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SIMULTANEOUSLY PREPERIODIC POINTS FOR FAMILIES

OF POLYNOMIALS IN NORMAL FORM

DRAGOS GHIOCA, LIANG-CHUNG HSIA, AND KHOA DANG NGUYEN

(Communicated by Matthew A. Papanikolas)

Abstract. Let d > m > 1 be integers, let c1, . . . , cm+1 be distinct complex
numbers, and let f(z) := zd + t1zm−1 + t2zm−2 + · · ·+ tm−1z + tm be an m-

parameter family of polynomials. We prove that the set of m-tuples of param-
eters (t1, . . . , tm) ∈ Cm with the property that each ci (for i = 1, . . . ,m+1) is
preperiodic under the action of the corresponding polynomial f(z) is contained
in finitely many hypersurfaces of the parameter space Am.

1. Introduction

The principle of unlikely intersections for 1-parameter families of rational func-
tions ft predicts that given two starting points c1 and c2 which are not persistently
preperiodic for the family f , if there exist infinitely many parameters t such that
both c1 and c2 are preperiodic for ft, then the two starting points are dynamically
related; for more details, see [BD11,BD13,GH13,GHT13,GHT15,GHT16,GKN16,
GKNY17,MZ10,MZ12,MZ14]. For higher dimensional families of rational func-
tions, there are very few definitive results, generally limited to 2-parameter families
of dynamical systems; see [GHT15, Theorem 1.4] and [GHT16, Theorem 1.4]. In
this paper we prove the following result regarding unlikely intersections for arith-
metic dynamics in higher dimensional parameter spaces.

Theorem 1.1. Let d > m > 1 be integers, let c1, . . . , cm+1 ∈ C, and let

(1.2) f(z) := zd + t1z
m−1 + · · ·+ tm−1z + tm

be an m-parameter family of polynomials of degree d. For each point a=(a1, . . . , am)
of Am(C) we let fa be the corresponding polynomial defined over C obtained by spe-
cializing each ti to ai for i = 1, . . . ,m. Let Prep(c1, . . . , cm+1) be the set consisting
of parameters a ∈ A

m(C) such that each starting point ci (for i = 1, . . . ,m + 1)
is preperiodic for fa. If the points ci are distinct, then Prep(c1, . . . , cm+1) is not
Zariski dense in Am.

The polynomials f(z) as in Theorem 1.1 are in normal form; i.e., they are monic
of degree d and the coefficient of zd−1 is 0. Since each polynomial g is conjugate
with a polynomial in normal form, i.e., there exists a linear polynomial μ such that
μ−1 ◦ g ◦ μ is in normal form, one can focus on the dynamics corresponding to
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polynomials as in Theorem 1.1. In [GHT16, Theorem 1.4], the special case m = 2
in Theorem 1.1 was proven, while the case of an arbitrary m was conjectured in
[GHT16, Question 1.1]. Our Theorem 1.1 answers completely the problem raised
in [GHT16].

If one considers m (distinct) starting points ci, then the set Prep(c1, . . . , cm) is
Zariski dense in Am, as proven in [DeM16, Theorem 1.6] (see also [GNT15] for a
discussion regarding all possible preperiodicity portraits simultaneously realized for
m starting points by an m-parameter family of polynomials). On the other hand,
there are numerous examples when the Zariski closure of Prep(c1, . . . , cm+1) is
positive dimensional, and it may even have codimension 1 in Am (see also [GHT16,
Introduction]). For example, if m = 3, d is even and c2 = −c1 while c4 = −c3, then
the Zariski closure of Prep(c1, c2, c3, c4) contains the plane P given by the equation
t2 = 0 in the parameter space A3. Indeed, the specialization

g(z) := zd + t1z
2 + t3

of f(z) = zd+t1z
2+t2z+t3 along P yields a 2-parameter family of even polynomials,

and due to the relations between the starting points ci, we know that all 4 starting
points are preperiodic under the action of g if and only if c1 and c3 are preperiodic
under the action of g. Another application of [DeM16, Theorem 1.6] yields that
there exists a Zariski dense set of points (t1, t3) ∈ C2 such that both c1 and c3
are preperiodic for g, thus proving that P is contained in the Zariski closure of
Prep(c1, c2, c3, c4).

We note that if m = 1 in Theorem 1.1, then whenever c2 = ζd · c1, for some
d-th root of unity ζd, we have that for each parameter t, the point c1 is preperiodic
under the action of f(z) = zd + t if and only if c2 is preperiodic under the action of
f(z). In [BD11, Theorem 1.1], it was shown that the above linear relation is also
necessary so that there exist infinitely many parameters t such that both c1 and c2
are preperiodic under the action of z �→ zd + t. However, when m > 1, there exists
no linear automorphism of the entire family f(z) (as opposed to the automorphism
z �→ ζd · z when m = 1), and this allows us to prove Theorem 1.1.

Finally, we observe that if one were to consider a different family of polynomials
h of degree d with m parameters, but this time corresponding to monomials which
are not of consecutive degrees, then it may very well be that Prep(c1, . . . , cm+1) is
Zariski dense in Am. Indeed, if h(z) := zd + t1z

3 + t2z is a 2-parameter family of
odd polynomials (i.e., d is odd), then Prep(c1, c2,−c2) is always Zariski dense in
A2 since c2 is preperiodic whenever −c2 is preperiodic, and therefore, essentially,
we deal with 2 starting points and 2 parameters. On the other hand, our family
of polynomials f(z) from (1.2) prohibits the possibility of any symmetries between
the orbits of the starting points ci.

We sketch now the plan for our paper. In section 2 we state in Theorem 2.2 a key
result proven in [GHT16] for our problem. With the notation as in Theorem 1.1,
assuming Prep(c1, . . . , cm+1) is Zariski dense in Am, [GHT16, Theorem 5.1] yields
that for each point a := (a1, . . . , am) ∈ C

m in the parameter space, if m of the
starting points ci are preperiodic under the action of fa, then all m + 1 starting
points ci are preperiodic under the action of fa. Our strategy is to consider various
lines L ⊂ Am along which each ci for i = 1, . . . ,m−1 is preperiodic under the action
of f . Letting gt be the 1-parameter family of polynomials obtained by specializing
f along L, [GHT16, Theorem 5.1] (coupled with [DeM16, Theorem 1.6]) yields
that there exist infinitely many parameters t ∈ C such that both cm and cm+1 are
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preperiodic for gt. Then [BD13, Theorem 1.3] yields that the points cm and cm+1

are dynamically related with respect to the family gt. In section 3, using an in-depth
analysis of this information for two different lines L, we derive a contradiction, thus
proving Theorem 1.1. It is interesting to note that this strategy works as long as
m > 2. However, we note that the case m = 2 was proven in [GHT16, Theorem 1.4]
using a similar strategy, but this time extracting slightly different information from
using a single line L in the parameter plane A

2 along which c1 is fixed.

2. Useful results

We start by recalling the traditional assumption from algebraic dynamics that for
a polynomial f and a positive integer n, we denote by fn = f ◦· · ·◦f its composition
with itself n times; furthermore, f0 always denotes the identity function. A point
a is called preperiodic under the action of f if its forward orbit under f consists
of only finitely many distinct elements; i.e., there exist integers n > m ≥ 0 such
that fn(a) = fm(a). Also, as a matter of notation, N denotes the set of all positive
integers, while N0 := N ∪ {0}.

It will be useful for our proof of Theorem 1.1 to know all polynomials commuting
with an iterate of a given polynomial. Before stating [Ngu15, Theorem 2.3], we
recall first the definition of the d-th Chebyshev polynomial Td(z) (for some integer
d ≥ 2), i.e., the unique polynomial satisfying the identity Td(z + 1/z) = zd + 1/zd

for all z. We have [Ngu15, Theorem 2.3]:

Theorem 2.1. Let K be an algebraically closed field of characteristic 0, let d ≥ 2
be an integer, and let g(z) ∈ K[z] be a polynomial of degree d > 1 which is not
conjugate to zd or to ±Td(z).

(a) If h(z) ∈ K[z] has degree at least 2 such that h commutes with an iterate
of g, i.e., h ◦ gn = gn ◦ h for some n ∈ N, then h and g have a common
iterate.

(b) Let M(g∞) denote the collection of all linear polynomials commuting with
an iterate of g. Then M(g∞) is a finite cyclic group under composition.

(c) Let g̃(z) ∈ K[z] be a polynomial of minimum degree d̃ ≥ 2 such that g̃
commutes with an iterate of g. Then there exists D = Dg > 0 relatively
prime to the order of M(g∞) such that g̃◦L = LD ◦ g̃ for every L ∈ M(g∞).

(d) {g̃m ◦ L : m ∈ N0 and L ∈ M(g∞)} = {L ◦ g̃m : m ∈ N0 and L ∈ M(g∞)},
and this set describes exactly all polynomials h commuting with an iterate
of g.

We state now the key result (proven in [GHT16, Theorem 5.1]) which we will
use for deriving the conclusion in Theorem 1.1.

Theorem 2.2 ([GHT16]). Let d > m > 1 be integers, let c1, . . . , cm+1 be distinct
complex numbers, and let f(z) := zd+t1z

m−1+ · · ·+tm−1z+tm be an m-parameter
family of polynomials of degree d. For each point a = (a1, . . . , am) of Am(C) we let
fa be the corresponding polynomial defined over C obtained by specializing each ti
to ai for i = 1, . . . ,m. Let Prep(c1, . . . , cm+1) be the set consisting of parameters
a ∈ A

m(C) such that each starting point ci (for i = 1, . . . ,m+ 1) is preperiodic for
fa. Assume Prep(c1, . . . , cm+1) is Zariski dense in Am. Then for each a ∈ Cm such
that c1, . . . , cm are preperiodic for fa, we have that also cm+1 is preperiodic for fa.
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We let L be a line in the parameter space Am parametrized with respect to the
coordinates (t1, . . . , tm) of Am as follows:

t1 := t and ti = αit+ βi for i = 2, . . . ,m,

for some complex numbers αi, βi. Furthermore, we assume that

(2.3) α2 	= 0.

We let g := gt be the specialization of f along the line L, i.e.,

(2.4) gt(z) = zd + tzm−1 +
m∑
i=2

(αit+ βi)z
m−i.

The next result is essential for the proof of Theorem 1.1.

Proposition 2.5. Let K = C(t), and let h[z] ∈ K[z]. With the above notation
(2.4) for g, if h commutes with an iterate of g, then h = g� for some � ∈ N0.

Proof. The desired conclusion follows from the next three lemmas coupled with
Theorem 2.1 describing all polynomials commuting with an iterate of a given poly-
nomial.

Lemma 2.6. With the above notation, g(z) is not conjugate (over K) to zd or to
±Td(z).

Proof of Lemma 2.6. Since zd, Td(z) and also g(z) are polynomials in normal form,
then assuming that for some linear polynomial μ ∈ K(z) we have that μ−1 ◦ g ◦ μ
is either zd or ±Td(z), we conclude that μ(z) = ζ · z for some root of unity ζ.
Indeed, letting μ(z) = az+b, we get first that b = 0 since g(z), zd and ±Td(z) have
coefficient equal to 0 for their monomial of degree d−1. Then equating the leading
coefficient in each of the above polynomials yields that a must be a root of unity.
Because zd and ±Td(z) have constant coefficients, i.e., there is no dependence on t,
we conclude that g is not conjugate to a monomial or ±Chebyshev polynomial. �

Lemma 2.7. If μ(z) is a linear polynomial commuting with an iterate of g, then
μ(z) = z for all z.

Proof of Lemma 2.7. We let μ(z) = az + b and assume μ ◦ gn = gn ◦ μ for some
n ∈ N. Again using the fact that g (and thus also gn) is in normal form, we
conclude that b = 0. Then using the fact that gn(z) has nonzero terms of degrees
dn − d + m − 1 and dn − d + m − 2 (using (2.4) and (2.3) along with an easy
induction on n), we conclude that 1 = ad

n−d+m−2 = ad
n−d+m−3; hence a = 1, as

claimed. �

Lemma 2.8. There is no polynomial h1(z) ∈ K[z] and no integer e > 1 such that
he
1 = g.

Proof of Lemma 2.8. We argue by contradiction and therefore assume that he
1 = g

with some integer e > 1 and some polynomial h1 ∈ K[z] of degree s > 1. Further-
more, we assume h1 has minimal degree among all such polynomials. According to
Theorem 2.1 part (d) along with Lemmas 2.6 and 2.7, we know that all polynomials
commuting with g are of the form hn

1 for some n ∈ N0.
First, we claim that h1(z) ∈ C(t)[z]. Indeed, otherwise there exists some Galois

automorphism τ of K fixing C(t) such that h2 := (h1)
τ 	= h1 (i.e., some coefficient

of h1 is not fixed by τ ). But then also he
2 = g (since each coefficient of g is fixed
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by τ ) and therefore h2 = h1 since they both have the same degree and commute
with g. This is a contradiction, and so h1(z) ∈ C(t)[z].

Second, we claim that h1 ∈ C[t][z]. Because he
1 = g, we know that h1(z) =∑s

i=0 aiz
i for some ai ∈ C(t); since g(z) is monic, we have that as is a root of

unity. Now, assuming i1 ∈ {0, . . . , s− 1} is the largest integer such that ai1 /∈ C[t],
an induction on e yields that the coefficient of zs

e−s+i1 in he
1 = g is not contained

in C[t], which is a contradiction.
So, we know that h1(z) ∈ C[t][z]. Since g is in normal form, we conclude that

h1 must have no nonzero term of degree s− 1. Now, let D be the maximum degree
in t of the coefficients of h1; clearly, D ≥ 1 since gt is not a constant family in t.
Then for all but finitely many c ∈ C, the degree in t of h1(c) equals D; let c be
one such complex number. An easy computation (using the fact that h1(z) has no
terms of degree s − 1) yields that the degree in t of he

1(c) equals Dse−1. On the
other hand, the degree in t of g(c) is at most 1. So, the assumption that e > 1
yields a contradiction, thus concluding the proof of Lemma 2.8. �

Lemma 2.6 allows us to apply Theorem 2.1 in order to determine all polynomials
commuting with an iterate of g. Then Lemma 2.7 along with Theorem 2.1 yields
that the set of all polynomials commuting with an iterate of g consists of all com-
positional powers of some polynomial g0. On the other hand, Lemma 2.8 yields
that g is not a compositional power of another polynomial; therefore g0 = g. This
concludes our proof of Proposition 2.5. �

3. Proof of our main result

Proof of Theorem 1.1. Since the case m = 2 was proven in [GHT16, Theorem 1.4],
we assume from now on that m > 2. Also, we proceed by contradiction; i.e., we
assume that the set Prep(c1, . . . , cm+1) is Zariski dense in A

m. This allows us to
apply Theorem 2.2.

Now, since the numbers ci are distinct, clearly we can find (m−1) of them whose
sum is nonzero; so, without loss of generality, we assume that

(3.1)

m−1∑
i=1

ci 	= 0.

For each function (not necessarily injective) σ : {1, . . . ,m−1} −→ {1, . . . ,m−1},
we let Lσ ⊂ Am be the line in the parameter space along which the following
relations hold:

(3.2) f(ci) = cσ(i) for each i = 1, . . . ,m− 1.

Indeed, in order to solve the system of equations (3.2) in the variables ti, we let
t1 := t and then solve each of the ti’s (for i = 2, . . . ,m) in terms of the variable
t, and in each case we get that ti is a polynomial Tσ,i(t) of degree at most 1. The
fact that the system (3.2) is solvable follows from Cramer’s Rule using the fact
that the coefficients matrix is an invertible Vandermonde matrix since ci 	= cj if
1 ≤ i < j ≤ m− 1.

Thus, the points ci (for i = 1, . . . ,m − 1) are preperiodic along Lσ; we let
gσ = gσ,t be the specialization of f along the line Lσ. Furthermore, there exist
polynomials A,Bσ ∈ C[z] such that

(3.3) gσ,t(z) = A(z)t+ Bσ(z).
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A simple computation (using the fact that A(z) is a monic polynomial of degree
m − 1 and that gσ,t(ci) = A(ci)t + B(ci) is a constant polynomial in t for each
i = 1, . . . ,m− 1) yields that

(3.4) A(z) =

m−1∏
i=1

(z − ci),

which confirms the fact that A(z) is independent of the choice of the function σ.
So, there exist some complex numbers αi and βσ,i (for i = 2, . . . ,m) such that

(3.5) gσ,t(z) = zd+tzm−1+(α2t+βσ,2)z
m−2+· · ·+(αm−1t+βσ,m−1)z+αmt+βσ,m.

Furthermore, according to (3.4), we have that

(3.6) α2 = −
m−1∑
i=1

ci 	= 0.

Equation (3.4) yields that for any c /∈ {c1, . . . , cm−1}, we have that degt(gσ,t(c))
= 1 and furthermore (by induction), for any n ≥ 1, we have that

(3.7) degt
(
gn
σ,t(c)

)
= dn−1.

Because the points ci (for i = 1, . . . ,m − 1) are persistently preperiodic for gσ,t,
Theorem 2.2 yields that for each parameter t ∈ C, we have that cm is preperiodic
for gσ,t if and only if cm+1 is preperiodic for gσ,t. Note that there exist infinitely
many parameters t ∈ C such that cm (and therefore also cm+1) is preperiodic for
gσ,t since degt

(
gn
σ,t(cm)

)
→ ∞ as shown in (3.7); then the statement follows from

[GHT13, Proposition 9.1] (see also [DeM16, Theorem 1.6] for a more general result
on dynamically active marked points). Then [BD13, Theorem 1.3] yields that there
exists some polynomial h(z) = hσ(x) ∈ C[t][z] commuting with an iterate of gσ

and there exist positive integers nm, nm+1 such that gnm
σ (cm) = h

(
g
nm+1
σ (cm+1)

)
.

Proposition 2.5 (see also (3.6)) allows us to assume that h is the identity. Further-
more, using (3.7), we conclude that nm = nm+1 =: n. Next we prove that we may
assume that n = 2.

Proposition 3.8. Let n be an integer larger than 2. If gn
σ,t(cm) = gn

σ,t(cm+1), then

gn−1
σ,t (cm) = gn−1

σ,t (cm+1).

Proof of Proposition 3.8. First we prove that there exists some d-th root of unity
ζ such that gn−1

σ (cm) = ζ ·gn−1
σ (cm+1), and then we will prove that actually ζ = 1.

Using (3.7), we have that, as a polynomial in t,

gn
σ,t(cm) =

(
gn−1
σ,t (cm)

)d
+ t

(
gn−1
σ,t (cm)

)m−1
+

m∑
i=2

(αit+ βσ,i) ·
(
gn−1
σ,t (cm)

)m−i

=
(
gn−1
σ,t (cm)

)d
+O

(
td

n−2(m−1)+1
)
,(3.9)

where the big-O term from (3.9) denotes the fact that the remaining powers of t
from the expansion of gn

σ,t(cm) have degree bounded by dn−2(m− 1)+1. A similar
formula holds for gn

σ,t(cm+1). Therefore, the equality gn
σ,t(cm) = gn

σ,t(cm+1) yields
that

(3.10) degt
(
gn−1
σ,t (cm)d − gn−1

σ,t (cm+1)
d
)
≤ dn−2(m− 1) + 1.
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Now, let ζd be a primitive d-th root of unity. If there is no i ∈ {0, . . . , d− 1} such
that gn−1

σ,t (cm) = ζid · gn−1
σ,t (cm+1), then

(3.11)
(
gn−1
σ,t (cm)

)d − (
gn−1
σ,t (cm+1)

)d
=

d−1∏
i=0

(
gn−1
σ,t (cm)− ζid · gσ,t(cm+1)

n−1
)

is a polynomial in t of degree at least degt (gσ,t(cm))d−1 = d(n−2) · (d− 1) since at
most one of the terms from the product appearing in (3.11) may have degree less
than degt

(
gn−1
σ,t (cm)

)
. This contradicts (3.10) (note that n > 2), thus proving that

one of the terms in the product appearing in (3.11) must be 0, and so there exists

a root of unity ζ = ζi0d (for some i0 = 0, . . . , d− 1) such that

(3.12) gn−1
σ,t (cm) = ζ · gn−1

σ,t (cm+1).

Next we prove that ζ = 1 (i.e., i0 = 0). For this we need to refine the expansion
from (3.9), as follows:

gn
σ,t(cm) =

(
gn−1
σ,t (cm)

)d
+ t ·

(
gn−1
σ,t (cm)

)m−1
(3.13)

+ (α2t+ βσ,2) ·
(
gn−1
σ,t (cm)

)m−2
+O

(
td

n−2(m−3)+1
)
,

and similarly, using (3.12), we get

gn
σ,t(cm+1) =

(
gn−1
σ,t (cm+1)

)d
+ t ·

(
gn−1
σ,t (cm+1)

)m−1

+ (α2t+ βσ,2) ·
(
gn−1
σ,t (cm+1)

)m−2
+O

(
td

n−2(m−3)+1
)

=
(
gn−1
σ,t (cm)

)d
+ t · ζm−1

(
gn−1
σ,t (cm)

)m−1

+ (α2t+ β2) · ζm−2
(
gn−1
σ,t (cm)

)m−2
+O

(
td

n−2(m−3)+1
)
.

(3.14)

The equality gn
σ,t(cm) = gn

σ,t(cm+1) coupled with expansions (3.13) and (3.14) yields

first that ζm−1 = 1, and then re-using (3.13) and (3.14) yields that ζm−2 = 1. So,
ζ = 1, as desired. �

So, we know that g2
σ,t(cm) = g2

σ,t(cm+1). Using (3.3), we get that

0 = g2
σ,t(cm)− g2

σ,t(cm+1)

= (A(cm)t+Bσ(cm))
d − (A(cm+1)t+Bσ(cm+1))

d
(3.15)

+ t (A(cm)t+Bσ(cm))
m−1 − t (A(cm)t+Bσ(cm))

m−1
+O

(
tm−1

)
.

Comparing the terms of degree d we get

(3.16) A(cm+1) = ξ ·A(cm),

for some ξ ∈ C such that ξd = 1. Note that ξ is independent of σ, since A(z) is
independent of σ.

Proposition 3.17. The quantity Bσ(cm+1)− ξBσ(cm) is independent of the func-
tion σ.

Proof of Proposition 3.17. Our analysis splits into two cases: either m < d − 1 or
m = d− 1.

If m < d− 1, then comparing the coefficient of td−1 in (3.15), we get

A(cm)d−1Bσ(cm) = A(cm+1)
d−1Bσ(cm+1),
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and so (3.16) yields that Bσ(cm+1) = ξ · Bσ(cm) (note that A(cm) 	= 0, according
to (3.4)), thus providing the desired conclusion.

If m = d− 1, then again comparing the coefficient of td−1 in (3.15) yields that

(3.18) 0 = dA(cm)d−1Bσ(cm)−dA(cm+1)
d−1Bσ(cm+1)+A(cm)d−2−A(cm+1)

d−2.

Using (3.16) and (3.18), we obtain that

Bσ(cm+1)− ξBσ(cm) =
ξ − ξ−1

dA(cm)
.

This concludes the proof of Proposition 3.17. �

Using Lagrange interpolation for the polynomial Bσ(z)− zd which has degree at
most m− 2, one computes that

(3.19) Bσ(z) = zd +

m−1∑
i=1

(
cσ(i) − cdi

)
· A(z)

(z − ci) ·A′(ci)
,

where A′(z) is the derivative of the polynomial A(z). Next we will consider two
special functions σ: one of them is the identity function σ1 which maps ci to ci
for each i = 1, . . . ,m − 1, while the second function σ2 differs from σ1 only when
evaluated at c1, i.e.,

σ2(c1) = c2 and σ2(ci) = ci for i = 2, . . . ,m− 1.

Proposition 3.17 yields that

(3.20) Bσ2
(cm+1)−Bσ1

(cm+1) = ξ · (Bσ2
(cm)−Bσ1

(cm)) .

Using (3.19) along with (3.20) yields that

0 =
(c2 − c1)A(cm+1)

A′(c1)(cm+1 − c1)
− (c2 − c1) · ξA(cm)

A′(c1)(cm − c1)

=
(c2 − c1)A(cm+1)

A′(c1)

(
1

(cm+1 − c1)
− 1

(cm − c1)

)
since A(cm+1) = ξA(cm)

=
(c2 − c1)A(cm+1)

A′(c1)
· cm − cm+1

(cm+1 − c1)(cm − c1)
.

Therefore, either cm+1 = cm or A(cm+1) = 0; i.e., cm+1 = ci for some i =
1, . . . ,m − 1. This contradicts the fact that the starting points ci are all dis-
tinct. In conclusion, Prep(c1, . . . , cm+1) is contained in finitely many hypersurfaces
of Am. �
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