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A REMARK ON THE PRODUCT PROPERTY

FOR THE GENERALIZED MÖBIUS FUNCTION

MAREK JARNICKI AND PETER PFLUG

(Communicated by Harold P. Boas)

Abstract. We discuss an example related to the product property for the
generalized Möbius function.

1. Introduction

For a domain G ⊂ Cn and a set ∅ �= A ⊂ G, the generalized Möbius function
mG(A, ·) for G with poles at A is defined by the formula:

mG(A, z) := sup{|f(z)| : f ∈ O(G,D), f |A ≡ 0}, z ∈ G,

where D ⊂ C stands for the unit disc (cf. [Jar-Pfl 2013, Definition 8.2.2]). For an
arbitrary set A ⊂ Cn with A ∩ G �= ∅ we put mG(A, ·) := mG(A ∩ G, ·). It is an
open problem whether the generalized Möbius function has the following product
property :

(PP) for any nj ∈ N, Gj ⊂ Cnj , and ∅ �= Aj ⊂ Gj , j = 1, 2, we have

mG1×G2
(A1 ×A2, (z1, z2)) = max{mG1

(A1, z1),mG2
(A2, z2)}, (z1, z2) ∈ G1 ×G2;

cf. [Jar-Pfl 2013, § 18.3]. So far the product property (PP) has been proved only
in the case where min{#A1,#A2} = 1 (cf. [Jar-Pfl 2013, Theorem 18.3.2]). On
the other hand, it is known that the generalized Green function gG(A, ·) for G with
poles at A has the product property (cf. [Edi1997], [Edi2001]). Recall that

gG(A, z) := sup{u(z) : u : G −→ [0, 1), log u ∈ PSH(G),

∀a∈A ∃C>0 ∀w∈G : u(w) ≤ C‖w − a‖}, z ∈ G.

Clearly, mG(A, ·) ≤ gG(A, ·). Thus, if mGj
(Aj , ·) ≡ gGj

(Aj , ·), j = 1, 2, then (PP)
is satisfied. Define Ψ : Cn × Cn −→ C,

Ψ(z, w) :=
n∑

s=1

zsws = 〈z, w〉, z = (z1, . . . , zn), w = (w1, . . . , wn) ∈ C
n,

where 〈 , 〉 denotes the standard complex Euclidean scalar product in Cn.
Let Bn denote the class of all open unit balls B = {z ∈ Cn : ‖z‖ < 1}, where

‖ ‖ is an arbitrary C-norm.
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It is known (cf. [Jar-Pfl 2013, Proposition 18.3.1]) that the product property
(PP) is equivalent to the following seemingly simpler condition:

(PP′) for any n ∈ N, Bj ∈ Bn, and a finite set ∅ �= Aj ⊂ Bj , j = 1, 2, such

that A1 ×A2 ⊂ Ψ−1(0) we have

|Ψ(z1, z2)| ≤ ( sup
B1×B2

|Ψ|)max{mB1
(A1, z1),mB2

(A2, z2)}, (z1, z2) ∈ B1 ×B2.

Notice the following example due to W. Zwonek (cf. [Jar-Pfl 2013, Example 8.2.28]):
If B := {(z1, z2) ∈ C2 : |z1| + |z2| < 1} and A := {(t,

√
t), (t,−

√
t)} with

0 < t � 1, then mB(A, (0, 0)) < gB(A, (0, 0)).
Thus even the simpler condition (PP′) cannot be a direct consequence of the

product property for the generalized Green function.
For ∅ �= S ⊂ Cn define S◦ := {w ∈ Cn : supz∈S |Ψ(z, w)| < 1}.
Our aim is to prove the following two propositions.

Proposition 1. The condition (PP′) is equivalent to the following one:
(PP′′) for any n ≥ 2 and 1 ≤ d ≤ n− 1 we have:

|Ψ(z1, z2)| ≤ max{mB(M, z1),mB◦(M◦, z2)}, (z1, z2) ∈ B ×B◦,

where B ∈ Bn and M = C
d × {0}n−d.

Note that in this case M◦ = {0}d × Cn−d. We conjecture that in the above
situation we have

(*) mB(M, ·) ≡ gB(M, ·), mB◦(M◦, ·) = gB◦(M◦, ·).
If (*) were true, we could get (PP′′) (and hence the product property for the
generalized Möbius function in the full generality) as a consequence of the product
property for the generalized Green function.

So far we have verified (*) only in the following special case.

Proposition 2. Assume that

(**) ‖(z, λw)‖ ≤ ‖(z, w)‖, (z, w) ∈ C
d × C

n−d, λ ∈ T := ∂D.

Then (*) is satisfied.

2. Proofs

Remark 3. (a) ‖ · ‖◦ := supz∈B |Ψ(z, ·)| is a C-norm.

(b) If M ⊂ Cn is a C-vector subspace, then

M◦ = {w ∈ C
n : ∀z∈M : Ψ(z, w) = 0} = {w : w ∈ M⊥}

(M⊥ is taken in the sense of the scalar product 〈 , 〉). Consequently, M◦ is a
C-vector space and dimM◦ = n− dimM .

(c) Let U : Cn −→ Cn be a unitary isomorphism. Put U ′(w) := U(w). Then
Ψ(U(z), U ′(w)) = Ψ(z, w), z, w ∈ C

n. Consequently, (U(S))◦ = U ′(S◦).

Proof of Proposition 1. We have to prove that (PP′′) =⇒ (PP′). First we prove
that (PP′′) implies that

(a) for any n we have

|Ψ(z, w)| ≤ max{mB(M, z),mB◦(M◦, w)}, (z, w) ∈ B ×B◦,

where B ∈ Bn and M is a C-vector subspace of Cn.
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Put M0 := Cd × {0}n−d. Let U : Cn −→ Cn be a unitary mapping such that

U(M) = M0. Put U ′(w) := U(w). Let us apply (PP′′) to (U(B), U(M)). Using
Remark 3(c) and the fact that the generalized Möbius function is holomorphically
invariant (cf. [Jar-Pfl 2013, Remark 8.2.4(l)]), we get for (z, w) ∈ B ×B◦:

|Ψ(z, w)| = |Ψ(U(z), U ′(w))|
≤ max{mU(B)(U(M), U(z)),m(U(B))◦((U(M))◦, U ′(w))}
= max{mB(M, z),mB◦(M◦, w)},

which gives (a).
Now we prove that (a) implies
(b) for any n we have

|Ψ(z, w)| ≤ max{mB1(A1, z),mB2(A2, w)}, (z, w) ∈ B1 ×B2,

where Bj ∈ Bn, ∅ �= Aj ⊂ Bj , Aj is finite, j = 1, 2, are such that A1 × A2 ⊂
Ψ−1(0), and Ψ(B1 ×B2) ⊂ D.

Define B := B1, M := spanA1. Observe that B2 ⊂ B◦ and A2 ⊂ M◦.
Consequently,

|Ψ(z, w)| ≤ max{mB(M, z),mB◦(M◦, w)} ≤ max{mB1
(A1, z),mB2

(A2, w)},
(z, w) ∈ B ×B◦.

Notice that the cases dimM = 0 or dimM = n follow from the fact that (PP)
is true if max{#A1,#A2} = 1.

Finally, we prove (b) =⇒ (PP′).

Let C := supB1×B2
|Ψ|, r := 1/

√
C. Then |Ψ| ≤ 1 on (rB1)× (rB2). Thus,

1
C |Ψ(z1, z2)| = |Ψ(rz1, rz2)| ≤ max{mrB1

(rA1, rz1),mrB2
(rA2, rz2)}

= max{mB1(A1, z1),mB2(A2, z2)}, (z1, z2) ∈ B1 ×B2. �

Remark 4. (a) (**) implies that ‖(z, λw)‖ = ‖(z, w)‖, (z, w) ∈ Cd × Cn−d, λ ∈ T.

(b) By the maximum principle for plurisubharmonic functions we have ‖(z, λw)‖ ≤
‖(z, w)‖, (z, w) ∈ C

n, λ ∈ D. In particular, for every (z, w) ∈ B the set
Bz := {w ∈ Cn−d : ‖(z, w)‖ < 1} is a convex balanced domain.

(c) (B◦,M◦) satisfies the condition analogous to (**), namely ‖(λu, v)‖◦≤‖(u, v)‖◦,
(u, v) ∈ Cd × Cn−d, λ ∈ T. Indeed, fix (u, v) and λ. Then

‖(λu, v)‖◦ = sup
(z,w)∈B

|Ψ((z, w), (λu, v))|

= sup
(z,w)∈B

|Ψ((z, λw), (u, v))| ≤ sup
(z,w)∈B

|Ψ((z, w), (u, v))| = ‖(u, v)‖◦.

Proof of Proposition 2. By Remark 4(c), to get (*) we only need to consider the
case of (B,M).

Let hBz denote the Minkowski functional of Bz,

hBz
(w) := inf{t > 0 : ‖(z, w/t)‖ < 1}, w ∈ C

n−d.

Using the holomorphic contractibility with respect to the mapping Bz � w �−→
(z, w) ∈ B (cf. [Jar-Pfl 2013, Remark 8.2.4(l)]) and the fact that Bz is a convex
balanced domain, gives

mB(M, (z, w)) ≤ gB(M, (z, w)) ≤ gBz
(0, w) = hBz

(w), (z, w) ∈ B;
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cf. [Jar-Pfl 2013, Proposition 2.3.1(c)]. Fix a family (Li)i∈I of C-linear mappings
Li : C

n −→ C such that ‖ ‖ = supi∈I |Li|. Write Li(z, w) = Pi(z)+Qi(w). Observe
that ‖(z, w)‖ ≤ 1 ⇐⇒ ∀λ∈T : ‖(z, λw)‖ ≤ 1 ⇐⇒ ∀i∈I, λ∈T : |Li(z, λw)| ≤ 1 ⇐⇒
∀i∈I : |Pi(z)|+ |Qi(w)| ≤ 1. Moreover, ‖(z, w)‖ < 1 =⇒ ∀i∈I : |Pi(z)|+ |Qi(w)| < 1.

Consequently, for all i ∈ I and λ ∈ T the function fi,λ(z, w) :=
Qi(w)

1−λPi(z)
, (z, w) ∈ B,

is well defined, |fi,λ| ≤ 1, and fi,λ = 0 on M ∩B. In particular, for (z, w) ∈ B we
get

mB(M, (z, w)) ≥ sup{|fi,λ(z, w)| : i ∈ I, λ ∈ T} = sup
{ |Qi(w)|
1− |Pi(z)|

: i ∈ I
}
.

Observe that for (z, w) ∈ B we have

hBz
(w) = inf{t > 0 : ‖(z, w/t)‖ < 1} = inf{t > 0 : ‖(z, w/t)‖ ≤ 1}.

Indeed, we may assume that w �= 0. Let inf{t > 0 : ‖(z, w/t)‖ ≤ 1} = 1/r, where
r := sup{s > 0 : ‖(z, sw)‖ ≤ 1}. Note that ‖(z, rw)‖ = 1 and r > 1. In view of
(**) we have ‖(z, λw)‖ = 1 for all |λ| = r. Hence, by the maximum principle for
plurisubharmonic functions, we get ‖(z, λw)‖ ≤ 1 for all |λ| ≤ r and thus, either
‖(z, λw)‖ < 1 for all |λ| < r, or ‖(z, λw)‖ = 1 for all |λ| ≤ 1. The second case is
impossible because ‖(z, w)‖ < 1. Thus, finally, 1/r = inf{t > 0 : ‖(z, w/t)‖ < 1}.

Consequently, if (z, w) ∈ B, then

hBz (w) = inf{t > 0 : ∀i∈I |Li(z, w/t)| ≤ 1}

= inf{t > 0 : ∀i∈I |Pi(z)|+ 1
t |Qi(w)| ≤ 1} = sup

{ |Qi(w)|
1− |Pi(z)|

: i ∈ I
}
,

which finishes the proof. �
Remark 5. Let A : Cn−d −→ Cd be C-linear. Using the linear isomorphism
(z, w) �−→ (z + A(w), w) one may extend the equality mB(M, ·) ≡ gB(M, ·) to
all C-norms such that

‖(z + (1− λ)A(w), λw)‖ ≤ ‖(z, w)‖, (z, w) ∈ C
n, λ ∈ T.
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