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Abstract. Diamond graphs and binary trees are important examples in the
theory of metric embeddings and also in the theory of metric characterizations
of Banach spaces. Some results for these families of graphs are parallel to
each other; for example superreflexivity of Banach spaces can be characterized
both in terms of binary trees (Bourgain, 1986) and diamond graphs (Johnson-
Schechtman, 2009). In this connection, it is natural to ask whether one of
these families admits uniformly bilipschitz embeddings into the other. This
question was answered in the negative by Ostrovskii (2014), who left it open

to determine the order of growth of the distortions. The main purpose of this
paper is to get a sharp up-to-a-logarithmic-factor estimate for the distortions
of embeddings of binary trees into diamond graphs and, more generally, into
diamond graphs of any finite branching k ≥ 2. Estimates for distortions of
embeddings of diamonds into infinitely branching diamonds are also obtained.

1. Introduction

Binary trees and diamond graphs play an important role in the theory of metric
embeddings and metric characterizations of properties of Banach spaces; see [3–8,
10, 11, 13, 18] and also presentations in the books [12, 16].

Some results for these families of graphs are parallel to each other; for example
superreflexivity of Banach spaces can be characterized both in terms of binary trees
(Bourgain [3]) and diamond graphs (Johnson-Schechtman [6]). In this connection, it
is natural to ask whether these families of graphs admit bilipschitz embeddings with
uniformly bounded distortions one into another. In one direction the answer is clear:
The fact that diamond graphs do not admit uniformly bilipschitz embeddings into
binary trees follows immediately from the combination of the result of Rabinovich
and Raz [17, Corollary 5.3] stating that the distortion of any embedding of an
n-cycle into any tree is ≥ n

3 − 1 and the observation that large diamond graphs
contain large cycles isometrically. As for the opposite direction, it was proved in
[13] that binary trees do no admit uniformly bilipschitz embeddings into diamond
graphs. The goal of this paper is to get a sharp-up-to-a-logarithmic-factor estimate
for the distortions of embeddings of binary trees into diamond graphs and, more
generally, into diamond graphs of any finite branching k ≥ 2. In addition, estimates
for distortions of embeddings of diamonds into infinitely branching diamonds are
obtained.
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Figure 1. The binary tree of depth 3, that is, T3.

2. Definitions and the main result

To begin with, let us present the necessary definitions.

Definition 2.1. A binary tree of depth n, denoted Tn, is a finite graph in which
each vertex is represented by a finite (possibly empty) sequence of 0’s and 1’s, of
length at most n. Two vertices in Tn are adjacent if the sequence representing one
of them is obtained from the sequence representing the other by adding one term
on the right. (For example, vertices corresponding to (1, 1, 1, 0) and (1, 1, 1, 0, 1) are
adjacent.) Vertices which correspond to sequences of length k are called vertices of
k-th generation. The vertex corresponding to the empty sequence is called a root.
If a sequence τ is an initial segment of the sequence σ we say that σ is a descendant
of τ and that τ is an ancestor of σ. See Figure 1 for a sketch of T3.

Definition 2.2 ([5]). Diamond graphs {Dn}∞n=0 are defined inductively as follows:
The diamond graph of level 0 is denoted by D0. It has two vertices joined by an
edge. The diamond graph Dn is obtained from Dn−1 as follows. Given an edge
uv ∈ E(Dn−1), it is replaced by a quadrilateral u, a, v, b, with edges ua, av, vb, bu.
See Figure 2 for a sketch of D2.

All graphs considered in this paper are endowed with the shortest path distance:
the distance between any two vertices is the number of edges in a shortest path
between them.

Definition 2.3. Let M be a finite metric space and {Rn}∞n=1 be a sequence of finite
metric spaces with increasing cardinalities. The distortion cR(M) of embeddings
of M into {Rn}∞n=1 is defined as the infimum of C ≥ 1 for which there is n ∈ N,
a map f : M → Rn, and a number r = r(f) > 0 — called the scaling factor —
satisfying the condition:

(1) ∀u, v ∈ M rdM (u, v) ≤ dRn
(f(u), f(v)) ≤ rCdM (u, v).

Therefore, cD(Tn) is the infimum of distortions of embeddings of the binary tree
Tn into diamond graphs. Our main result is expressed by the following assertion:
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Figure 2. Diamond D2 in which generations of vertices are shown.

Theorem 2.4. There exists a constant c > 0 such that

c
n

log2 n
≤ cD(Tn) ≤ 2n

for all n ≥ 2.

In recent years [1, 9, 14, 15] we see an increasing interest in diamonds of high
branching (see Definition 2.5). In view of this, we prove versions of Theorem 2.4
for such graphs (Theorems 2.6 and 2.7).

Definition 2.5. Fix k ∈ N ∪ {∞}, k ≥ 2. Let D0,k be a graph consisting of two
vertices joined by one edge. The graph Dn+1,k is obtained from Dn,k if we replace
each edge uv in Dn,k by a set of k paths of length 2 joining u and v. We call
the graphs Dn,k diamonds of branching k if k is finite and diamonds of infinite
branching if k = ∞.

Call one of the vertices of D0,k the top and the other the bottom. Define the
top and the bottom of Dn,k as vertices which evolved from the top and the bottom
of D0,k, respectively. A subdiamond of Dn,k is a subgraph which evolved from an
edge of some Dm,k for 0 ≤ m ≤ n. The top and bottom of a subdiamond of Dn,k

are defined as the vertices of the subdiamond which are the closest to the top and
bottom of Dn,k, respectively.

It can be noticed that Dn = Dn,2. Let c(D,k)(M) denote the distortion of
embeddings of a finite metric space M into {Dn,k}, as in Definition 2.3. The next
generalization of Theorem 2.4 holds.
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Theorem 2.6. If k is finite, then there exists c(k) > 0 such that

c(k)
n

log2 n
≤ c(D,k)(Tn) ≤ 2n

for all n ≥ 2.

For infinitely branching diamonds, the following weaker version of Theorem 2.4
is valid:

Theorem 2.7. There exists constant c(∞) > 0 such that

c(∞)
√
n ≤ c(D,∞)(Tn) ≤ 2n.

We refer to [2] for graph-theoretical terminology and to [12] for terminology of
the theory of metric embeddings.

3. Estimates from above

Since Dn is isometric to a subset of Dn,k whenever k ≥ 2, it suffices to prove the
estimate from above for the binary diamonds {Dn}.

Proof of cD(Tn) ≤ 2n. Observe that the diamondDk contains isometrically the tree
which is customarily denoted K1,2k . This tree has 2k + 1 vertices, and one of the

vertices is incident to the remaining 2k vertices. In fact, one can easily establish
by induction that the bottom of the diamond Dk has degree 2k, and the bottom
together with all of its neighbors forms the desired tree.

Choose k in such a way that 2k + 1 ≥ 2n+1 − 1, where 2n+1 − 1 is the number
of vertices in Tn.

Now, map the root of Tn to the bottom of Dk and all of the other vertices of Tn

to distinct vertices adjacent to the bottom. Denote the obtained map by Fn and
the vertex set of Tn by V (Tn). We claim that the following inequalities are true:

(2) ∀u, v ∈ V (Tn)
1

n
dTn

(u, v) ≤ dDk
(Fn(u), Fn(v)) ≤ 2dTn

(u, v),

yielding cD(Tn) ≤ 2n.
Indeed, the right-hand side inequality follows from the fact that any distance

between two distinct vertices in K1,2k does not exceed 2.
To justify the left-hand side inequality consider the two cases:
(1) One of the vertices, say u, is the root of Tn. Then dDk

(Fn(u), Fn(v)) = 1
and dTn

(u, v) ≤ n. The left-hand side inequality in this case follows.
(2) Neither u nor v is the root of Tn. Then dDk

(Fn(u), Fn(v)) = 2 and dTn
(u, v) ≤

2n. The left-hand side inequality follows in this case, too. �

4. Estimates from below

4.1. Diamonds of finite branching. Observe that Theorem 2.4 is a special case
of Theorem 2.6. For this reason, only the lower estimate of Theorem 2.6 has to be
proved.

Proof of c(D,k)(Tn) ≥ c(k) n
log2 n . Fix an integer k (2 ≤ k < ∞) for the whole proof

and omit from most of our notation dependence on k, as it is clear that almost all
of the introduced objects depend on k. If αn = 3c(D,k)(Tn), then there exists a
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map Fn of V (Tn) into V (Dm(n),k) for some m(n) ∈ N satisfying (1) with C = αn

and the scaling factor being an integer power of 2, that is,

(3) ∀u, v ∈ V (Tn) 2p(n)dTn
(u, v) ≤ dDm(n),k

(Fn(u), Fn(v)) ≤ αn2
p(n)dTn

(u, v)

for some p(n) ∈ Z. If p(n) < 0, we compose the map Fn with the natural map
of Dm(n),k into Dm(n)−p(n),k. As the latter map increases all distances into 2−p(n)

times, the resulting map has scaling factor equal to 1. Therefore, one may assume
without loss of generality that p(n) ≥ 0.

Now our goal is to show that the existence of n, r, d ∈ N, such that the condition
1 ≤ r < n is satisfied simultaneously with the following three inequalities:

(4) 2d−1 > αn2
p(n)(r + 1),

(5) (2k)d−p(n) < 2r,

(6) 2d < 2p(n)(n− r),

leads to a contradiction.
We introduce generations of vertices in diamonds, including the case k = ∞,

as follows. Generations are labelled recursively from the end in the following way.
Generation number 1 in Dm,k is the set of vertices which appeared in the last step
of the construction of Dm,k. Further, generation number 2 is the set of vertices
which appeared in the previous step of the construction, and so on. In this way,
one obtains m generations, while the two original vertices do not belong to any of
the generations. See Figure 2 for generations in D2. This definition leads to the
following:

Observation 4.1. Let m ∈ N and k ∈ N ∪ {∞}, k ≥ 2.

(1) Let v be a vertex of generation number d in Dm,k, where d ∈ {1, . . . ,m}.
Then the 2d−1-neighborhood of v consists of two subdiamonds of diameter 2d−1

each, pasted together at v.

(2) Let Zd be the set of all vertices of generation number d in Dm,k. Then the
connected components of Dm,k\Zd have diameters strictly less than 2d.

Recall that generations for vertices of Tn are defined in the standard way: the
generation of a vertex in Tn is its distance to the root.

Let n and r satisfy the conditions above, so 1 ≤ r < n. Consider any ver-
tex τn−r of generation n − r in Tn. For a path τ0, . . . , τn−r joining the root τ0
and τn−r, inequality (3) implies that dDm(n),k

(Fn(τi), Fn(τi+1)) ≤ αn2
p(n) and

dDm(n),k
(Fn(τ0), Fn(τn−r)) ≥ 2p(n)(n− r). Combining these inequalities with con-

dition (6) and Observation 4.1(2), one concludes that there exists i ∈ {0, . . . , n−r}
such that dDm(n),k

(Fn(τi), v) ≤ αn2
p(n) for some v of generation d in Dm(n),k.

By inequalities (3), (4) and Observation 4.1(1), Fn maps descendants of τi (in Tn)
of generations i+1, . . . , i+r (note that i+r ≤ n) into the union of two subdiamonds
of diameter 2d−1 each, pasted together at v. To obtain a contradiction to (5) we
need the following lemma:

Lemma 4.2. The cardinality of a 2p(n)-separated set — i.e., a set satisfying d(u, v)
≥ 2p(n) for any u 
= v — in a subdiamond of Dm,k of diameter 2q does not exceed

k · (2k)q−p(n) if q ≥ p(n).
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Proof. It is easy to see that each subdiamond of Dm,k of diameter 2p(n) contains

at most k vertices out of each 2p(n)-separated set. The number of subdiamonds of
diameter 2p(n) in a diamond of diameter 2q is equal to the number of edges in the
diamond of diameter 2q−p(n). This number of edges is (2k)q−p(n), because in each
step of the construction of diamonds the diameter doubles and the number of edges
is multiplied by (2k). �

This contradicts (5) because, on one hand, the vertex τi has more than 2r de-
scendants in the next r generations, and the images of these descendants, by the
bilipschitz condition (3), should form a 2p(n)-separated set. On the other hand,
Lemma 4.2 implies that a 2p(n)-separated set in a union of two diamonds of diam-
eters 2d−1 does not exceed 2 · k · (2k)d−1−p(n) = (2k)d−p(n).

Since {c(D,k)(Tn)}∞n=2 and { n
log2 n}∞n=2 are sequences of positive numbers and

αn = 3c(D,k)(Tn), to prove the existence of a constant c(k) > 0 such that c(D,k)(Tn)
≥ c(k) n

log2 n , it suffices to show that the existence of the subsequence of values of

n for which αn = o( n
log2 n ) leads to a contradiction. This will be done by demon-

strating that the existence of such a subsequence implies the existence of n, r and
d satisfying 1 ≤ r < n and (4)–(6). Let us rewrite inequalities (4)–(6) as

(7) 2d−p(n) > 2αn(r + 1),

(8) (2(d−p(n)))log2(2k) < 2r,

(9) 2d−p(n) < n− r.

Set r = r(n) = �log2(2k) · log2 n�. Since k is fixed, for sufficiently large n, one
has n− r > 2. Define d = d(n) ∈ N to be the largest integer for which (9) holds. It
has to be pointed out that with this choice of d, the inequality 2d−p(n) > n

4 holds
when n is sufficiently large. Since for our choice of r we have 2αn(r(n) + 1) = o(n)
for the corresponding subsequence of values of n, it is clear that, for sufficiently
large n in the subsequence, the condition (7) is also satisfied. It remains to observe
that, with the described choice of r, the inequality (8) follows from

(2d−p(n))log2(2k) < nlog2(2k).

Since by virtue of (9), 2d−p(n) < n, the last inequality is obvious. �

4.2. Diamonds of infinite branching. In this case, the methods based on the
upper bounds for cardinalities of 2p(n)-separated sets in subdiamonds are not ap-
plicable since the cardinalities are infinite. Consequently, the method of [13], which
gives weaker estimates but works in the case of infinite branching, will be employed.

Proof of Theorem 2.7. Since the upper estimate has already been established in
section 3, to complete the proof it has to be shown that c(D,∞)(Tn) ≥ c(∞)

√
n for

some constant c(∞) > 0.
If αn = 3c(D,∞)(Tn), then there exists a map Fn of V (Tn) into V (Dm(n),∞) for

some m(n) ∈ N satisfying (1) with C = αn and the scaling factor being an integer
power of 2, that is,

(10) ∀u, v ∈ V (Tn) 2p(n)dTn
(u, v) ≤ dDm(n),∞(Fn(u), Fn(v)) ≤ αn2

p(n)dTn
(u, v)

for some p(n) ∈ Z. With the help of the same argument as in Theorem 2.6, it may
be assumed that p(n) ≥ 0.
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Since {c(D,∞)(Tn)}∞n=1 as well as {√n}∞n=1 are sequences of positive numbers, it

suffices to prove that the inequality of the form c(D,∞)(Tn) ≥ c
√
n holds for some

c > 0 and sufficiently large n.
Assume that n > 9 and denote by d = d(n) the largest integer satisfying

(11) 2d < 2p(n) ·
⌊n
3

⌋
.

Consider any vertex τ�n
3 � of generation

⌊
n
3

⌋
in Tn. Let τ0, . . . , τ�n

3 � be a path

joining the root τ0 and τ�n
3 � in Tn. Inequality (10) implies that

dDm(n),∞(Fn(τi), Fn(τi+1)) ≤ αn2
p(n)

and

dDm(n),∞(Fn(τ0), Fn(τ�n
3 �)) ≥ 2p(n)

⌊n
3

⌋
.

By combining these inequalities with condition (11) and Observation 4.1(2), we
conclude that there exists i ∈ {0, . . . ,

⌊
n
3

⌋
} such that

(12) dDm(n),∞(Fn(τi), v) ≤ αn2
p(n)

for some v of generation d in Dm(n),∞.
Inequality (10) together with (12) implies that descendants of τi of generation n

in Tn will be mapped onto vertices whose distances from v are at least (n−i)2p(n)−
αn2

p(n). One has

(13) (n− i)2p(n) − αn2
p(n) ≥

(
2

3
n− αn

)
2p(n).

If αn ≥ n
3 , the conclusion of the theorem holds with c(∞) = 1

9 . Therefore, assume
that αn ≤ n

3 . In this case, the right-hand side of (13) is not less than

n

3
2p(n)

(11)
> 2d > 2d−1.

Thence, on each path joining τi with one of its descendants of generation n (in
Tn) there is a vertex which is mapped by Fn outside the union of two subdiamonds
of height 2d−1 with the common vertex at v.

Let x1 and x2 be the different from v tops/bottoms of the subdiamonds men-
tioned in the previous paragraph. The statement about the paths mentioned in the
previous paragraph implies that on each path joining τi with one of its descendants
(in Tn) of generation n there is a vertex, the Fn-image of which is at distance at
most αn2

p(n) from either x1 or x2. In fact, it is clear that this condition holds for the
first vertex on the path whose Fn-image is outside the union of the subdiamonds.

Now, let us fix such a path and estimate from below the generation r of the first
vertex on this path, whose Fn-image is outside the union of the subdiamonds. It
can be seen by using inequality (10) that the earliest generation r for which it is
possible for such image to be outside the union of the subdiamonds has to satisfy

(r − i)2p(n)αn + 2p(n)αn > 2d−1,

whence

(r − i) ≥ 2d−1

2p(n)αn
− 1.

The choice of d (see the line preceding (11)) implies that

(14) 2d+1 ≥ 2p(n) ·
⌊n
3

⌋
,
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and hence

(r − i) ≥ 1

4αn

⌊n
3

⌋
− 1.

Next, consider four different descending paths in Tn starting at different descen-
dants of τi of generation (i+ 2). Along each of these paths we pick the first vertex
whose Fn-image is outside the union of the two subdiamonds. Let v1, v2, v3, and
v4 be the picked vertices and suppose that these vertices belong to generations
r1, r2, r3, and r4, respectively, in Tn.

First, assume that rj > i + 2 for j = 1, 2, 3, 4, while the case where rj = i + 2
for some j will be considered at the very end of the proof. By the argument above,
each rj satisfies

(rj − i) ≥ 1

4αn

⌊n
3

⌋
− 1.

Therefore the pairwise distances between vertices v1, v2, v3, and v4 are at least:

rj1 + rj2 − 2i− 2 ≥ 1

2αn

⌊n
3

⌋
− 4, j1, j2 ∈ {1, 2, 3, 4}, j1 
= j2.

The argument above implies that under the assumption rj > i + 2 the image

Fn(vj) is at distance at most 2p(n)αn to either x1 or x2. As a result, at least two

of these images are at distance at most 2 · 2p(n)αn from each other. Using (10) one
concludes that

2p(n)
(

1

2αn

⌊n
3

⌋
− 4

)
≤ 2 · 2p(n)αn.

It is easy to see that this inequality implies that αn ≥ c
√
n for some constant

c > 0 and sufficiently large n.
Now comes the case where rj = i + 2 for some j ∈ {1, 2, 3, 4}. In this case, the

distance between Fn(vj) and v, on one hand, is > 2d−1, and, on the other hand,

by (12) and (10), it is ≤ 3αn2
p(n). This leads to 3αn2

p(n) > 2d−1. Combining with
(14), one obtains

3αn2
p(n) > 2p(n)−2 ·

⌊n
3

⌋
.

Thus, αn ≥ 1
12 ·

⌊
n
3

⌋
, yielding that in this case c(D,∞)(Tn) ≥ 1

36 ·
⌊
n
3

⌋
. This inequality

is sufficient for our purposes. This completes the proof of Theorem 2.7. �
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