©AMS
 American Mathematical Society
 WWW.ams.org

JungHwan Park, Arunima Ray
A family of non-split topologically slice links with arbitrarily large smooth slice genus

Proceedings of the American Mathematical Society
DOI: 10.1090/proc/13724

Accepted Manuscript

This is a preliminary PDF of the author-produced manuscript that has been peer-reviewed and accepted for publication. It has not been copyedited, proofread, or finalized by AMS Production staff. Once the accepted manuscript has been copyedited, proofread, and finalized by AMS Production staff, the article will be published in electronic form as a "Recently Published Article" before being placed in an issue. That electronically published article will become the Version of Record.

This preliminary version is available to AMS members prior to publication of the Version of Record, and in limited cases it is also made accessible to everyone one year after the publication date of the Version of Record.

The Version of Record is accessible to everyone five years after publication in an issue.

A FAMILY OF NON-SPLIT TOPOLOGICALLY SLICE LINKS WITH ARBITRARILY LARGE SMOOTH SLICE GENUS

H HK12], HLR12, Hom14) gives rise to an exotic copy of \mathbb{R}^{4} [GS99, Exercise 9.4.23].

In an approach to approximating sliceness of links, we may consider surfaces bounded by a link in B^{4}. The minimal genus of a smooth embedded connected oriented surface in B^{4} with boundary a given $\operatorname{link} L$ is said to be the smooth slice genus of L, whereas the minimal genus of such a locally flat surface is called the topological slice genus of L. We denote these by $g_{4}(L)$ and $g_{4}{ }^{\text {top }}(L)$ respectively. Note that if a link is smoothly (resp. topologically) slice it has zero smooth (resp. topological) slice genus. The converse is not true; e.g. the Hopf link (with either orientation) has smooth and topological slice genus zero, but is neither smoothly nor topologically slice. (Since slice surfaces must be oriented, the slice genus of a link depends on the relative orientation of the link components in general.) It is easy to see that the smooth (resp. topological) slice genus is an invariant of smooth (resp. topological) concordance of links.

For any link L we see that $g_{4}{ }^{\text {top }}(L) \leq g_{4}(L)$, since any smooth embedding of a surface is locally flat. Understanding the extent to which these two quantities are different can be seen as refining the question of when topologically slice knots may be smoothly non-slice. In particular, we focus on the following natural questions.

- Are there examples of links which satisfy $g_{4}{ }^{\text {top }}(L)<g_{4}(L)$?
- Can the difference between $g_{4}(\cdot)$ and $g_{4}{ }^{t o p}(\cdot)$ be arbitrarily large?

[^0]The above have been studied extensively for knots (see Don83, CG88, Tan98, FM15). Here we will focus on 2 -component links, for which we show that the answer to both questions is yes.

Theorem 1.1. For any integer $i \geq 0$, there exists a 2-component link ℓ_{i} such that
(1) $g_{4}\left(\ell_{i}\right)=i$ (consequently, the links ℓ_{i} are distinct in smooth concordance),
(2) ℓ_{i} is not smoothly concordant to a split link,
(3) ℓ_{i} is a boundary link,
(4) ℓ_{i} is topologically slice (in particular, $g_{4}{ }^{\text {top }}\left(\ell_{i}\right)=0$).

Removing condition (2) makes the theorem trivial, since we can use the links $\ell_{i}=K_{i} \sqcup U$, where each K_{i} is a topologically slice knot with $g_{4}\left(K_{i}\right)=i, U$ is the unknot, and \sqcup indicates taking a split union. Moreover, examples satisfying (2-4) are already known by RS13, Theorem B]. We will show that our examples are distinct from those in smooth concordance in Proposition 3.3.

Acknowledgements. The first author would like to thank his advisor Shelly Harvey for her guidance and helpful discussions. The second author also thinks Shelly is pretty cool.

We are indebted to the anonymous referee for comments that led to substantially improved exposition.

2. Preliminaries

This section consists of a brief overview of Legendrian knots, limited to the material we need for our proof. For more precise definitions and details, we direct the reader to Etn05.

Recall that the standard contact structure on \mathbb{R}^{3} is given by the kernel of the 1 -form $d z-y d x$. Then the standard contact structure on S^{3} is defined such that if one removes a single point from S^{3} the resulting contact structure is contactomorphic to the standard contact structure on \mathbb{R}^{3}. An embedding \mathcal{K} of a knot K in S^{3} is Legendrian if \mathcal{K} is tangent to the 2-planes of the standard contact structure on S^{3}. Legendrian knots may be studied concretely using their front projections, i.e. since a knot is compact we may consider it to be in $\mathbb{R}^{3} \subseteq S^{3}$ and then use the projection onto the $x z$-plane. The middle and right panel of Figure 1 show front projections of two Legendrian knots. There are two classical invariants for Legendrian knots, the Thurston-Bennequin number, $\mathrm{tb}(\cdot)$, and the rotation number, $\operatorname{rot}(\cdot)$. Given a front projection $\Pi(\mathcal{K})$ of a Legendrian knot \mathcal{K}, we have the following formulae:

$$
\begin{align*}
\operatorname{tb}(\mathcal{K}) & =\text { writhe }(\Pi(\mathcal{K}))-\frac{1}{2} \# \operatorname{cusps}(\Pi(\mathcal{K})) \tag{2.1}\\
\operatorname{rot}(\mathcal{K}) & =\frac{1}{2} \# \text { downward-moving } \operatorname{cusps}(\Pi(\mathcal{K}))-\frac{1}{2} \# \text { upward-moving } \operatorname{cusps}(\Pi(\mathcal{K})) \tag{2.2}
\end{align*}
$$

Our main tool in this paper is the slice-Bennequin inequality (see Rud95, Rud97, Etn05, AM97, LM98), which says that for any Legendrian representative \mathcal{K} of a knot K,

$$
\operatorname{tb}(\mathcal{K})+|\operatorname{rot}(\mathcal{K})| \leq 2 \tau(K)-1 \leq 2 g_{4}(K)-1
$$

Figure 1. The Legendrian satellite operation
where $\tau(\cdot)$ is Ozváth-Szabó's concordance invariant from Heegaard-Floer homology OS04, and the first inequality is from Pla04. Recall that τ is additive under connected sum and insensitive to the orientation of a knot.

The standard contact structure on $S^{1} \times \mathbb{R}^{2}$ is also defined as the kernel of the 1-form $d z-y d x$, where we identify $S^{1} \times \mathbb{R}^{2}$ with \mathbb{R}^{3} modulo $(x, y, z) \sim(x+1, y, z)$. As before an embedding \mathcal{P} of a knot P in $S^{1} \times \mathbb{R}^{2}$ (called a pattern) is Legendrian if \mathcal{P} is tangent to the 2-planes of the standard contact structure on $S^{1} \times \mathbb{R}^{2}$. As in \mathbb{R}^{3}, we have front projections on the $x z$-plane, where the x-direction is understood to be periodic. We will draw these front projections in $[0,1] \times \mathbb{R}^{2}$ as shown in the left panel of Figure 1 , where the dashed lines indicate that the boundary should be identified. Using such front projections, we compute the Thurston-Bennequin number and rotation number of Legendrian patterns using the same combinatorical formulae as for knots given above. The winding number, $w(\cdot)$, of a Legendrian pattern is the signed number of times it wraps around the longitude of $S^{1} \times \mathbb{R}^{2}$.

Let \mathcal{P} be a Legendrian pattern in $S^{1} \times \mathbb{R}^{2}$ with n end points, and \mathcal{K} be a Legendrian knot. Then the Legendrian satellite operation yields a Legendrian knot $\mathcal{P}(\mathcal{K})$ by taking n vertical parallel copies of K and inserting \mathcal{P} in an appropriately oriented strand of \mathcal{K} (see Figure 1 for an example). It is easy to see that $\mathcal{P}(\mathcal{K})$ is a Legendrian diagram for the $\operatorname{tb}(\mathcal{K})$-twisted satellite of K. (For a detailed discussion of the Legendrian satellite operation see [Ng01, NT04, Ray15.) Hence when $\operatorname{tb}(\mathcal{K})=0, \mathcal{P}(\mathcal{K})$ represents the classical untwisted satellite with pattern P and companion K (see Figure 22). The following proposition establishes the relationship between the Thurston-Bennequin numbers and rotation numbers of a Legendrian pattern, a Legendrian knot, and the associated Legendrian satellite.

Proposition 2.1 (Remark 2.4 of Ng01). For a Legendrian pattern \mathcal{P} and a Legendrian knot \mathcal{K},

$$
\begin{aligned}
\operatorname{tb}(\mathcal{P}(\mathcal{K})) & =w(\mathcal{P})^{2} \operatorname{tb}(\mathcal{K})+\operatorname{tb}(\mathcal{P}) \\
\operatorname{rot}(\mathcal{P}(\mathcal{K})) & =w(\mathcal{P}) \operatorname{rot}(\mathcal{K})+\operatorname{rot}(\mathcal{P}) .
\end{aligned}
$$

3. Proof of main theorem

For this section, we fix a Legendrian diagram \mathcal{K} of a knot K with the following properties:
(1) K is topologically slice.
(2) $g_{3}(K)=g_{4}(K)=\tau(K)=1$.
(3) $\operatorname{tb}(\mathcal{K})=0$.
(4) $\operatorname{rot}(\mathcal{K})=2 g_{4}(K)-1=1$.

Examples of such knots can be easily found, as follows. Let J be any knot with a Legendrian realization \mathcal{J} satisfying $\operatorname{tb}(\mathcal{J})=0$ and $\tau(J)>0$, e.g. the right-handed trefoil. Any knot with positive maximal Thurston-Bennequin number has positive τ and such a Legendrian realization. Now perform the Legendrian satellite operation on \mathcal{J} using the pattern for untwisted positive Whitehead doubling shown in Figure 2. We call the resulting Legendrian knot \mathcal{K}, which is a realization of the topological knot type K (note that K is the positive untwisted Whitehead double of J). We know that K is topologically slice since it has Alexander polynomial one [Fre82]. Using Proposition 2.1, we see that $\operatorname{tb}(\mathcal{K})=0$ and $\operatorname{rot}(\mathcal{K})=1$, and by Hed07, we see that $g_{3}(K)=g_{4}(K)=\tau(K)=1$.

Since $\operatorname{tb}(\mathcal{K})=0$, from Section 2, we know that for any Legendrian diagram \mathcal{P} for a pattern P, the Legendrian satellite $\mathcal{P}(\mathcal{K})$ is a Legendrian diagram for the untwisted satellite $P(K)$.

Figure 2. Constructing the knots \mathcal{K}.

Proposition 3.1. For the pattern P_{i} and any integer $i \geq 1$, we have

$$
g_{4}\left(P_{i}(K)\right)=\tau\left(P_{i}(K)\right)=i .
$$

Proof. Using Proposition 2.1, we calculate:

$$
\begin{gathered}
\operatorname{tb}\left(\mathcal{P}_{i}(K)\right)=w\left(\mathcal{P}_{i}\right)^{2} \operatorname{tb}(\mathcal{K})+\operatorname{tb}\left(\mathcal{P}_{i}\right)=i^{2} \cdot 0+(i-1)=i-1 \\
\operatorname{rot}\left(\mathcal{P}_{i}(K)\right)=w\left(\mathcal{P}_{i}\right) \operatorname{rot}(\mathcal{K})+\operatorname{rot}\left(\mathcal{P}_{i}\right)=i \cdot 1+0=i .
\end{gathered}
$$

Then by the slice-Bennequin inequality we have the following:

$$
(i-1)+|i|=2 i-1 \leq 2 \tau\left(P_{i}(K)\right)-1 \leq 2 g_{4}\left(P_{i}(K)\right)-1
$$

and thus,

$$
i \leq \tau\left(P_{i}(K)\right) \leq g_{4}\left(P_{i}(K)\right) .
$$

Note that we can change $P_{i}(K)$ into the $(i, 0)$ cable of K by performing $i-1$ band sums. Since $g_{4}(K)=1$ there is a surface Σ in B^{4} with $g(\Sigma)=1$ and $\partial \Sigma=K$, and we can take i parallel copies of Σ to get a genus i surface smoothly embedded in B^{4} bounded by $P_{i}(K)$. This shows that $g_{4}\left(P_{i}(K)\right) \leq i$. Combining this with the above, we conclude that $g_{4}\left(P_{i}(K)\right)=\tau\left(P_{i}(K)\right)=i$.

Note that we can also see that $\tau\left(P_{i}(K)\right)=i$ by using Hom's formula from Hom14, since $P_{i}(K)$ is the $(i, 1)$ cable of K and, by Hom14, $\varepsilon(K)=1$.

For any positive integer i, consider the Legendrian diagram \mathcal{Q}_{i} for a pattern Q_{i}, shown in Figure 4. This pattern is similar to the one shown in Ray15, Figure 9], but $w\left(Q_{i}\right)=0$ whereas the pattern from Ray15 has winding number one.
Proposition 3.2. For the pattern Q_{i} and any integer $i \geq 1$, we have

$$
g_{4}\left(Q_{i}(K)\right)=\tau\left(Q_{i}(K)\right)=i .
$$

Figure 3. A Legendrian diagram \mathcal{P}_{i} for the pattern P_{i}. We compute that $\operatorname{tb}\left(\mathcal{P}_{i}\right)=i-1, \operatorname{rot}\left(\mathcal{P}_{i}\right)=0$ and $w\left(\mathcal{P}_{i}\right)=i$.

Figure 4. A Legendrian diagram \mathcal{Q}_{i} for the pattern Q_{i}. We compute that $\operatorname{tb}\left(\mathcal{Q}_{i}\right)=2 i-1, \operatorname{rot}\left(\mathcal{Q}_{i}\right)=0$ and $w\left(\mathcal{Q}_{i}\right)=0$.

Proof. Using Proposition 2.1, we calculate:

$$
\begin{aligned}
& \operatorname{tb}\left(\mathcal{Q}_{i}(K)\right)=w\left(\mathcal{Q}_{i}\right)^{2} \operatorname{tb}(\mathcal{K})+\operatorname{tb}\left(\mathcal{Q}_{i}\right)=0^{2} \cdot 0+(2 i-1)=2 i-1 \\
& \quad \operatorname{rot}\left(\mathcal{Q}_{i}(K)\right)=w\left(\mathcal{Q}_{i}\right) \operatorname{rot}(\mathcal{K})+\operatorname{rot}\left(\mathcal{Q}_{i}\right)=0 \cdot 1+0=0 .
\end{aligned}
$$

Then by the slice-Bennequin inequality we have the following:

$$
(2 i-1)+|0|=2 i-1 \leq 2 \tau\left(Q_{i}(K)\right)-1 \leq 2 g_{4}\left(Q_{i}(K)\right)-1
$$

and thus,

$$
\begin{equation*}
i \leq \tau\left(Q_{i}(K)\right) \leq g_{4}\left(Q_{i}(K)\right) \tag{3.1}
\end{equation*}
$$

Notice that $Q_{1}(K)$ is just the positive clasped Whitehead double of K and thus $g_{4}\left(Q_{1}(K)\right) \leq$ $g_{3}\left(Q_{1}(K)\right)=1$. By (3.1), $1 \leq g_{4}\left(Q_{1}(K)\right)$ and thus, $g_{4}\left(Q_{1}(K)\right)=1$. Additionally, there exists a genus one cobordism between $Q_{i}(K)$ and $Q_{i+1}(K)$ for $i \geq 1$, shown in Figure 5, obtained by changing a crossing at the clasp in $Q_{i+1}(K)$. By induction, we see that $g_{4}\left(Q_{i}(K)\right) \leq i$, and combining this with 3.1, we see that $g_{4}\left(Q_{i}(K)\right)=\tau\left(Q_{i}(K)\right)=i$.

We are now ready to prove the main theorem, which we restate below. For each positive integer i, consider the pattern L_{i} shown in Figure 6. Notice that the link $L_{i}(K)$, if we ignore the orientation of the strands, is obtained by performing the $(i+1,1)$ cabling operation on each component of the $(2,0)$ cable of K.

Theorem 1.1. For any integer $i \geq 0$, there exists a 2 -component $\operatorname{link} \ell_{i}$ such that
(1) $g_{4}\left(\ell_{i}\right)=i$ (consequently, the links ℓ_{i} are distinct in smooth concordance),
(2) ℓ_{i} is not smoothly concordant to a split link.
(3) ℓ_{i} is a boundary link.

Figure 5. A genus one cobordism from Q_{i+1} to Q_{i}. Since the cobordism shown occurs in $S^{1} \times D^{2}$, this also shows a cobordism from $Q_{i+1}(K)$ to $Q_{i}(K)$. The first arrow is obtained by changing a crossing at the clasp. Notice that the second diagram is no longer Legendrian. The second arrow is obtained by an isotopy and results in the familiar diagram \mathcal{Q}_{i}.

Figure 6. A Legendrian diagram \mathcal{L}_{i} for the pattern L_{i}. We compute that $\operatorname{tb}\left(\mathcal{L}_{i}\right)=2 i, \operatorname{rot}\left(\mathcal{L}_{i}\right)=0$ and $w\left(\mathcal{L}_{i}\right)=0$.
(4) ℓ_{i} is topologically slice (in particular, $g_{4}{ }^{\text {top }}\left(\ell_{i}\right)=0$.)

Proof. For any integer $i \geq 0$, let ℓ_{i} denote the 2 -component link $L_{i}(K)$. We first show $g_{4}\left(L_{i}(K)\right)=i$. When $i=0$, if we disregard orientation, $L_{0}(K)$ is simply the $(2,0)$ cable of K. Since the components of $L_{0}(K)$ has opposite orientation, they cobound an annulus which implies that $g_{4}\left(L_{0}(K)\right)=0$. For $i \geq 1$, notice that there is a cobordism from $Q_{i+1}(K)$ to $L_{i}(K)$ and a cobordism from $L_{i}(K)$ to $Q_{i}(K)$ (see Figure 7). By the first cobordism and Proposition 3.2, we have $i+1=g_{4}\left(Q_{i+1}(K)\right) \leq g_{4}\left(L_{i}(K)\right)+1$ and by the second cobordism and Proposition 3.2 , we have $g_{4}\left(L_{i}(K)\right) \leq g_{4}\left(Q_{i}(K)\right)=i$. Hence we can conclude $g_{4}\left(L_{i}(K)\right)=i$.

For $i \geq 0$, assume that $L_{i}(K)$ is smoothly concordant to a split link. Then it was observed in [RS13, Lemma 2.1] that $L_{i}(K)$ is smoothly concordant to $K_{(i+1,1)} \sqcup r\left(K_{i+1,1}\right)$ where $K_{i+1,1}$

Figure 7. The first arrow indicates a cobordism between $\mathcal{Q}_{i+1}(K)$ and $L_{i}(K)$ and the second arrow indicates a cobordism between $L_{i}(K)$ and $Q_{i}(K)$. Note that the right panel is the middle panel of Figure 5
is the $(i+1,1)$ cable of $K, r\left(K_{i+1,1}\right)$ is $K_{i+1,1}$ with reversed orientation, and \sqcup indicates a split union. Using this observation, we see that $g_{4}\left(K_{i+1,1} \sqcup r\left(K_{i+1,1}\right)\right)=g_{4}\left(L_{i}(K)\right)=i$ and thus, $g_{4}\left(K_{i+1,1} \# r\left(K_{i+1,1}\right)\right)=i$ (see CH14, Proposition 3.3]). This is a contradiction since, $\tau\left(K_{i+1,1} \# r\left(K_{i+1,1}\right)\right)=\tau\left(K_{i+1,1}\right)+\tau\left(r\left(K_{i+1,1}\right)\right)=2 \tau\left(K_{i+1,1}\right)=2 \tau\left(P_{i+1}(K)\right)$ and by Proposition 3.1, $\tau\left(P_{i+1}(K)\right)=i+1$.

It is straightforward to see that $L_{i}(K)$ is a boundary link by construction: use parallel copies of a Seifert surface for K. Lastly $L_{i}(K)$ is topologically slice since K is topologically slice.

Proposition 3.3. The examples ℓ_{i} from Theorem 1.1 are distinct in smooth concordance from the examples given in RS13, Theorem B].

Proof. The examples in RS13, Theorem B] consist of the $(2,0)$ cables, with either the parallel or antiparallel orientation, of a family of knots $\left\{W h\left(J_{i}\right)\right\}$, where J_{i} is either the connected sum of i copies of the right-handed trefoil, or the torus knot $T_{2,2 i+1}$. It is easy to see from [RS13, Corollary 3.2] that their argument also applies for $(2,0)$ cables of the connected sum of i copies of the Whitehead double of the right-handed trefoil knot. We will show that our examples are distinct from these cables in smooth concordance. Since the Ruberman-Strle examples are $(2,0)$ cables, we may choose the antiparallel orientation of the two strands; with this orientation, the smooth slice genus of the link is zero. For our examples, we saw in Theorem 1.1, that $g_{4}\left(\ell_{i}\right)=i$. Let ℓ_{i}^{\prime} denote the link where we switch the orientation of one component. Then we may attach a single band to see a genus zero cobordism between ℓ_{i}^{\prime} and $P_{2 i+2}(K)$ (or its reverse). Then by Proposition 3.1, $g_{4}\left(\ell_{i}^{\prime}\right) \geq 2 i+1$. On the other hand, if the link ℓ_{i} were concordant to a (2,0) cable with some orientation, either ℓ_{i} or ℓ_{i}^{\prime} would have zero slice genus.

In [RS13], we also see some examples due to Livingston consisting of Bing doubles of certain topologically slice knots. As before, we can choose an orientation for the Bing double such that there is a genus zero cobordism to the untwisted Whitehead double, and thus the slice genus of the link with this orientation is at most one. By our previous argument, our links ℓ_{i} are distinct in concordance from Livingston's examples as long as $i \geq 2$.

Note that above we have shown that the difference between the smooth slice genus of 2 -component topologically slice links with the two different relative orientations for the strands can be arbitrarily large. This is also true for the examples given in RS13.

In Cav15], Cavallo introduced a generalization of Ozváth-Szabó's concordance invariant τ for links. He established the following inequality (see [Cav15, Propositions 1.4 and 1.5]):

$$
\operatorname{tb}(\mathcal{L})+|\operatorname{rot}(\mathcal{L})| \leq 2 \tau(L)-2 \leq 2 g_{4}(L)
$$

for any Legendrian diagram \mathcal{L} for a 2 -component link L. If we apply this inequality to ℓ_{i}, using Proposition 2.1 and the diagram in Figure 6, we get the following:

$$
2 i+|0| \leq 2 \tau\left(\ell_{i}\right)-2 \leq 2 i
$$

Then we see that $\tau\left(\ell_{i}\right)=i+1$ and the inequality is sharp for ℓ_{i}. This establishes the following corollary.

Corollary 3.4. Cavallo's τ-invariant can be arbitrarily large for non-split topologically slice 2-component links.

Remark 3.5. An anonymous referee suggested the following slightly different approach to the proof of the main theorem of this paper. Let J be the positive untwisted Whitehead double of the right handed trefoil. Start with the $(2,0)$ cable of J, with antiparallel strands, and performing a connect-sum locally with $\#_{n} J$. As in our proof, we can find cobordisms to knots with known slice genera to conclude that the slice genus of the link is n. These links also satisfy the requirements of Theorem 1.1.

References

[AM97] Selman Akbulut and Rostislav Matveyev. Exotic structures and adjunction inequality. Turkish J. Math., 21(1):47-53, 1997.
[Cav15] Alberto Cavallo. The concordance invariant τ in link grid homology. Preprint: http://arxiv.org/abs/1512.08778, 2015.
[CG88] Tim D. Cochran and Robert E. Gompf. Applications of Donaldson's theorems to classical knot concordance, homology 3 -spheres and property P. Topology, 27(4):495-512, 1988.
[CH14] Tim D. Cochran and Shelly Harvey. The geometry of the knot concordance space. Preprint: http://arxiv.org/abs/1404.5076, 2014.
[Don83] S. K. Donaldson. An application of gauge theory to four-dimensional topology. J. Differential Geom., 18(2):279-315, 1983.
[End95] Hisaaki Endo. Linear independence of topologically slice knots in the smooth cobordism group. Topology Appl., 63(3):257-262, 1995.
[Etn05] John B. Etnyre. Legendrian and transversal knots. In Handbook of knot theory, pages 105-185. Elsevier B. V., Amsterdam, 2005.
[FM15] Peter Feller and Duncan McCoy. A note on the smooth and topological slice genera of 2-bridge knots. Preprint: http://arxiv.org/abs/1508.01431, 2015.
[Fre82] Michael H. Freedman. The topology of four-dimensional manifolds. J. Differential Geom., 17(3):357-453, 1982.
[Gom86] Robert E. Gompf. Smooth concordance of topologically slice knots. Topology, 25(3):353-373, 1986.
[GS99] Robert E. Gompf and András I. Stipsicz. 4-manifolds and Kirby calculus, volume 20 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 1999.
[Hed07] Matthew Hedden. Knot Floer homology of Whitehead doubles. Geom. Topol., 11:2277-2338, 2007.
[HK12] Matthew Hedden and Paul Kirk. Instantons, concordance, and Whitehead doubling. J. Differential Geom., 91(2):281-319, 2012.
[HLR12] Matthew Hedden, Charles Livingston, and Daniel Ruberman. Topologically slice knots with nontrivial Alexander polynomial. Adv. Math., 231(2):913-939, 2012.
[Hom14] Jennifer Hom. Bordered Heegaard Floer homology and the tau-invariant of cable knots. J. Topol., 7(2):287-326, 2014.
[LM98] P. Lisca and G. Matić. Stein 4-manifolds with boundary and contact structures. Topology Appl., 88(1-2):55-66, 1998. Symplectic, contact and low-dimensional topology (Athens, GA, 1996).
[Ng01] Lenhard L. Ng. The Legendrian satellite construction. Preprint: http://arxiv.org/abs/0112105, 2001.
[NT04] Lenhard L. Ng and Lisa Traynor. Legendrian solid-torus links. J. Symplectic Geom., 2(3):411-443, 2004.
[OS04] Peter Ozsváth and Zoltán Szabó. Holomorphic disks and topological invariants for closed threemanifolds. Ann. of Math., 3:1027-1158, 2004.
[Pla04] Olga Plamenevskaya. Bounds for the Thurston-Bennequin number from Floer homology. Algebr. Geom. Topol., 4:399-406, 2004.
[Ray15] Arunima Ray. Satellite operators with distinct iterates in smooth concordance. Proc. Amer. Math. Soc., 143(11):5005-5020, 2015.
[RS13] Daniel Ruberman and Sašo Strle. Concordance properties of parallel links. Indiana Univ. Math. J., 62(3):799-814, 2013.
[Rud95] Lee Rudolph. An obstruction to sliceness via contact geometry and "classical" gauge theory. Invent. Math., 119(1):155-163, 1995.
[Rud97] Lee Rudolph. The slice genus and the Thurston-Bennequin invariant of a knot. Proc. Amer. Math. Soc., 125(10):3049-3050, 1997.
[Tan98] Toshifumi Tanaka. Four-genera of quasipositive knots. Topology Appl., 83(3):187-192, 1998.
Department of Mathematics, Rice University MS-136, 6100 Main St. P.O. Box 1892, Houston, TX 77251-1892

E-mail address: jp35@rice.edu
URL: http://math.rice.edu/~jp35
Department of Mathematics MS-050, Brandeis University, 415 South St., Waltham, MA 02453

E-mail address: aruray@brandeis.edu
URL: http://people.brandeis.edu/~aruray

[^0]: Date: February 12, 2017.
 2000 Mathematics Subject Classification. 57M25.
 ${ }^{\dagger}$ Partially supported by National Science Foundation grant DMS-1309081.
 ${ }^{\dagger \dagger}$ Partially supported by an AMS-Simons Travel Grant.

