(Pi, f)
⊂ [i− δ + τ, i].

Similarly,

W ss(Pi, f) ∩ ([−1, 1]s × {0u} × S
1) = [−1, 1]s × {0u} × {i} � W ss

loc(Pi),
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and W ss(Pi, f) =
⋃

n>0 f
−n(W ss

loc(Pi, f)). From item 3, we have

f−1(T2 × [0, 1− δ]) ⊂ [0, 1− δ]

and f−1(T2 × [−1,−δ]) ⊂ [−1,−δ]. Hence W ss(P0, f) ⊂ [0, 1 − δ] and
W ss(P1, f) ⊂ [−1,−δ].

(5) By the construction of ψ,

ψAx ◦ ϕ(i) < i, ∀x ∈ T
2 \ [−λ−1, λ−1]s × [−λ, λ]u.

We claim that

Wuu(Pi, f) ∩ (T2 × i) = {0s} × [−1, 1]u × {i}.
In fact, the right hand side is clearly contained in the left hand side. On
the other hand, take any point (x, i) ∈ Wuu(Pi, f). Denote f−n(x, i) =
(xn, tn). Then for n large enough, tn = i. Hence tn = i for all n. But
this implies that xn ∈ [−λ−1, λ−1]s × [−λ, λ]u for n ≥ 1. Thus xn ∈
{0s} × [−λ, λ]u for n ≥ 1. So, (x, i) is in the right hand side.

Similarly, we can show that

W ss(Pi, f) ∩ (T2 × i) = [−λ−1, λ−1]s × {0u} × {i}.
Item 4 implies that Wuu(Pi, f) ∩W ss(Pi, f) ⊂ T

2 × i and hence

Wuu(Pi, f) ∩W ss(Pi, f) = {Pi}.
�

3. Dynamical and geometrical properties of f

Now we can prove the main theorem from the following three lemmas (Lemmas
3.1, 3.2, 3.5).

Lemma 3.1. The diffeomorphism f : T3 → T3 is chain transitive.

Proof. From the first and second properties of f in Proposition 2.2, we know that
f is a partially hyperbolic skew-product diffeomorphism on T3, and thus the stable
and unstable manifolds of the fixed fiber Sp are dense on T3. The density of
Wu(Sp) implies that every point in T

3 is chain attainable from some point in Sp;
the density of W s(Sp) implies that every point in T3 is chain attainable to a point
in Sp. Since f |Sp

is chain transitive, every point in T3 is chain attainable from

itself, i.e., CR(f) = T
3, and f is chain transitive on T

3. �

Lemma 3.2. The diffeomorphism f : T3 → T3 is accessible.

Proof. Since f is a partially hyperbolic skew-product diffeomorphism on T
3, if f is

not accessible, then from theorem 1.6 of [9], f has a compact us-leaf. Here a us-leaf
is a complete 2-dimensional submanifold which is tangent to Ess ⊕ Euu of f . It
is a torus transverse to the S1-fiber of T3. Since the compact us-leaf is saturated
by Wss and Wuu, it intersects every S

1-fiber of T3. Moreover, this us-leaf must
intersect every S1-fiber with only finitely many points since it is a compact and
complete submanifold.

If f does not have any periodic us-torus, then theorem 1.9 of [9] shows that f
is semi-conjugate to A times an irrational rotation on S

1, which implies f has no
periodic points. This contradicts that P0 and P1 are two fixed points of f , and thus
f must have a periodic compact us-leaf Tus.
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From the periodicity of Tus, we know that Tus ∩ Sp only contains P0 or P1, and
f(Tus) = Tus. Assuming P0 ∈ Tus, then from Theorem 1.7 of [9], we have

Tus = W ss(P0, f) = Wuu(P0, f).

In particular, W ss(P0, f) and Wuu(P0, f) have strong homoclinic intersections,
which contradicts item 5 of Proposition 2.2. The same argument works for P1 ∈ Tus,
and thus f must be accessible. �
Proposition 3.3. Let g : T3 → T3 be a partially hyperbolic skew-product diffeo-
morphism. If g preserves the orientation of center foliation, and has two disjoint
g-invariant compact u-saturated sets, then g is not transitive. In particular, if g is
transitive, it has only one g-invariant minimal u-saturated set.

Proof. Let Λ1 and Λ2 be two disjoint g-invariant compact u-saturated sets. Then
for every point x ∈ T2 and every center fiber Sx = {x} × S1 ⊂ T3, Sx ∩ Λi �= ∅, for
i = 1, 2.

Now we define a function Φ : T3 → R. For every (x, t) ∈ T
3 = T

2×S
1, the value

Φ(x, t) is defined as follows:

• If (x, t) ∈ Λ1 ∪ Λ2, then Φ(x, t) = 0.
• If (x, t) /∈ Λ1 ∪ Λ2, following the natural orientations “<” in S1-fibers, let
t1 < t < t2, such that ({x}× (t1, t2))∩ (Λ1∪Λ2) = ∅, and (x, ti) ∈ Λ1 ∪Λ2,
for i = 1, 2.

– If (x, t1) ∈ Λ1, and (x, t2) ∈ Λ2, then

Φ(x, t) = (t− t1) · (t2 − t) > 0.

– If (x, t1) ∈ Λ2, and (x, t2) ∈ Λ1, then

Φ(x, t) = −(t− t1) · (t2 − t) < 0.

– If (x, t1), (x, t2) ∈ Λ1 or (x, t1), (x, t2) ∈ Λ2, then

Φ(x, t) = 0.

The function Φ is well defined, since Λ1 ∩ Λ2 = ∅, and Λi ∩ Sx �= ∅ for i = 1, 2
and every x ∈ T2. Moreover, given a point x ∈ T2, Φ is continuous in Sx. Denote
two sets

U+ = {(x, t) ∈ T
3 : Φ(x, t) > 0} and U− = {(x, t) ∈ T

3 : Φ(x, t) < 0}.
Since both Λ1 and Λ2 are g-invariant, and g preserves the orientation of center
fibers, we can see that both U+ and U− are g-invariant. So we only need to show
that they are open sets, which will imply that g is not transitive.

From the definition of Φ, if (x, t) ∈ T3 with Φ(x, t) > 0, then there exists
t1 < t < t2, such that

(x, t1) ∈ Λ1, (x, t2) ∈ Λ2 and Φ(x, s) > 0 for every s ∈ (t1, t2).

Since Λ1 and Λ2 are compact and disjoint, there exists δ > 0, such that t2− t1 ≥ δ.
This implies for every x ∈ T2, every connected component of Sx ∩ U+ has length
≥ δ. Denote by k(x) the number of connected components of Sx ∩ U+ and by
(ai(x), bi(x)), i = 1, 2, · · · , k(x) the connected components of Sx ∩ U+, i.e.,

Sx ∩ U+ = {x} ×
k(x)⋃
i=1

(ai(x), bi(x)),

where ai(x) ∈ Λ1, bi(x) ∈ Λ2 for i = 1, 2, · · · , k(x).
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Claim 3.4. k : T2 → N is a constant function, i.e., there exists k0 ∈ N such that

k(x) ≡ k0, ∀x ∈ T
2.

Moreover, k0 ≤ 2/δ.

Proof of the claim. For every x ∈ T2 and every s1 < s2, if (x, s1) ∈ Λ1 and (x, s2) ∈
Λ2, then there must exist some point s ∈ (s1, s2), such that Φ(x, s) > 0.

We will first show that the function k is upper semi-continuous, i.e., if limn→∞ xn

= x, then k(x) ≥ lim supn→∞ k(xn). Actually, by taking subsequence if necessary,
we can assume that

Sxn
∩ U+ = {xn} ×

l⋃
i=1

(ai(xn), bi(xn)), for l = lim sup
n→∞

k(xn),

and

lim
n→∞

(xn, ai(xn)) = (x, ai) ∈ Sx ∩ Λ1, lim
n→∞

(xn, bi(xn)) = (x, bi) ∈ Sx ∩ Λ2.

This implies there exists some ci ∈ (ai, bi), such that Φ(x, ci) > 0, for i = 1, 2, · · · , l.
Since Φ(x, ai) = Φ(x, bi) = 0, Sx ∩ U+ has at least l connected components, i.e.,
k(x) ≥ l, which implies k : T2 → N is upper semi-continuous.

Assume that g is a skew-product diffeomorphism over a hyperbolic automor-
phism A : T2 → T2. Then, for any y ∈ Wu(x,A) ⊂ T2, we have k(y) = k(x) since

both Λ1 and Λ2 are u-saturated. In fact, if Sx ∩ U+ = {x} ×
⋃k(x)

i=1 (ai(x), bi(x)),
then hu(ai(x)) ∈ Λ1 ∩ Sy and hu(bi(x)) ∈ Λ2 ∩ Sy, where hu : Sx → Sy is
the holonomy map of the unstable foliation of g. We have Sy ∩ U+ = {y} ×⋃k(x)

i=1 (h
u(ai(x)), h

u(bi(x))), and thus k(y) = k(x).
Since every connected component of Sx ∩ U+ has length larger than δ, k is

uniformly bounded by 2/δ. So we can choose the point z ∈ T2, where k takes the
maximal value k0 at z. Then, for very w ∈ Wu(z, A) ⊂ T

2, k(w) = k0. Since
Wu(z, A) is dense in T2 and k is upper semi-continuous, we have k(x) ≡ k0 for
every x ∈ T2. �

Now we will show the set U+ is open in T3. Suppose on the contrary that there
exists a point (x, t) ∈ T

3 with Φ(x, t) > 0, and a sequence of points (xn, tn) → (x, t)
with Φ(xn, tn) ≤ 0. Denote that

Sxn
∩ U+ = {xn} ×

k0⋃
i=1

(ai(xn), bi(xn)).

Since Φ(xn, tn) ≤ 0, we may assume tn ∈ [bj(xn), aj+1(xn)] for some 1 ≤ j ≤ k0 by
taking subsequence when necessary.

By taking subsequence when necessary, we may assume that (xn, ai(xn)) →
(x, ai) ∈ Λ1 and (xn, bi(xn)) → (x, bi) ∈ Λ2. Moreover, we have t ∈ [bj , aj+1].
Since Φ(x, t) > 0, (x, ai) ∈ Λ1, and (x, bi) ∈ Λ2, we must have t ∈ (bj , aj+1).

Now we have (x, ai) ∈ Λ1 and (x, bi) ∈ Λ2, which implies there exists some ci ∈
(ai, bi), such that Φ(x, ci) > 0, for i = 1, 2, · · · , k0. Moreover, we have Φ(x, t) > 0
for t ∈ (bj , aj+1). However, Φ(x, ai) = Φ(x, bi) = 0, which implies Sx ∩ U+ has at
least k0 + 1 connected components. This is a contradiction to our claim. Thus U+

is open in T
3.

The same argument can show that U− is open in T3. Since U+ and U− are both
non-empty g-invariant open sets and disjoint, g is not transitive. �
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Lemma 3.5. The diffeomorphism f : T3 → T3 is not transitive.

Proof. By Proposition 3.3, we only need to show that f has two disjoint compact
invariant u-saturated sets. Denote

Λ0 = Wuu(P0, f) and Λ1 = Wuu(P1, f).

Since both P0 and P1 are fixed points, Wuu(P0, f) andWuu(P1, f) are two invariant
u-saturated sets. This implies Λ0 and Λ1 are two compact f -invariant u-saturated
sets.

According to item 4 of Proposition 2.2,

Λi = Wuu(Pi, f) ⊂ [i− δ + τ, i], for i = 0, 1.

Hence, we have Λ0 ∩ Λ1 = ∅. This finishes the proof of this lemma. �
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French summaries), Invent. Math. 158 (2004), no. 1, 33–104, DOI 10.1007/s00222-004-0368-1.
MR2090361

[4] Christian Bonatti, Lorenzo J. Dı́az, and Marcelo Viana, Dynamics beyond uniform hyper-
bolicity, Encyclopaedia of Mathematical Sciences, vol. 102, Springer-Verlag, Berlin, 2005. A
global geometric and probabilistic perspective; Mathematical Physics, III. MR2105774

[5] M. I. Brin, Topological transitivity of a certain class of dynamical systems, and flows of
frames on manifolds of negative curvature (Russian), Funkcional. Anal. i Priložen. 9 (1975),
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