
JungHwan Park, Arunima Ray

A family of non-split topologically slice links with arbitrarily large smooth slice
genus

Proceedings of the American Mathematical Society

DOI: 10.1090/proc/13724

Accepted Manuscript

This is a preliminary PDF of the author-produced manuscript that has been
peer-reviewed and accepted for publication. It has not been copyedited, proofread,
or finalized by AMS Production staff. Once the accepted manuscript has been
copyedited, proofread, and finalized by AMS Production staff, the article will be
published in electronic form as a “Recently Published Article” before being placed
in an issue. That electronically published article will become the Version of Record.

This preliminary version is available to AMS members prior to publication of
the Version of Record, and in limited cases it is also made accessible to everyone
one year after the publication date of the Version of Record.

The Version of Record is accessible to everyone five years after publication in an
issue.



A FAMILY OF NON-SPLIT TOPOLOGICALLY SLICE LINKS WITH1

ARBITRARILY LARGE SMOOTH SLICE GENUS2

JUNGHWAN PARK† AND ARUNIMA RAY††
3

Abstract. We construct an infinite family of topologically slice 2–component boundary
links `i, none of which is smoothly concordant to a split link, such that g4(`i) = i.

1. Introduction4

A k–component link L is the isotopy class of an embedding
⊔

k S
1 → S3 and a knot is5

simply a 1–component link. A link is said to be smoothly slice if its components bound a6

disjoint collection of smoothly embedded disks in B4; if there exists such a disjoint collection7

of merely locally flat disks we say that the link is topologically slice. The study of smoothly8

and topologically slice links is closely connected with the study of smooth and topological 4–9

manifolds; e.g. any knot which is topologically slice but not smoothly slice [End95, Gom86,10

HK12, HLR12, Hom14]) gives rise to an exotic copy of R4 [GS99, Exercise 9.4.23].11

In an approach to approximating sliceness of links, we may consider surfaces bounded by12

a link in B4. The minimal genus of a smooth embedded connected oriented surface in B4
13

with boundary a given link L is said to be the smooth slice genus of L, whereas the minimal14

genus of such a locally flat surface is called the topological slice genus of L. We denote these15

by g4(L) and g4
top(L) respectively. Note that if a link is smoothly (resp. topologically) slice16

it has zero smooth (resp. topological) slice genus. The converse is not true; e.g. the Hopf17

link (with either orientation) has smooth and topological slice genus zero, but is neither18

smoothly nor topologically slice. (Since slice surfaces must be oriented, the slice genus of a19

link depends on the relative orientation of the link components in general.) It is easy to see20

that the smooth (resp. topological) slice genus is an invariant of smooth (resp. topological)21

concordance of links.22

For any link L we see that g4
top(L) ≤ g4(L), since any smooth embedding of a surface23

is locally flat. Understanding the extent to which these two quantities are different can be24

seen as refining the question of when topologically slice knots may be smoothly non-slice.25

In particular, we focus on the following natural questions.26

• Are there examples of links which satisfy g4
top(L) < g4(L)?27

• Can the difference between g4(·) and g4
top(·) be arbitrarily large?28
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2 JUNGHWAN PARK† AND ARUNIMA RAY††

The above have been studied extensively for knots (see [Don83, CG88, Tan98, FM15]). Here29

we will focus on 2–component links, for which we show that the answer to both questions30

is yes.31

Theorem 1.1. For any integer i ≥ 0, there exists a 2–component link `i such that32

(1) g4(`i) = i (consequently, the links `i are distinct in smooth concordance),33

(2) `i is not smoothly concordant to a split link,34

(3) `i is a boundary link,35

(4) `i is topologically slice (in particular, g4
top(`i) = 0).36

Removing condition (2) makes the theorem trivial, since we can use the links `i = KitU ,37

where each Ki is a topologically slice knot with g4(Ki) = i, U is the unknot, and t indicates38

taking a split union. Moreover, examples satisfying (2-4) are already known by [RS13,39

Theorem B]. We will show that our examples are distinct from those in smooth concordance40

in Proposition 3.3.41

Acknowledgements. The first author would like to thank his advisor Shelly Harvey for42

her guidance and helpful discussions. The second author also thinks Shelly is pretty cool.43

We are indebted to the anonymous referee for comments that led to substantially im-44

proved exposition.45

2. Preliminaries46

This section consists of a brief overview of Legendrian knots, limited to the material we47

need for our proof. For more precise definitions and details, we direct the reader to [Etn05].48

Recall that the standard contact structure on R3 is given by the kernel of the 1–form
dz − y dx. Then the standard contact structure on S3 is defined such that if one removes
a single point from S3 the resulting contact structure is contactomorphic to the standard
contact structure on R3. An embedding K of a knot K in S3 is Legendrian if K is tangent
to the 2–planes of the standard contact structure on S3. Legendrian knots may be studied
concretely using their front projections, i.e. since a knot is compact we may consider it
to be in R3 ⊆ S3 and then use the projection onto the xz–plane. The middle and right
panel of Figure 1 show front projections of two Legendrian knots. There are two classical
invariants for Legendrian knots, the Thurston–Bennequin number, tb(·), and the rotation
number, rot(·). Given a front projection Π(K) of a Legendrian knot K, we have the following
formulae:

tb(K) = writhe(Π(K))− 1

2
#cusps(Π(K)) (2.1)

rot(K) =
1

2
#downward-moving cusps(Π(K))− 1

2
#upward-moving cusps(Π(K)) (2.2)

Our main tool in this paper is the slice–Bennequin inequality (see [Rud95, Rud97, Etn05,
AM97, LM98]), which says that for any Legendrian representative K of a knot K,

tb(K) + |rot(K)| ≤ 2τ(K)− 1 ≤ 2g4(K)− 1
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P K P(K)

tb(P) = 2

rot(P) = 0

w(P) = 1

tb(K) = 1

rot(K) = 0

tb(P(K)) = 3

rot(P(K)) = 0

Figure 1. The Legendrian satellite operation

where τ(·) is Ozváth–Szabó’s concordance invariant from Heegaard–Floer homology [OS04],49

and the first inequality is from [Pla04]. Recall that τ is additive under connected sum and50

insensitive to the orientation of a knot.51

The standard contact structure on S1 × R2 is also defined as the kernel of the 1–form52

dz − y dx, where we identify S1 × R2 with R3 modulo (x, y, z) ∼ (x+ 1, y, z). As before an53

embedding P of a knot P in S1×R2 (called a pattern) is Legendrian if P is tangent to the54

2-planes of the standard contact structure on S1 ×R2. As in R3, we have front projections55

on the xz–plane, where the x–direction is understood to be periodic. We will draw these56

front projections in [0, 1]×R2 as shown in the left panel of Figure 1, where the dashed lines57

indicate that the boundary should be identified. Using such front projections, we compute58

the Thurston–Bennequin number and rotation number of Legendrian patterns using the59

same combinatorical formulae as for knots given above. The winding number, w(·), of a60

Legendrian pattern is the signed number of times it wraps around the longitude of S1×R2.61

Let P be a Legendrian pattern in S1 × R2 with n end points, and K be a Legendrian62

knot. Then the Legendrian satellite operation yields a Legendrian knot P(K) by taking63

n vertical parallel copies of K and inserting P in an appropriately oriented strand of K64

(see Figure 1 for an example). It is easy to see that P(K) is a Legendrian diagram for the65

tb(K)–twisted satellite of K. (For a detailed discussion of the Legendrian satellite operation66

see [Ng01, NT04, Ray15].) Hence when tb(K) = 0, P(K) represents the classical untwisted67

satellite with pattern P and companion K (see Figure 2). The following proposition estab-68

lishes the relationship between the Thurston–Bennequin numbers and rotation numbers of69

a Legendrian pattern, a Legendrian knot, and the associated Legendrian satellite.70
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4 JUNGHWAN PARK† AND ARUNIMA RAY††

Proposition 2.1 (Remark 2.4 of [Ng01]). For a Legendrian pattern P and a Legendrian
knot K,

tb(P(K)) = w(P)2tb(K) + tb(P)

rot(P(K)) = w(P)rot(K) + rot(P).

3. Proof of main theorem71

For this section, we fix a Legendrian diagram K of a knot K with the following properties:72

(1) K is topologically slice.73

(2) g3(K) = g4(K) = τ(K) = 1.74

(3) tb(K) = 0.75

(4) rot(K) = 2g4(K)− 1 = 1.76

Examples of such knots can be easily found, as follows. Let J be any knot with a Leg-77

endrian realization J satisfying tb(J ) = 0 and τ(J) > 0, e.g. the right-handed trefoil. Any78

knot with positive maximal Thurston–Bennequin number has positive τ and such a Legen-79

drian realization. Now perform the Legendrian satellite operation on J using the pattern80

for untwisted positive Whitehead doubling shown in Figure 2. We call the resulting Leg-81

endrian knot K, which is a realization of the topological knot type K (note that K is the82

positive untwisted Whitehead double of J). We know that K is topologically slice since it83

has Alexander polynomial one [Fre82]. Using Proposition 2.1, we see that tb(K) = 0 and84

rot(K) = 1, and by [Hed07], we see that g3(K) = g4(K) = τ(K) = 1.85

Since tb(K) = 0, from Section 2, we know that for any Legendrian diagram P for a pattern86

P , the Legendrian satellite P(K) is a Legendrian diagram for the untwisted satellite P (K).87

W J K =W(J )

tb(W) = 0

rot(W) = 1

w(W) = 0

tb(J ) = 0

rot(J ) = 1

tb(K) = 0

rot(K) = 1

Figure 2. Constructing the knots K.

Feb 12 2017 13:51:15 EST
Version 2 - Submitted to PROC

Topology+GeometryThis is a pre-publication version of this article, which may differ from the final published version. Copyright restrictions may apply.
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We start with a few propositions. For any positive integer i, consider the Legendrian88

diagram Pi for a pattern Pi, given in Figure 3. Notice that the satellite knot Pi(K) is the89

(i, 1) cable of K.90

Proposition 3.1. For the pattern Pi and any integer i ≥ 1, we have

g4(Pi(K)) = τ(Pi(K)) = i.

Proof. Using Proposition 2.1, we calculate:

tb(Pi(K)) = w(Pi)2tb(K) + tb(Pi) = i2 · 0 + (i− 1) = i− 1

rot(Pi(K)) = w(Pi)rot(K) + rot(Pi) = i · 1 + 0 = i.

Then by the slice–Bennequin inequality we have the following:

(i− 1) + |i| = 2i− 1 ≤ 2τ(Pi(K))− 1 ≤ 2g4(Pi(K))− 1

and thus,

i ≤ τ(Pi(K)) ≤ g4(Pi(K)).

Note that we can change Pi(K) into the (i, 0) cable of K by performing i − 1 band sums.91

Since g4(K) = 1 there is a surface Σ in B4 with g(Σ) = 1 and ∂Σ = K, and we can92

take i parallel copies of Σ to get a genus i surface smoothly embedded in B4 bounded by93

Pi(K). This shows that g4(Pi(K)) ≤ i. Combining this with the above, we conclude that94

g4(Pi(K)) = τ(Pi(K)) = i. �95

Note that we can also see that τ(Pi(K)) = i by using Hom’s formula from [Hom14], since96

Pi(K) is the (i, 1) cable of K and, by [Hom14], ε(K) = 1.97

For any positive integer i, consider the Legendrian diagram Qi for a pattern Qi, shown98

in Figure 4. This pattern is similar to the one shown in [Ray15, Figure 9], but w(Qi) = 099

whereas the pattern from [Ray15] has winding number one.100

Proposition 3.2. For the pattern Qi and any integer i ≥ 1, we have

g4(Qi(K)) = τ(Qi(K)) = i.

i strands

Figure 3. A Legendrian diagram Pi for the pattern Pi. We compute that
tb(Pi) = i− 1, rot(Pi) = 0 and w(Pi) = i.
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6 JUNGHWAN PARK† AND ARUNIMA RAY††

i strands

i strands

Figure 4. A Legendrian diagram Qi for the pattern Qi. We compute that
tb(Qi) = 2i− 1, rot(Qi) = 0 and w(Qi) = 0.

Proof. Using Proposition 2.1, we calculate:

tb(Qi(K)) = w(Qi)
2tb(K) + tb(Qi) = 02 · 0 + (2i− 1) = 2i− 1

rot(Qi(K)) = w(Qi)rot(K) + rot(Qi) = 0 · 1 + 0 = 0.

Then by the slice–Bennequin inequality we have the following:

(2i− 1) + |0| = 2i− 1 ≤ 2τ(Qi(K))− 1 ≤ 2g4(Qi(K))− 1

and thus,101

i ≤ τ(Qi(K)) ≤ g4(Qi(K)). (3.1)

Notice thatQ1(K) is just the positive clasped Whitehead double ofK and thus g4(Q1(K)) ≤102

g3(Q1(K)) = 1. By (3.1), 1 ≤ g4(Q1(K)) and thus, g4(Q1(K)) = 1. Additionally, there exists103

a genus one cobordism between Qi(K) and Qi+1(K) for i ≥ 1, shown in Figure 5, obtained104

by changing a crossing at the clasp in Qi+1(K). By induction, we see that g4(Qi(K)) ≤ i,105

and combining this with 3.1, we see that g4(Qi(K)) = τ(Qi(K)) = i. �106

We are now ready to prove the main theorem, which we restate below. For each positive107

integer i, consider the pattern Li shown in Figure 6. Notice that the link Li(K), if we ignore108

the orientation of the strands, is obtained by performing the (i+ 1, 1) cabling operation on109

each component of the (2, 0) cable of K.110

Theorem 1.1. For any integer i ≥ 0, there exists a 2–component link `i such that111

(1) g4(`i) = i (consequently, the links `i are distinct in smooth concordance),112

(2) `i is not smoothly concordant to a split link.113

(3) `i is a boundary link.114
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Qi+1 Qi Qi

i+ 1

i+ 1

i+ 1

i+ 1

i

i

Figure 5. A genus one cobordism from Qi+1 to Qi. Since the cobordism
shown occurs in S1×D2, this also shows a cobordism fromQi+1(K) toQi(K).
The first arrow is obtained by changing a crossing at the clasp. Notice that
the second diagram is no longer Legendrian. The second arrow is obtained
by an isotopy and results in the familiar diagram Qi.

i+ 1 strands

i+ 1 strands

Figure 6. A Legendrian diagram Li for the pattern Li. We compute that
tb(Li) = 2i, rot(Li) = 0 and w(Li) = 0.

(4) `i is topologically slice (in particular, g4
top(`i) = 0.)115

Proof. For any integer i ≥ 0, let `i denote the 2–component link Li(K). We first show116

g4(Li(K)) = i. When i = 0, if we disregard orientation, L0(K) is simply the (2, 0) cable117

of K. Since the components of L0(K) has opposite orientation, they cobound an annulus118

which implies that g4(L0(K)) = 0. For i ≥ 1, notice that there is a cobordism from Qi+1(K)119

to Li(K) and a cobordism from Li(K) to Qi(K) (see Figure 7). By the first cobordism120

and Proposition 3.2, we have i + 1 = g4(Qi+1(K)) ≤ g4(Li(K)) + 1 and by the second121

cobordism and Proposition 3.2, we have g4(Li(K)) ≤ g4(Qi(K)) = i. Hence we can conclude122

g4(Li(K)) = i.123

For i ≥ 0, assume that Li(K) is smoothly concordant to a split link. Then it was observed124

in [RS13, Lemma 2.1] that Li(K) is smoothly concordant to K(i+1,1)tr(Ki+1,1) where Ki+1,1125
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8 JUNGHWAN PARK† AND ARUNIMA RAY††

Qi+1 Li Qi

i+ 1

i+ 1

i+ 1

i+ 1

i+ 1

i+ 1

Figure 7. The first arrow indicates a cobordism between Qi+1(K) and
Li(K) and the second arrow indicates a cobordism between Li(K) and
Qi(K). Note that the right panel is the middle panel of Figure 5

is the (i + 1, 1) cable of K, r(Ki+1,1) is Ki+1,1 with reversed orientation, and t indicates126

a split union. Using this observation, we see that g4(Ki+1,1 t r(Ki+1,1)) = g4(Li(K)) = i127

and thus, g4(Ki+1,1#r(Ki+1,1)) = i (see [CH14, Proposition 3.3]). This is a contradiction128

since, τ(Ki+1,1#r(Ki+1,1)) = τ(Ki+1,1) + τ(r(Ki+1,1)) = 2τ(Ki+1,1) = 2τ(Pi+1(K)) and by129

Proposition 3.1, τ(Pi+1(K)) = i+ 1.130

It is straightforward to see that Li(K) is a boundary link by construction: use parallel131

copies of a Seifert surface for K. Lastly Li(K) is topologically slice since K is topologically132

slice. �133

Proposition 3.3. The examples `i from Theorem 1.1 are distinct in smooth concordance134

from the examples given in [RS13, Theorem B].135

Proof. The examples in [RS13, Theorem B] consist of the (2, 0) cables, with either the136

parallel or antiparallel orientation, of a family of knots {Wh(Ji)}, where Ji is either the137

connected sum of i copies of the right-handed trefoil, or the torus knot T2,2i+1. It is easy138

to see from [RS13, Corollary 3.2] that their argument also applies for (2, 0) cables of the139

connected sum of i copies of the Whitehead double of the right-handed trefoil knot. We140

will show that our examples are distinct from these cables in smooth concordance. Since141

the Ruberman–Strle examples are (2,0) cables, we may choose the antiparallel orientation142

of the two strands; with this orientation, the smooth slice genus of the link is zero. For our143

examples, we saw in Theorem 1.1, that g4(`i) = i. Let `′i denote the link where we switch144

the orientation of one component. Then we may attach a single band to see a genus zero145

cobordism between `′i and P2i+2(K) (or its reverse). Then by Proposition 3.1, g4(`
′
i) ≥ 2i+1.146

On the other hand, if the link `i were concordant to a (2,0) cable with some orientation,147

either `i or `′i would have zero slice genus.148

In [RS13], we also see some examples due to Livingston consisting of Bing doubles of149

certain topologically slice knots. As before, we can choose an orientation for the Bing double150

such that there is a genus zero cobordism to the untwisted Whitehead double, and thus the151

slice genus of the link with this orientation is at most one. By our previous argument, our152

links `i are distinct in concordance from Livingston’s examples as long as i ≥ 2. �153
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Note that above we have shown that the difference between the smooth slice genus of154

2–component topologically slice links with the two different relative orientations for the155

strands can be arbitrarily large. This is also true for the examples given in [RS13].156

In [Cav15], Cavallo introduced a generalization of Ozváth–Szabó’s concordance invariant
τ for links. He established the following inequality (see [Cav15, Propositions 1.4 and 1.5]):

tb(L) + |rot(L)| ≤ 2τ(L)− 2 ≤ 2g4(L)

for any Legendrian diagram L for a 2–component link L. If we apply this inequality to `i,
using Proposition 2.1 and the diagram in Figure 6, we get the following:

2i+ |0| ≤ 2τ(`i)− 2 ≤ 2i.

Then we see that τ(`i) = i + 1 and the inequality is sharp for `i. This establishes the157

following corollary.158

Corollary 3.4. Cavallo’s τ–invariant can be arbitrarily large for non-split topologically159

slice 2–component links.160

Remark 3.5. An anonymous referee suggested the following slightly different approach to161

the proof of the main theorem of this paper. Let J be the positive untwisted Whitehead162

double of the right handed trefoil. Start with the (2,0) cable of J , with antiparallel strands,163

and performing a connect-sum locally with #nJ . As in our proof, we can find cobordisms164

to knots with known slice genera to conclude that the slice genus of the link is n. These165

links also satisfy the requirements of Theorem 1.1.166
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