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UNIQUENESS THEOREMS FOR TOPOLOGICAL

HIGHER-RANK GRAPH C∗-ALGEBRAS

JEAN RENAULT, AIDAN SIMS, DANA P. WILLIAMS, AND TRENT YEEND

(Communicated by Ken Ono)

Abstract. We consider the boundary-path groupoids of topological higher-
rank graphs. We show that all such groupoids are topologically amenable.
We deduce that the C∗-algebras of topological higher-rank graphs are nu-
clear and prove versions of the gauge-invariant uniqueness theorem and the

Cuntz–Krieger uniqueness theorem. We then provide a necessary and suffi-
cient condition for simplicity of a topological higher-rank graph C∗-algebra,
and a condition under which it is also purely infinite.

1. Introduction

Groupoids are a powerful and widely applicable model for operator algebras.
One area of operator-algebra theory in which they have been particularly prominent
recently is the field of graph algebras and their analogues.

The inception of the field of graph C∗-algebras goes back to the work of Cuntz
and Krieger [5], and the subsequent work of Enomoto and Watatani [6], on simple
purely infinite C∗-algebras associated to finite binary matrices. However, the theory
of graph C∗-algebras really took off after the work of Kumjian–Pask–Raeburn–
Renault [12]. The analysis there was facilitated by realising the C∗-algebras of
interest as groupoid C∗-algebras and employing Renault’s structure theory [18].

Since then, the class of graph C∗-algebras has been generalised in various di-
rections, including ultragraph C∗-algebras [24], higher-rank graph C∗-algebras [11]
and topological graph C∗-algebras [10] to name a few. Though these generalisations
have not all been developed using groupoid methods, each has a natural groupoid
model [8, 13, 15, 28].

In 2005, Yeend developed the notion of a topological higher-rank graph, simul-
taneously generalising Katsura’s notion of a topological graph and Kumjian and
Pask’s notion of a higher-rank graph. Yeend associated to each topological higher-
rank graph Λ a groupoid GΛ and hence a C∗-algebra C∗(Λ) := C∗(GΛ). Yeend’s
construction is sufficiently general to capture Katsura’s algebras and the finitely
aligned k-graph C∗-algebras of [16]. However, the question of amenability of GΛ

remained unresolved in general, so Yeend’s key C∗-algebraic results held only under
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additional hypotheses. In addition, the injectivity hypothesis on Yeend’s unique-
ness theorems is phrased in terms of functions on GΛ rather than in terms of the
underlying topological k-graph Λ.

The first version of the current paper, posted by Renault, Sims and Yeend on
the arXiv preprint server in 2009, aimed to resolve the question of amenability of
Yeend’s groupoid and to prove versions of the gauge-invariant uniqueness theorem
and the Cuntz–Krieger uniqueness theorem with an injectivity hypothesis involving
only the algebra of continuous functions on the vertex set of the topological graph.
Our approach to amenability was to show that the kernel of the canonical Zk-valued
cocycle c on GΛ was amenable (by providing a measure-theoretic direct-limit de-
composition into equivalence relations) and then bootstrap up to amenability of GΛ

by composing invariant means on c−1(0) with the mean on Zk. Shortly after sub-
mission, Williams spotted an error in our bootstrapping argument. The paper was
withdrawn and Williams became involved as we considered how to repair the gap.
In the meantime, versions of the key results, namely the gauge-invariant uniqueness
theorem and the Cuntz–Krieger uniqueness theorem, were proved respectively in
[4] and [26] using the machinery of product systems (though our Proposition 4.2
is required to identify the C∗-algebras described in [4] and [26] with Yeend’s C∗-
algebra). Consequently, this project lay dormant for some time.

Two recent developments brought the project out of mothballs. The first is
Spielberg’s clever argument used in the proof of [23, Proposition 9.3] which combines
groupoid theory and coaction theory to show that if c is a cocycle from an étale
Hausdorff groupoid G into a countable abelian group G and c−1(0) is amenable,
then G is amenable; this fixed the gap in our original argument. (Inspired, to some
extent, by this article in preprint form, the first- and third-named authors have
subsequently proved a generalisation of Spielberg’s result using purely groupoid-
theoretic techniques [20].) The second is the recent characterisation of simplicity
for the C∗-algebra of a second-countable locally compact Hausdorff étale amenable
groupoid G in [3]: Yeend showed in [29] that GΛ has all these properties except for
amenability, and simplicity was not addressed in either [4] or [26].

In this revised article, we combine Spielberg’s argument with our previous anal-
ysis to prove that GΛ is amenable and prove a gauge-invariant uniqueness theo-
rem. The proof of what is now Proposition 3.1 has been significantly simplified by
[4, Proposition 5.16]. We then use the results of [3] to prove a version of the Cuntz–
Krieger uniqueness theorem and to provide a necessary and sufficient condition for
simplicity of C∗(Λ). We conclude by providing a sufficient condition for C∗(Λ) to
be purely infinite.

2. Background

Our results require a considerable amount of background. We do not give full de-
tail, especially as regards the theory of groupoids. For more detail see, for example,
[2, 18, 29].

We regard Nk as a semigroup with identity 0, or sometimes as a category with a
single object and composition defined by the addition operation. For m,n ∈ Nk, we
say m ≤ n if mi ≤ ni for all i ∈ {1, . . . , k}. We write m ∨ n for the coordinatewise
maximum of m and n. We frequently work also with the set (N∪{∞})k; we extend
the addition operation and the order ≤ from Nk to (N∪{∞})k in the obvious way.
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2.1. Groupoids. For details of what follows, see [18]. A groupoid G is a small
category with inverses. We denote the domain and codomain maps by s and r, the
unit space by G(0), and the collection of composable pairs by G(2). A topological
groupoid is a groupoid endowed with a topology under which both the inversion
map and the composition map are continuous. In this paper, we consider only
locally compact Hausdorff groupoids. A topological groupoid is étale if the range
map is a local homeomorphism; when the topology is Hausdorff, it follows that
G(0) is both open and closed in G. For each unit u of an étale groupoid G the sets
Gu := r−1(u) and Gu := s−1(u) are discrete.

The isotropy at a unit u ∈ G(0) is the group Gu
u : r−1(u) ∩ s−1(u). The phrase

“points with trivial isotropy” is frequently used in the literature to refer to the
units u of a groupoid G such that the isotropy at u is the trivial group. We say
that a groupoid G is principal if every unit u has trivial isotropy; algebraically,
these principal groupoids are just equivalence relations, but the term “equivalence
relation” is typically used only for the special case where G is endowed with the
topology induced by the product topology on G(0) × G(0).

The orbit of a unit u of a groupoid G is the set

[u] = {r(x) : s(x) = u};
that is, [u] = r(Gu) = s(Gu). A subset U of G(0) is invariant if [u] ⊆ U whenever
u ∈ U .

2.2. Groupoid C∗-algebras. We will now summarise the constructions of the full-
and reduced groupoid C∗-algebras of an étale locally compact Hausdorff groupoid
G. These constructions can be carried through for any groupoid admitting a Haar
system, but the formulae are simpler in our situation. For full details see [18,
Section II.1]; or for a detailed treatment of étale groupoids, see [14] or [7, Section 3].

Consider the space Cc(G) of compactly supported complex-valued functions on
G. For x ∈ G and f ∈ Cc(G), the set {y : r(y) = r(x), f(y) 	= 0} is both compact
and discrete and hence finite. Thus we may sensibly define an operation ∗ : Cc(G)×
Cc(G) → Cc(G) by

(f ∗ g)(x) =
∑

r(y)=r(x)

f(y)g(y−1x).

The space Cc(G) becomes a topological ∗-algebra with the involution f∗(x) =

f(x−1) and the convolution product ∗ defined above.
A representation of Cc(G) is a nondegenerate ∗-homomorphism π : Cc(G) →

B(H) which is continuous from the inductive limit topology on Cc(G) to the strong
operator topology on B(H). Renault’s disintegration theorem [19, Proposition 4.2]
together with [18, Propositions II.1.7 and II.1.11] implies that there is a pre-C∗-
norm on Cc(G) determined by

‖f‖ = sup{‖π(f)‖ : π is a representation of Cc(G)}.
The full groupoid C∗-algebra C∗(G) is the C∗-completion of Cc(G) in this norm.

To define the reduced groupoid C∗-algebra, fix u ∈ G(0) and let �2(Gu) be the
Hilbert space with orthonormal basis {ξx : x ∈ Gu}. There is a representation
Ind εu : Cc(G) → B(�2(Gu)) such that for f ∈ Cc(G) and x ∈ Gu, we have

Ind εu(f)ξx =
∑
y∈Gu

f(yx−1)ξy.
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The reduced groupoid C∗-algebra C∗
r (G) is then the completion of Cc(G) in the

C∗-norm
‖f‖r = sup

u∈G(0)

‖ Ind εu(f)‖.

There are at least two notions of amenability for groupoids: (topological) amena-
bility [2, Definition 2.2.8], and measurewise amenability [2, Definition 3.3.1]. Topo-
logical amenability of G implies measurewise amenability of G [2, page 83] which in
turn implies that C∗(G) and C∗

r (G) coincide [2, Proposition 6.18]. If G is both étale
and second-countable, then it has countable orbits and a continuous Haar system
(consisting of counting measures), and in this case [2, Theorem 3.3.7] implies that
measurewise and topological amenability are equivalent.

2.3. Topological higher-rank graphs. For the details of this and the next sec-
tion, see [27, 29]. A k-graph is a small category Λ equipped with a functor d :
Λ → Nk which satisfies the following factorisation property : if d(λ) = m+ n, then
there exist unique μ ∈ d−1(m) and ν ∈ d−1(n) such that λ = μν. We call d the
degree map on Λ, and denote d−1(n) by Λn.1 An argument using the factorisation
property shows that Λ0 is equal to the collection of identity morphisms of Λ. So
the domain and codomain functions determine maps s, r : Λ → Λ0 which we call
the source and range maps.

We regard a k-graph Λ as a kind of generalised directed graph: we think of Λ0

as a collection of vertices; we think of each λ ∈ Λ as a path from s(λ) to r(λ); and
the degree map d plays the role of a generalised length function.

Given sets X,Y ⊆ Λ we write XY for the set {μν : μ ∈ X, ν ∈ Y, s(μ) = r(ν)}.
In particular, for V ⊆ Λ0 and X ⊆ Λ, V X = {λ ∈ X : r(λ) ∈ V } and XV = {λ ∈
X : s(λ) ∈ V }. By the usual abuse of notation, for a singleton set {λ} ⊆ Λ, we
write Λλ and λΛ in place of Λ{λ} and {λ}Λ.

The factorisation property implies that if λ ∈ Λ and m ≤ n ≤ d(λ), then
there are unique λ(0,m) ∈ Λm, λ(m,n) ∈ Λn−m and λ(n, d(λ)) ∈ Λd(λ)−n such
that λ = λ(0,m)λ(m,n)λ(n, d(λ)). We think of λ(m,n) as the segment of λ from
position m to position n along λ.

Given μ and ν in Λ, we say that λ is a common extension of μ and ν if we
can factorise λ = μμ′ and λ = νν′ for some μ′, ν′ ∈ Λ. We say that λ is a
minimal common extension of μ and ν if it is a common extension such that d(λ) =
d(μ)∨ d(ν). We denote by MCE(μ, ν) the set of all minimal common extensions of
μ and ν. If r(μ) 	= r(ν), then MCE(μ, ν) = ∅. Given subsets X,Y ⊆ Λ, we define

MCE(X,Y ) :=
⋃

μ∈X,ν∈Y

MCE(μ, ν).

A topological k-graph is a k-graph Λ endowed with a second-countable locally
compact Hausdorff topology such that each Λn is open, the range map is continuous,
composition is continuous and open, and the source map is a local homeomorphism.

We say that the topological k-graph Λ is compactly aligned if, for every pair of
compact subsets X,Y ⊆ Λ, the set MCE(X,Y ) is also compact. Given v ∈ Λ0

we say that a subset E of Λ is compact exhaustive for v if E is compact, r(E)
is a neighbourhood of v, and for all λ ∈ r(E)Λ there exists μ ∈ E such that
MCE(λ, μ) 	= ∅.

1When k = 1 so that n ∈ N, there is a slight clash of notation here with the usual notation for
the product space

∏n
i=1 Λ; but the meaning is usually clear from context.
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An important class of examples of higher-rank graphs, which we will use to make
sense of the notion of an infinite path in a k-graph, are the (discrete) higher-rank
graphs Ωk,m. These are defined as follows. For fixed k ≥ 1 and m ∈ (N ∪ {∞})k,
the k-graph Ωk,m has morphisms {(p, q) : p, q ∈ Nk, p ≤ q ≤ m}. The range and
source maps are r(p, q) = (p, p) and s(p, q) = (q, q), composition is determined by
(p, q)(q, r) = (p, r), and the degree map is given by d(p, q) = q − p. We usually
abbreviate a vertex (p, p) of Ωk,m as p.

A k-graph morphism x from a k-graph Λ to a k-graph Γ is a functor x : Λ → Γ
which intertwines the degree maps. Given a k-graph Λ, each λ ∈ Λ determines,
and is determined by, the unique k-graph morphism xλ : Ωk,d(λ) → Λ such that

xλ(m,n) = λ(m,n) for allm ≤ n ≤ d(λ). By analogy, for arbitrarym ∈ (N∪{∞})k,
we regard a k-graph morphism x : Ωk,m → Λ as a (possibly infinite) path in Λ, and
define r(x) := x(0), and d(x) = m. If mi < ∞ for all i, then we also write s(x) for
x(m), but if mi = ∞ for some i, then x has no source.

For m ∈ (N ∪ {∞})k, a boundary path of degree m in a topological k-graph Λ
is a k-graph morphism x : Ωk,m → Λ such that for every n ∈ Nk with n ≤ m
and each compact exhaustive set E for x(n, n), there is an element λ of E such
that d(x) ≥ n + d(λ) and x(n, n + d(λ)) = λ. Fix a boundary path x of degree
m. For each n ∈ Nk with n ≤ m, there is a unique boundary path σn(x) of degree
m − n defined by σn(x)(p, q) = x(n + p, n + q) for all (p, q) ∈ Ωk,m−n. Given
μ ∈ Λ with s(μ) = r(x), there is a unique boundary path μx of degree d(μ) + m
such that (μx)(0, d(μ)) = μ and such that (μx)(p+ d(μ), q + d(μ)) = x(p, q) for all
(p, q) ∈ Ωk,m. We have σd(μ)(μx) = x = x(0, n)σn(x).

We denote the collection of all boundary paths in Λ by ∂Λ. For a subset U of
Λ, we denote by Z(U) the collection

{x ∈ ∂Λ : x(0, n) ∈ U for some n ∈ Nk with n ≤ d(x)}.

The collection of sets
(2.1)
{Z(U) ∩ Z(F )c : U ⊆ Λm is relatively compact and open, F ⊆ UΛ is compact}

form a basis for a locally compact Hausdorff topology on ∂Λ.

2.4. The boundary-path groupoid of a topological higher-rank graph.
Given a compactly aligned topological k-graph Λ, we define a set GΛ by

GΛ := {(x,m−n, y) : m,n ∈ Nk, x, y ∈ ∂Λ,m ≤ d(x), n ≤ d(y) and σm(x)=σn(y)}.

Define G(0)
Λ := {(x, 0, x) : x ∈ ∂Λ}, and identify it with ∂Λ via (x, 0, x) �→ x. For

(x, p, y) ∈ GΛ, define r(x, p, y) = x and s(x, p, y) = y. With structure maps

(x, p, y)−1 = (y,−p, x), and (x, p, y)(y, q, z) = (x, p+ q, z),

the set GΛ becomes a groupoid with unit space ∂Λ, and c(x, p, y) := p defines a
continuous 1-cocycle c : GΛ → Zk.

For U, V ⊆ Λ, define U ∗s V := {(μ, ν) ∈ U × V : s(μ) = s(ν)}. For F ⊆ Λ ∗s Λ
and p ∈ Zk, define

Z(F, p) := {(μx, p, νx) : (μ, ν) ∈ F, d(μ)− d(ν) = p, s(μ) = s(ν), x ∈ s(μ)∂Λ}.

The following follows from Yeend’s results, but it is worthwhile to state it ex-
plicitly.
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Lemma 2.1. Let Λ be a compactly aligned topological k-graph. Then

{Z(U ∗s V, p− q) ∩ Z(F, p− q)c : p, q ∈ Nk, U ⊆ Λp and V ⊆ Λq,

U, V are relatively compact and open,

and F is a compact subset of
⋃

α∈Λ Uα× V α}

is a basis for a locally compact Hausdorff topology on GΛ under which GΛ becomes
a locally compact Hausdorff étale groupoid.

Proof. Proposition 3.6 and Theorem 3.16 of [29] imply that the sets of the form de-
scribed in the lemma are a basis for a second-countable, locally compact, Hausdorff
topology on the path groupoid GΛ of Λ, and that GΛ is an étale groupoid under
this topology. Propositions 4.4 and 4.7 of [29] show that ∂Λ is a closed invariant

subset of G
(0)
Λ . Since GΛ is by definition the restriction of GΛ to ∂Λ, the result

follows. �

Notation 2.2. Given U ⊆ Λp and V ⊆ Λq and a compact subset F ⊆
⋃

α∈Λ Uα×V α,
it is unambiguous to abbreviate the basic open set Z(U ∗s V, p− q) ∩ Z(F, p− q)c

as Z(U ∗s V ) ∩ Z(F )c, and we will frequently do so.

The topological higher-rank graph C∗-algebra C∗(Λ) is defined to be the full
groupoid C∗-algebra C∗(GΛ).

3. Injectivity of representations on functions on the unit space

The uniqueness theorems in [29] assume the existence of a representation of

C∗(GΛ) which restricts to an injection of C0(G(0)
Λ ) = C0(∂Λ). For graph C∗-

algebras, topological graph C∗-algebras and higher-rank graph C∗-algebras, the
usual hypothesis is that the given representation be injective on the embedded
copy of C0(Λ

0). We show that the two hypotheses are equivalent by showing that
injectivity on C0(Λ

0) implies injectivity on C0(∂Λ). That is, the usual hypothesis
also suffices for topological higher-rank graphs.

The definition of the topology on ∂Λ ensures that the range map r : x �→ x(0)
is continuous from ∂Λ to Λ0. Proposition 4.3 of [29] implies that r is surjective. It
therefore induces an injection

r∗ : C0(Λ
0) ↪→ C0(∂Λ) such that r∗(f) = f ◦ r for all f ∈ C0(Λ

0).

Proposition 3.1. Let Λ be a compactly aligned topological k-graph. Let π be a
representation of C∗(GΛ). If π|r∗(Cc(Λ0)) is injective, then π|

C0(G(0)
Λ )

is injective.

Proof. The ideal ker(π)∩C0(∂Λ) consists of all functions supported on some open
invariant subset U of ∂Λ. So X := ∂Λ \ U is a closed invariant set and π factors
through a representation of GΛ|X . That π ◦ r is injective on Cc(Λ

0) implies that
X ∩ Z(V ) 	= ∅ for every open V ⊆ Λ0. Fix v ∈ Λ0 and a fundamental sequence of
compact neighbourhoods (Kn)

∞
n=1 of v ∈ Λ0. We have just seen that X ∩Kn 	= ∅

for all n, so fix a sequence (xn)
∞
n=1 with each xn ∈ X∩Kn. By compactness we may

pass to a convergent subsequence with limit x, and then continuity of the range
map ensures that r(x) = v. Hence K ∩ v∂Λ 	= ∅.

Proposition 5.16 of [4] implies that the only closed invariant set of ∂Λ which
intersects each v∂Λ is ∂Λ itself. So K = ∂Λ, and hence ker(π)∩C0(∂Λ) = {0}. �
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4. Amenability and the gauge-invariant uniqueness theorem

In this section we prove a variant of an Huef and Raeburn’s gauge-invariant
uniqueness theorem [9] for topological higher-rank graph C∗-algebras. A key ingre-
dient is amenability of GΛ which guarantees that C∗(GΛ) and C∗

r (GΛ) coincide; it
follows from [18, Proposition 4.8] that the conditional expectation of C∗(GΛ) onto

C0(G(0)
Λ ) is faithful.

Recall that given a topological higher-rank graph Λ, we denote by c the canonical
1-cocycle c : GΛ → Zk given by c(x,m, y) = m.

Theorem 4.1 (The gauge-invariant uniqueness theorem). Let Λ be a compactly
aligned topological k-graph, and let r∗ : C0(Λ

0) → C0(∂Λ) be the homomorphism
f �→ f ◦ r. Suppose that π : C∗(Λ) → B is a homomorphism such that π ◦ r∗ is
injective on Cc(Λ

0). Suppose that there is a strongly continuous action β : Tk →
Aut(B) such that for each n ∈ Nk and f ∈ Cc(GΛ) with supp(f) ⊆ c−1(n), we have
βz(π(f)) = znπ(f). Then π is injective.

To prove the theorem, we first show that Yeend’s boundary-path groupoid is
amenable in the sense of [2], and then follow the standard argument of [11]. We
begin by showing that the kernel of c is amenable. For us, amenability of GΛ is
important only as a hypothesis which ensures that C∗(GΛ) and C∗

r (GΛ) coincide,
so we will not dwell on the rather technical definition. We thank Toke Carlsen for
pointing out an error in an earlier version of the proof of this result.

Proposition 4.2. Let Λ be a compactly aligned topological k-graph. Then the kernel

H := c−1(0) of c is amenable, principal and satisfies H(0) = G(0)
Λ .

Proof. For m ∈ Nk, let Rm denote the subgroupoid of H defined by

Rm := {(x, 0, x) : x ∈ ∂Λ} ∪ {(x, 0, y) : d(x) = d(y) ≥ m,σm(x) = σm(y)}
= {(x, 0, x) : x ∈ ∂Λ} ∪ {(αz, 0, βz) : z ∈ ∂Λ, α, β ∈ Λmr(z)}.

Each Rm is an equivalence relation, and each Rm is also an Fσ set (that is, a
countable union of closed sets) in ∂Λ×∂Λ because GΛ is locally compact. We claim
that each Rm is proper as a Borel groupoid [2, Definition 2.1.2]. By [2, Examples
2.1.4(2)], this is equivalent to the quotient space being a standard Borel space. The
Mackey–Glimm–Ramsay dichotomy [17, Theorem 2.1] implies that this in turn is
equivalent to the assertion that orbits are locally closed.

Fix m ∈ Nk. To see that the orbits in Rm are indeed locally closed, first observe
that the orbit [x] of x in Rm is equal to {x} if d(x) 	≥ m, and is equal to {ασm(x) :
α ∈ Λm, s(α) = x(m)} otherwise. In the first case, [x] = {x} is in fact closed
because the topology on G0

Λ is Hausdorff. In the second case, we claim that

(4.1) [x] =
(
R(0)

m ∩ Z(Λm ∗s Λm)
)
∩ {(ασm(x), 0, βσm(x)) : d(α) = d(β) = m}.

To see this, observe that the right-hand side clearly contains [x], so we need only
show the reverse inclusion. Fix

(w, p, z) ∈
(
R(0)

m ∩ Z(Λm ∗s Λm)
)
∩ {(ασm(x), 0, βσm(x)) : d(α) = d(β) = m}.

Then w = z ∈ ∂Λ, p = 0, and d(w) ≥ m. Fix a sequence of pairs (αj , βj) ∈
Λmx(m) × Λmx(m) such that (αjσ

m(x), 0, βjσ
m(x)) → (w, 0, w). In particular,

αjσ
m(x), βjσ

m(x) → w in ∂Λ. Then [29, Proposition 3.12](i) ensures that the
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αjσ
m(x)(0, p ∧ d(x)) converge to w(0,m + p) for all p ≤ d(w) −m, which implies

that d(w) ≤ d(x) and then that in fact (αjσ
m(x))(0, q) → w(0, q) for all q ≤ d(w).

It therefore suffices to show that d(w) ≥ d(x). Suppose for contradiction that i ≤ k
satisfies d(w)i < d(x)i. Then mi ≤ d(w)i < d(x)i, which gives

(αjσ
m(x))(d(w), d(w) + ei) = x(d(w), d(w) + ei) for all j ∈ N.

In particular, the set

Jd(w),i = {j ∈ N : d(αjσ
m(x))i ≥ d(w) + ei}

is equal to N and hence infinite, but the sequence (αjσ
m(x))(d(w), d(w)+ei)j∈Jd(w),i

is the constant sequence, and in particular is not wandering, contradicting [29]
[Proposition 3.12(ii)]. This proves (4.1).

Since GΛ is étale, the unit space R
(0)
m = G(0)

Λ is open. Each Z(Λn ∗s Λn) is open
in GΛ by definition of the topology on GΛ, so

R(0)
m ∩

⋃
n≥m

Z(Λn ∗s Λn)

is open in the relative topology on Rm. Hence [x] is the intersection of an open
set and a closed set in Rm and hence is locally closed. So Rn is a proper Borel
groupoid; in particular it is measurewise amenable.

The groupoid H =
⋃

n∈Nk Rn is therefore a direct limit (in the sense of [2,
Section 5.3f ]) of measurewise amenable groupoids, and hence is itself measurewise
amenable by [2, Proposition 5.3.37]. Since GΛ is étale by [29, Theorem 3.16 and
Definition 4.8], H is also étale. Since it is second-countable, it follows that orbits
are countable in H, so [2, Theorem 3.3.7] implies that H is topologically amenable.

The factorisation property in Λ implies that if d(α) = d(β), then for any x ∈ ∂Λ,
we have αx = βx if and only if α = β. So H is principal. �

In the earlier withdrawn version of this article, the first-, second- and fourth-
named authors gave an incorrect proof that if G is a second-countable, locally
compact, Hausdorff, étale, groupoid and admits a continuous cocycle c into an
amenable group such that the kernel of c is an amenable groupoid, then G itself is
amenable. Our proof was flawed because it required strong surjectivity of c. The
canonical Zk-valued cocycle on the groupoid of a topological k-graph is usually not
strongly surjective unless the range-map in Λ is both proper and surjective on each
Λn, in which case Yeend’s original results [29] apply. Fortunately, this gap is now
filled by a result of Spielberg [23] (see also [20]).

Corollary 4.3. Let Λ be a compactly aligned topological k-graph, and let GΛ be the
associated groupoid as in [29]. Then GΛ is (topologically) amenable and C∗(Λ) is
nuclear.

Proof. Proposition 9.3 of [23] says that if c is a continuous cocycle on a Hausdorff
étale groupoid G taking values in a discrete abelian group G and the kernel of c is
amenable, then G is amenable. To prove this result, Spielberg shows that C∗(G)
is nuclear and then applies [2, Corollary 6.2.14(ii)]. So the result follows from
Spielberg’s argument combined with Proposition 4.2. �

Proof of Theorem 4.1. Let H := c−1(0). Averaging over the gauge-action γ : Tk →
Aut(C∗(Λ)) determines a faithful conditional expectation Φγ : C∗(GΛ) → C∗(H).
Averaging over the action β : Tk → Aut(B) determines a conditional expectation
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Φβ : B → π(C∗(H)) such that π ◦ Φγ = Φβ ◦ π, so by a standard argument
[22, Lemma 3.14] it suffices to show that π|C∗(H) is injective.

By hypothesis π is injective on r∗(Cc(Λ
0)), and it follows from Proposition 3.1

that π is injective on C0(G(0)
Λ ) = C0(H

(0)). Since Proposition 4.2 implies that H is
both principal and amenable, it follows from [18, II, Proposition 4.6] that π|C∗(H)

is injective. �

5. The Cuntz–Krieger uniqueness theorem and simplicity

In this section we use groupoid machinery to recover Yamashita’s version of the
Cuntz–Krieger uniqueness theorem [26]. (Yamashita’s proof uses the technology of
product systems and Cuntz–Pimsner algebras.) We also use the results of [3] to
characterise simplicity of C∗(Λ) in terms of the structure of Λ, and to establish a
condition under which C∗(Λ) is purely infinite.

Recall from [29] that given a topological higher-rank graph Λ, a boundary path
x ∈ ∂Λ is said to be aperiodic if σm(x) 	= σn(x) for all distinct m,n ∈ Nk with
m,n ≤ d(x).

Theorem 5.1 (The Cuntz–Krieger uniqueness theorem). Let Λ be a compactly
aligned topological k-graph. Let r∗ : C0(Λ

0) → C0(∂Λ) be the homomorphism
f �→ f ◦ r. The following are equivalent:

(1) For every open set V ⊆ Λ0 there exists an aperiodic element x ∈ Z(V ).
(2) Every homomorphism π : C∗(Λ) → B such that π◦r∗ is injective on Cc(Λ

0)
is injective.

Remark 5.2. Condition (1) in Theorem 5.1 is precisely Yeend’s aperiodicity con-
dition (A) (see [29, Theorem 5.2]). Wright shows in Theorem 3.1 of [25] that Λ
satisfies condition (A) if and only if

(5.1)
for every pair U, V of open subsets of Λ such that s(U) = s(V ) and s|U , s|V
are homeomorphisms, there exists τ ∈ s(U)Λ such that MCE(Uτ, V τ ) = ∅.

Since it does not involve elements of ∂Λ, which are hard to identify in practice, this
condition is easier to check than condition (1) of Theorem 5.1 (see [25, Section 4]).
We give an independent, although somewhat circuitous, proof of Wright’s result in
Lemma 5.6.

The relationship between Yeend’s aperiodicity condition and Yamashita’s Con-
dition (B) [26, Definition 4.9] is not transparent. However, since [26, Theorem 4.14]
says that Condition (B) implies (2) of Theorem 5.1, we deduce that Condition (1)
is at least formally weaker than Condition (B).

As in [3], we say that a topological groupoid G is topologically principal if the
set

{
u ∈ G(0) : Gu

u = {u}
}
of units with trivial isotropy is dense in G(0), and we say

that G is minimal if the only open invariant subsets of G(0) are ∅ and G(0).

Proof of Theorem 5.1. Lemma 2.1 says that GΛ is second-countable, locally com-
pact, Hausdorff and étale. Corollary 4.3 implies that it is amenable.

Theorem 5.2 of [29] says that Λ satisfies (1) if and only if GΛ is topologically
principal. Combined with the preceding paragraph, [3, Proposition 5.5] implies
that GΛ is topologically principal if and only if every nontrivial ideal of C∗(GΛ) has

nontrivial intersection with C0(G(0)
Λ ). Finally, Proposition 3.1 implies that every
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nontrivial ideal of C∗(GΛ) has nontrivial intersection with C0(G(0)
Λ ) if and only if

C∗(Λ) satisfies (2). �

We now employ the full strength of the characterisation [3, Theorem 5.1] of sim-
plicity for C∗-algebras of second-countable locally compact Hausdorff étale amena-
ble groupoids to characterise simplicity of topological higher-rank graph C∗-
algebras.

Theorem 5.3. Let Λ be a compactly aligned topological k-graph. Then C∗(Λ) is
simple if and only if both of the following conditions are satisfied:

(1) Λ satisfies condition (1) of Theorem 5.1; and
(2) for every x ∈ ∂Λ and open U ⊆ Λ0 there exists n ∈ Nk such that n ≤ d(x)

and UΛx(n) 	= ∅.

Lemma 5.4. Let Λ be a compactly aligned topological k-graph. Suppose that V ⊆
Λm is open, F ⊆ V Λ is compact and Z(V ) ∩ Z(F )c 	= ∅. Then there exists p ≥
m and a nonempty open subset W of Λp such that Z(W ) ⊆ Z(V ) ∩ Z(F )c. In
particular, if U is an open subset of ∂Λ, then there exist n ∈ Nk and an open subset
W of Λn such that Z(W ) ⊆ U .

Proof. We follow the proof of Theorem 5.2 of [29]. Since s|Λm is a local home-
omorphism, we may assume that it restricts to a homeomorphism on U . Let
E := {λ(m, d(λ)) : λ ∈ F}. As in [29, Definition 3.10], the map λ �→ λ(m, d(λ))
is continuous on each F ∩ Λp. Since F is compact and d : Λ → Nk is continuous,
d(F ) is finite, and it follows that E is compact. Fix x ∈ Z(V ) ∩ Z(F )c, and let
λ := x(0,m). Since x 	∈ Z(F ), we have σm(x) 	∈ Z(E). Since σm(x) ∈ ∂Λ it
follows that either r(E) is not a neighbourhood of x(m), or E is not exhaustive for
r(E). Suppose first that r(E) is not a neighbourhood of x(m). Since E is closed,
it follows that there is an open neighbourhood S of x(m) which does not intersect
r(E); and then n := m and W := US does the job. Now suppose that r(E) is not
exhaustive for r(E). Then there exists λ ∈ r(E)Λ such that λΛ ∩ EΛ = ∅. Since
EΛ is closed there is then a neighbourhood S of λ in Λd(λ) such that SΛ∩EΛ = ∅.
Now n := m+ d(λ) and W := US does the job.

The final statement follows as the Z(V )∩Z(F )c are a base for the topology. �

Lemma 5.5. Let Λ be a compactly aligned topological k-graph. The following are
equivalent:

(1) Λ satisfies condition (2) of Theorem 5.3.

(2) G(0)
Λ has no nontrivial open invariant subsets.

Proof. First suppose that Λ satisfies condition (2) of Theorem 5.3. Fix x ∈ ∂Λ. It

suffices to show that [x] = ∂Λ. To see this, fix y ∈ G(0)
Λ = ∂Λ. Each neighbourhood

of y contains a basic open neighbourhood Z(U) ∩ Z(F )c of y where U ⊆ Λm is
relatively compact and F ⊆ UΛ is compact. Lemma 5.4 yields p ∈ Nk with p ≥ m
and an open subsetW of Λp such that Z(W ) ⊆ Z(U)∩Z(F )c. Proposition 4.3 of [29]
implies that each v∂Λ 	= ∅, and so WΛ∩FΛ = ∅. Since s(W ) is open, condition (2)
of Theorem 5.3 gives us n ≤ d(x) such that WΛx(n) 	= ∅, say α ∈ WΛx(n). Then

ασn(x) ∈ [x] ∩ Z(W ) ⊆ [x] ∩ Z(U) ∩ Z(F )c. Hence y ∈ [x].

Now suppose that G(0)
Λ has no nontrivial open invariant subsets. Fix an open

U ⊆ Λ0 and an element x ∈ ∂Λ. Since [x] is a nonempty closed invariant set, it is
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all of ∂Λ. Since Z(U) is open it follows that [x]∩Z(U) is nonempty. By definition
of GΛ, we have [x] = {λσn(x) : n ∈ Nk, λ ∈ Λx(n)}, so Λ satisfies condition (2) of
Theorem 5.3. �

Proof of Theorem 5.3. As in the proof of Theorem 5.1, GΛ is second-countable, lo-
cally compact, Hausdorff, étale and amenable. Hence Theorem 5.1 of [3] implies
that C∗(Λ) is simple if and only if GΛ is topologically principal and minimal. The-
orem 5.1 of [29] implies that GΛ is topologically principal if and only if Λ satisfies
condition (1) of Theorem 5.1. So the result follows from Lemma 5.5. �

Lemma 3.3 of [3] implies that a second-countable locally compact Hausdorff
groupoid G is topologically principal if and only if it satisfies the apparently weaker
condition (genuinely weaker in the absence of the assumption that G is second-
countable) that the interior of the isotropy subgroupoid

⋃
u∈G(0) Gu

u of G is precisely

G(0). Since this condition should be easier to check, we describe what it says for a
topological k-graph: it is a topological analogue of the condition called “no local
periodicity” in [21]. The third condition below is Wright’s finite-paths aperiodicity
condition [25, Theorem 3.1(C)]; as mentioned above, our argument below recovers
the equivalence (1) ⇐⇒ (3) of [25, Theorem 3.1] via results of [3] and [29].

Throughout the rest of the section we make frequent use of the notational
convenience of Notation 2.2; that is, we write Z(U ∗s V ) ∩ Z(F )c in place of
Z(U ∗s V, p− q) ∩ Z(F, p− q)c when the former is unambiguous.

Lemma 5.6. Let Λ be a compactly aligned topological k-graph. The following are
equivalent:

(1) Λ satisfies condition (1) of Theorem 5.1.
(2) For every open set V ⊆ Λ0 and every pair m,n of distinct elements of Nk

there exists x ∈ Z(V ) such that either d(x) 	≥ m ∨ n or σm(x) 	= σn(x).
(3) Λ satisfies (5.1).

Proof. We first prove (1) ⇐⇒ (2). We have seen that Λ satisfies condition (1) of
Theorem 5.1 if and only if GΛ is topologically principal. Lemmas 3.1 and 3.3 of [3]
show that GΛ is topologically principal if and only if

(5.2) every open subset of GΛ\G(0)
Λ contains an element (x,m, y) such that x 	= y.

So it suffices to show that (5.2) is equivalent to (2).

First suppose that Λ satisfies (2). Fix an open set O ⊆ GΛ \ G(0)
Λ .

By definition of the topology on GΛ, the set O contains a nonempty subset of
the form Z(U ∗s V ) ∩ Z(F )c where U ⊆ Λp and V ⊆ Λq are relatively compact
with s(U) = s(V ), s|U and s|V are homeomorphisms, and F is a compact subset of⋃

α∈Λ Uα×V α. Since the map (μα, να) �→ μα and the map μα �→ (μα)(p, p+d(α))
are continuous, it follows that F = {(μα, να) : (μ, ν) ∈ U ∗s V, α ∈ K} for some

compact K ⊆ s(U)Λ. It suffices to find (x, p − q, y) ∈ Z(U ∗s V ) ∩ Z(F )c with
x 	= y.

If p = q, then since O ∩ G(0)
Λ = ∅ and since the groupoid H of Proposition 4.2 is

principal, any (x, 0, y) ∈ Z(U ∗s V ) ∩Z(F )c does the job. So we may suppose that
p 	= q. By Lemma 5.4, there exists m ∈ Nk with m ≥ p and an open W0 ⊆ Λm

such that Z(W0) ⊆ Z(U) ∩ Z(UK)c. Let n := m− p and let W := {λ(p,m) : λ ∈
W0} ⊆ Λn. Then r(W ) ⊆ s(U) = s(V ) and Z(UW ∗s VW ) ⊆ Z(U ∗s V )∩Z(F )c ⊆
O. Let p′ := p − (p ∧ q) and q′ := q − (p ∧ q). Then p 	= q forces p′ 	= q′.
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Since the source map in Λ is open, s(W ) = s(W0) is open, so condition (2) implies

that there exists x ∈ Z(s(W )) such that either d(x) 	≥ p′ ∨ q′ or σp′
(x) 	= σq′(x).

Let μ ∈ UW and ν ∈ VW be the unique elements such that s(μ) = s(ν) = r(x).
Then (μx, p− q, νx) ∈ O.

We will show that μx 	= νx; equation (5.2) then follows. We consider two cases.
First suppose that d(x) 	≥ p′ ∨ q′. Since p′ ∧ q′ = 0 it follows that there exists
i ≤ k such that d(x)i < ∞ and p′i 	= q′i. Thus pi 	= qi, and since d(μ) = p + n
and d(ν) = q + n, it follows that d(μ)i − d(ν)i 	= 0. Since d(x)i < ∞, we have
d(μx)i − d(νx)i = d(μ)i − d(ν)i 	= 0. In particular d(μx) 	= d(νx), forcing μx 	= νx

as required. Now suppose that d(x) ≥ p′ ∨ q′. Then (2) says that σp′
(x) 	= σq′(x).

Since μ ∈ UW ⊆ Λp+n and ν ∈ VW ⊆ Λq+n, we have

σp+n+q′(μx) = σq′(x) 	= σp′
(x) = σq+n+p′

(νx).

Since p + n + q′ = p + q − (p ∧ q) + n = q + n + p′, we deduce that μx 	= νx as
required.

Now suppose that Λ does not satisfy (2). Fix an open set V ⊆ Λ0 and distinct
m,n ∈ Nk such that d(x) ≥ m ∨ n and σm(x) = σn(x) for all x ∈ V ∂Λ. Then

Z(V Λm ∗s V Λn) is a nonempty open subset of GΛ which does not intersect G(0)
Λ

whose every element is an isotropy element, and so (5.2) does not hold. This
completes the proof of (1) ⇐⇒ (2)

We now establish (1) ⇐⇒ (3). As above, it suffices to show that (5.2) is
equivalent to (3).

First suppose that Λ satisfies (5.1). Fix an open subset B of GΛ \G(0)
Λ . As above

there exist m,n ∈ Nk and open sets U ⊆ Λm and V ⊆ Λn such that s(U) = s(V ),
s|U and s|V are homeomorphisms and Z(U ∗s V ) ⊆ B. By (5.1), there exists
τ ∈ s(U)Λ such that MCE(Uτ, V τ ) = ∅. Let α ∈ U and β ∈ V be the unique
elements such that s(α) = s(β) = r(τ ) and fix x ∈ s(τ )∂Λ. Then g := (ατx,m −
n, βτx) ∈ Z(U ∗s V ) ⊆ B, and since MCE(ατ, βτ ) = ∅, we have ατx 	= βτx.

Now suppose that Λ does not satisfy (5.1). So there exist m,n ∈ Nk and open
U ⊆ Λm and V ⊆ Λn such that: (1) s(U) = s(V ) = W , say; (2) the source
map restricts to homeomorphisms of U and V onto W ; and (3) MCE(Uτ, V τ ) 	= ∅
for all τ ∈ WΛ. By passing to subneighbourhoods, we may assume that U and
V are compact and contained in sets on which s is a homeomorphism, and that
MCE(Uτ, V τ ) 	= ∅ for all τ ∈ s(U). Fix μ ∈ U and ν ∈ V with s(μ) = s(ν). Then
MCE(μ, ν) 	= ∅ (consider τ = s(μ)), so μ(0,m ∧ n) = ν(0,m ∧ n) and for each
τ ∈ s(μ)Λ, we have

μ(0,m ∧ n)MCE(μ(m ∧ n,m)τ, ν(m ∧ n, n)τ ) = MCE(μτ, ντ ) 	= ∅.

So by replacing U with {μ(m ∧ n,m) : μ ∈ U} and V with {ν(m ∧ n, n) : ν ∈ V },
we may assume that m ∧ n = 0. We will show that Z(U ∗s V ) consists entirely of
isotropy. We first establish the following claim.

Claim. For each p ∈ N, the set WΛpm is compact exhaustive for each v ∈ s(U).
The claim is trivial for p = 0, so suppose as an inductive hypothesis that WΛpm

is compact exhaustive for each v ∈ s(U) = W . Since m ∧ n = 0 and hence
(p + 1)m ∧ n = 0, we have MCE(UΛpm, V ) ⊆ V Λ(p+1)m. Furthermore, for ν ∈ V
and τ ∈ s(μ)Λ(p+1)m, the element μ ∈ U with s(μ) = r(τ ) satisfies MCE(μ, ντ ) 	= ∅,
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so ντ ∈ MCE(UΛpm, V ). Hence

MCE(UΛpm, V ) = V Λ(p+1)m for all p ∈ N.

Since each of U and WΛpm is compact, continuity of composition implies that
UΛpm is compact. Since V is compact also, and Λ is compactly aligned, it follows
that V Λ(p+1)m is compact. Since λ �→ λ(m, d(λ)) is continuous on Λn+(p+1)m, we
deduce that WΛ(p+1)m is compact. It remains to show that it is exhaustive for
each v ∈ W . For this fix τ ∈ WΛ. The inductive hypothesis supplies an element
η of MCE(WΛpm, τ ). By choice of U and V , we have MCE(Uη, V η) 	= ∅, say
μηξ = νηζ ∈ MCE(Uη, V η) with μ ∈ U and ν ∈ V . By definition of η, we have
d(η) = (pm) ∨ d(τ ) ≥ pm, so d(νηζ) = d(μηξ) ≥ d(μ) + d(η) ≥ (p + 1)m. Since
d(ν) ∧ m = 0, it follows that d(ηζ) ≥ (p + 1)m. Since η(0, d(τ )) = τ , we have
(ηζ)(0, d(τ ) ∨ (p + 1)m) ∈ MCE(τ,WΛ(p+1)m). So WΛ(p+1)m is exhaustive for v.
This proves the claim.

Now fix (μ, ν) ∈ U ∗s V and x ∈ s(μ)∂Λ so that (μx,m − n, νx) is a typical
element of Z(U ∗s V ). We must show that μx = νx. The claim and the definition
of ∂Λ imply that for each p ∈ N there exists μ ∈ WΛpm such that d(x) ≥ d(μ) and
x(0, pm) = μ. In particular, d(x)i = ∞ whenever mi > 0, and similarly d(x)i = ∞
whenever ni > 0. So d(μx) = d(νx) = d(x), and p ≤ d(x) if and only if p ≤ d(μx).
By choice of U and V , we have MCE(μx(0, p), νx(0, p)) 	= ∅ for all p ≤ d(x). Hence
(μx)(0, p) = (νx)(0, p) for all p ≤ d(μx) = d(νx). That is, μx = νx as required. �

We use Anantharaman-Delaroche’s criterion for pure infiniteness of a groupoid
C∗-algebra [1, Proposition 2.4] to provide a criterion under which C∗(Λ) is simple
and purely infinite. Recall from [1, Definition 2.1] that a groupoid G is locally
contracting if, for every open U ⊆ G(0) there exist an open subset V of U and an
open bisection B such that V ⊆ s(B) and r(BV ) � V .

Definition 5.7. Given a compactly aligned topological k-graph Λ, we say that
a precompact open subset U of Λ0 is contracting if there exist m 	= n ∈ Nk and
nonempty precompact open sets Ym ⊆ Λm and Yn ⊆ Λn such that all of the
following hold: s(Ym) = s(Yn); r(Ym) ⊆ r(Yn) = U ; the source map restricts to a
homeomorphism on each of Ym and Yn; for every μ ∈ Ym and ν ∈ Yn such that
r(μ) = r(ν), we have MCE(μτ, ν) 	= ∅ for all τ ∈ s(μ)Λ; and there exists an open
subset W of YnΛ such that {ζ(0, n) : ζ ∈ W} = Yn and MCE(μ, ζ) = ∅ for all
μ ∈ Ym and ζ ∈ W .

Proposition 5.8. Let Λ be a compactly aligned topological k-graph. Suppose that
for every v ∈ Λ0 there exist p ∈ Nk and an open set V ⊆ Λp such that v ∈ r(V )
and s(V ) is contracting. Then GΛ is locally contracting. If Λ also satisfies the
hypotheses of Theorem 5.3, then C∗(Λ) is simple and purely infinite.

To prove the Proposition, we first prove that contracting neighbourhoods in Λ0

give rise to contracting bisections in GΛ.

Lemma 5.9. Let Λ be a compactly aligned topological k-graph. Suppose that U ⊆
Λ0 is contracting, and let m, n, Ym ⊆ Λm, Yn ⊆ Λn and W ⊆ YnΛ be as in
Definition 5.7. Let Y ′

n be a nonempty open set with Y ′
n ⊆ Yn, and let Y ′

m :=

s−1(Y ′
n) ∩ Ym. Then r(Z(Y ′

m ∗s Y ′
n)) � s(Z(Y ′

m ∗s Y ′
n)).
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Proof. We first claim that MCE(Ym, Yn) = YmΛ(m∨n)−m, and s(Ym)Λ(m∨n)−m is
compact exhaustive for each v ∈ s(Ym).

The containment MCE(Ym, Yn) ⊆ YmΛ(m∨n)−m is clear. For the reverse con-
tainment, fix τ ∈ s(Ym)Λ(m∨n)−m, let μ be the unique element of Ymr(τ ), and
fix ν ∈ Yn such that r(ν) = r(μ). By hypothesis, MCE(μτ, ν) 	= ∅, and since
d(μτ ) = m ∨ n, it follows that μτ ∈ MCE(Ym, Yn).

To prove the Claim, it remains to show that s(Ym)Λ(m∨n)−m is compact ex-
haustive for each v ∈ s(Ym). First observe that MCE(Ym, Yn) is compact be-
cause Λ is compactly aligned. Since λ �→ λ(m,m ∨ n) is continuous, it follows
that {λ(m,m ∨ n) : λ ∈ MCE(Ym, Yn)} is compact, so the first statement of the

lemma shows that s(Ym)Λ(m∨n)−m is compact. To see that it is exhaustive for
each v ∈ s(Ym), fix τ ∈ s(Ym)Λ. Let μ ∈ Ym and ν ∈ Yn be the unique elements
whose sources are equal to r(τ ). By hypothesis, we have MCE(μτ, ν) 	= ∅, say
μτα ∈ MCE(μτ, ν). Then d(μτα) ≥ m∨n, and so η := (τα)(0, (m∨n)−m) belongs

to s(Ym)Λ(m∨n)−m. In particular τα ∈ MCE(τ, η) ⊆ MCE(τ, s(Ym)Λ(m∨n)−m).
This proves the Claim.

It follows from the Claim and the definition of ∂Λ that

r(Z(Y ′
m ∗s Y ′

n)) = Z(Y ′
m) ⊆ Z(Y ′

n) = s(Z(Y ′
m ∗s Y ′

n)).

To see that the containment is strict, observe that Z(W ) ∩ Z(Y ′
n) is a nonempty

open subset of Z(Y ′
n) \ Z(Y ′

m). �

Proof of Proposition 5.8. To see that GΛ is locally contracting, fix a nonempty open

subset U of G(0)
Λ = ∂Λ. By Lemma 5.4 there exist q ∈ Nk and a nonempty open

set X ⊆ Λq such that Z(X) ⊆ U . Since the source map is open, s(X) is nonempty
and open. Fix v ∈ s(X). By hypothesis, there exist p ∈ Nk and an open set
V ⊆ Λp such that v ∈ r(V ) and s(V ) is contracting. Fix m, n, Ym, Yn and W as in
Definition 5.7. Since each of Ym, Yn, X and V is open and since composition is an
open map, each of XV Ym and XV Yn is open. Hence Z(XV Ym) and Z(XV Yn) are
open. Let B := Z(XV Ym ∗s XV Yn). Then B is a precompact open bisection. Fix
λ ∈ XV Yn and an open neighbourhood Y ′

n of λ(p+ q, p+ q+n) such that Y ′
n ⊆ Yn.

Let K := Z(XV Y ′
n). Then K ⊆ s(B), and Lemma 5.9 implies that

r(BK) = (σp+q)−1(r((Z(Y ′
m ∗s Y ′

n)))) ∩ Z(XV )

= (σp+q)−1
(
r((Z(Y ′

m ∗s Y ′
n)))

)
∩ Z(XV )

� (σp+q)−1(s(Z(Y ′
m ∗s Y ′

n))) ∩ Z(XV ) = K,

so GΛ is locally contracting as required.
For the final statement, observe that Theorem 5.1 of [29] implies that GΛ is

topologically principal and Lemma 5.5 implies that GΛ is minimal. Corollary 4.3
implies that GΛ is amenable. Hence [1, Proposition 2.4] implies that C∗(Λ) =
C∗(GΛ) is simple and purely infinite. �
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erator Theory 18 (1987), no. 1, 67–97. MR912813

[20] Jean N. Renault and Dana P. Williams, Amenability of groupoids arising from partial semi-
group actions and topological higher rank graphs, Trans. Amer. Math. Soc. 369 (2017), no. 4,
2255–2283, DOI 10.1090/tran/6736. MR3592511

[21] David I. Robertson and Aidan Sims, Simplicity of C∗-algebras associated to higher-rank
graphs, Bull. Lond. Math. Soc. 39 (2007), no. 2, 337–344, DOI 10.1112/blms/bdm006.
MR2323468

http://www.ams.org/mathscinet-getitem?mr=1478030
http://www.ams.org/mathscinet-getitem?mr=1799683
http://www.ams.org/mathscinet-getitem?mr=3189105
http://www.ams.org/mathscinet-getitem?mr=2837016
http://www.ams.org/mathscinet-getitem?mr=561974
http://www.ams.org/mathscinet-getitem?mr=594544
http://www.ams.org/mathscinet-getitem?mr=2419901
http://www.ams.org/mathscinet-getitem?mr=2184052
http://www.ams.org/mathscinet-getitem?mr=1452183
http://www.ams.org/mathscinet-getitem?mr=2067120
http://www.ams.org/mathscinet-getitem?mr=1745529
http://www.ams.org/mathscinet-getitem?mr=1432596
http://www.ams.org/mathscinet-getitem?mr=2457327
http://www.ams.org/mathscinet-getitem?mr=1724106
http://www.ams.org/mathscinet-getitem?mr=1962477
http://www.ams.org/mathscinet-getitem?mr=2069786
http://www.ams.org/mathscinet-getitem?mr=1081649
http://www.ams.org/mathscinet-getitem?mr=584266
http://www.ams.org/mathscinet-getitem?mr=912813
http://www.ams.org/mathscinet-getitem?mr=3592511
http://www.ams.org/mathscinet-getitem?mr=2323468


684 JEAN RENAULT, AIDAN SIMS, DANA P. WILLIAMS, AND TRENT YEEND

[22] Aidan Sims, Benjamin Whitehead, and Michael F. Whittaker, Twisted C∗-algebras associated
to finitely aligned higher-rank graphs, Doc. Math. 19 (2014), 831–866. MR3262073

[23] Jack Spielberg, Groupoids and C∗-algebras for categories of paths, Trans. Amer. Math. Soc.
366 (2014), no. 11, 5771–5819, DOI 10.1090/S0002-9947-2014-06008-X. MR3256184

[24] Mark Tomforde, A unified approach to Exel-Laca algebras and C∗-algebras associated to
graphs, J. Operator Theory 50 (2003), no. 2, 345–368. MR2050134

[25] Sarah E. Wright, Aperiodicity conditions in topological k-graphs, J. Operator Theory 72

(2014), no. 1, 3–14, DOI 10.7900/jot.2012aug20.196. MR3246978
[26] S. Yamashita, Cuntz–Krieger type uniqueness theorem for topological higher-rank graph C∗-

algebras, preprint 2009 (arXiv:0911.2978v1 [math.OA]).
[27] T. Yeend, Topological higher-rank graphs, their groupoids, and operator algebras, Ph.D. thesis,

University of Newcastle, 2005.
[28] Trent Yeend, Topological higher-rank graphs and the C∗-algebras of topological 1-graphs,

Operator theory, operator algebras, and applications, Contemp. Math., vol. 414, Amer. Math.
Soc., Providence, RI, 2006, pp. 231–244, DOI 10.1090/conm/414/07812. MR2277214

[29] Trent Yeend, Groupoid models for the C∗-algebras of topological higher-rank graphs, J. Op-
erator Theory 57 (2007), no. 1, 95–120. MR2301938
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