POSITIVSTELLENSÄTZE FOR NONCOMMUTATIVE RATIONAL EXPRESSIONS

J. E. PASCOE
(Communicated by Stephan Ramon Garcia)

Abstract

We derive some Positivstellensätze for noncommutative rational expressions from the Positivstellensätze for noncommutative polynomials. Specifically, we show that if a noncommutative rational expression is positive on a polynomially convex set, then there is an algebraic certificate witnessing that fact. As in the case of noncommutative polynomials, our results are nicer when we additionally assume positivity on a convex set, that is, we obtain a so-called "perfect Positivstellensatz" on convex sets.

1. Introduction

We consider the positivity of noncommutative rational functions on polynomially convex sets. The theory on positive noncommutative polynomials has been well studied [3 4. 6, essentially inspired by the operator theoretic methods from the theory of positive (commutative) polynomials on polynomially convex sets originating in the work [9, 10]. We note that going from the polynomial to the rational case is less clear than in the noncommutative case because we cannot "clear denominators", as it were.

A noncommutative polynomial (over \mathbb{C}) in d-variables is an element of the free associative algebra over \mathbb{C} in the noncommuting letters x_{1}, \ldots, x_{d}. For example $1000 x_{1} x_{2} x_{1}-x_{2}^{2}$ and $x_{1}^{2}+x_{1} x_{2}$ are noncommutative polynomials in two variables. A matricial noncommutative polynomial is a matrix with noncommutative polynomial entries. For example,

$$
\left[\begin{array}{cc}
7 i & 1000 x_{1} x_{2} x_{1}-x_{2}^{2} \\
x_{1}^{2}+x_{1} x_{2} & 0
\end{array}\right]
$$

is a matricial noncommutative polynomial. We define an involution $*$ on matricial noncommutative polynomials to be the involution which treats each x_{i} as a selfadjoint variable. For example,

$$
\left[\begin{array}{cc}
7 i & 1000 x_{1} x_{2} x_{1}-x_{2}^{2} \\
x_{1}^{2}+x_{1} x_{2} & 0
\end{array}\right]^{*}=\left[\begin{array}{cc}
-7 i & x_{1}^{2}+x_{2} x_{1} \\
1000 x_{1} x_{2} x_{1}-x_{2}^{2} & 0
\end{array}\right] .
$$

[^0]We say a collection \mathcal{P} of square matricial noncommutative polynomials is Archimedian if \mathcal{P} contains elements of the form $C_{i}-x_{i}^{2}$ for some real numbers C_{i} and each element of \mathcal{P} is self-adjoint.

Let \mathcal{H} be the infinite dimensional separable Hilbert space. For a bounded and self-adjoint operator T, we say $T \geq 0$ if T is positive semidefinite, we say $T>0$ if T is strictly positive definite in the sense that $\langle T h, h\rangle>0$ for all nonzero vectors $h \in \mathcal{H}$. We define

$$
\mathcal{D}_{\mathcal{P}}=\left\{X \in B(\mathcal{H})^{d} \mid p(X) \geq 0, \forall p \in \mathcal{P}, X_{i}=X_{i}^{*}\right\} .
$$

Previously, Helton and McCullough showed the following Positivstellensatz for matricial noncommutative polynomials.

Theorem 1.1 (Helton, McCullough [6]). Let \mathcal{P} be an Archimedian collection of matricial noncommutative polynomials. Let q be a square matricial noncommutative polynomial. If $q>0$ on $\mathcal{D}_{\mathcal{P}}$, then

$$
q=\sum_{\text {finite }} s_{i}^{*} s_{i}+\sum_{\text {finite }} r_{j}^{*} p_{j} r_{j}
$$

where s_{i}, r_{j} are all matricial noncommutative polynomials and $p_{j} \in \mathcal{P}$.

2. The rational Positivstellensatz

A noncommutative rational expression is a syntactically correct expression involving $+,(),,^{-1}$ the letters x_{1}, \ldots, x_{d} and scalar numbers. We say two nondegenerate expressions are equivalent if they agree on the intersection of their domains. (Nondegeneracy means that the expression is defined for at least one input, or equivalently that the domain is a dense set with interior. That is, examples such as 0^{-1} are disallowed.) Examples of noncommutative rational expressions include

$$
1, x_{1} x_{1}^{-1}, 1+x_{2}\left(8 x_{1}^{3} x_{2} x_{1}+8\right)^{-1}
$$

We note that the first two are equivalent.
A matricial noncommutative rational expression is a matrix with noncommutative rational expression entries.

We show the following theorem.
Theorem 2.1. Let \mathcal{P} be an Archimedian collection of noncommutative polynomials. Let q be a square matricial noncommutative rational expression defined on all of $\mathcal{D}_{\mathcal{P}}$. If the noncommutative rational expression $q>0$ on $\mathcal{D}_{\mathcal{P}}$, then

$$
\begin{equation*}
q \equiv \sum_{\text {finite }} s_{i}^{*} s_{i}+\sum_{\text {finite }} r_{j}^{*} p_{j} r_{j} \tag{2.1}
\end{equation*}
$$

where s_{i}, r_{j} are all matricial noncommutative rational expressions defined on $\mathcal{D}_{\mathcal{P}}$ and $p_{j} \in \mathcal{P}$.

Proof. We let $g_{j}(x)$ be such that the term $g_{j}(x)^{-1}$ occurs in q. The proof will go by strong induction on the number of such terms. Define
$\mathcal{O}=\mathcal{P} \cup\left\{ \pm\left[1-u_{j} g_{j}(x)\right]^{*}\left[1-u_{j} g_{j}(x)\right], \pm\left[1-g_{j}(x) u_{j}\right]^{*}\left[1-g_{j}(x) u_{j}\right]\right\} \cup\left\{D_{j}-u_{j}^{*} u_{j}\right\}$ where D_{j} are positive real scalars chosen to be large enough so that $D_{j}-\left[g_{j}(x)^{-1}\right]^{*}$ $g_{j}(x)^{-1}$ is positive on $\mathcal{D}_{\mathcal{P}}$.

We now define a self-adjoint noncommutative polynomial $\hat{q}(x, u)$ so that $\hat{q}(x, g)=$ $q(x)$. Now \hat{q} is a noncommutative polynomial in terms of x_{i} and u_{j}. Moreover, in terms of the x_{i} and u_{j}, we see that $q(x, u)$ is positive on $\mathcal{D}_{\mathcal{O}}$, so by Theorem 1.1,

$$
\hat{q}=\sum s_{i}^{*} s_{i}+\sum r_{j}^{*} o_{j} r_{j}
$$

for some $o_{j} \in \mathcal{O}$. We now analyze each term of the form $t_{j}=r_{j}^{*} o_{j} r_{j}$. We need to show that $t_{j}(x, g)$ is of the form (2.1). If $o_{j} \in \mathcal{P}$, we are fine. If $o_{j}= \pm[1-$ $\left.u_{j} g_{j}(x)\right]^{*}\left[1-u_{j} g_{j}(x)\right]$, we are also fine, since $t_{j}(x, g)=0$, and similarly for the reversed case. If $o_{j}=D_{j}-\left[u_{j}\right]^{*} u_{j}$ we note that

$$
o_{j}(x, g)=D_{j}-\left[g_{j}(x)^{-1}\right]^{*} g_{j}(x)^{-1}=\left[g_{j}(x)^{-1}\right]^{*}\left[D_{j} g_{j}(x)^{*} g_{j}(x)-1\right] g_{j}(x)^{-1},
$$

and since $D_{j} g_{j}(x)^{*} g_{j}(x)-1>0$ on $\mathcal{D}_{\mathcal{P}}$, by induction it is of the form (2.1), so we are done.

We note that the same proof can be adapted for the hereditary case in [6]. Moreover, we note that this implies the Agler model theory for rational functions on polynomially convex sets established previously in [1,2].

3. The convex perfect rational Positivstellensatz

It is important to note that in Theorem 1.1 and Theorem [2.1 the complexity of the sum of squares representation is unbounded and we needed strict inequality. Specifically, in (2.1), the number of terms in each sum and the degree of each s_{i} and r_{j} are not bounded in the statement of the theorem. However, Helton, Klep and McCullough [4] showed that bounds do exist when we additionally assume that $\mathcal{D}_{\mathcal{P}}$ is convex and contains 0 and moreover that \mathcal{P} consists of a single monic linear pencil, L, a self-adjoint linear matrix polynomial such that $L(0)$ is the identity. We note that for any finite set \mathcal{P} of noncommutative polynomials such that $\mathcal{D}_{\mathcal{P}}$ is convex and contains 0 , there exists such an L [7].

Our goal is to prove the following:
Theorem 3.1. Let L be a monic linear pencil. Suppose $\mathcal{D}_{\{L\}}$ is convex. Let r be a square matricial noncommutative rational expression defined on all of $\mathcal{D}_{\{L\}}$. The noncommutative rational expression $r \geq 0$ on all of $\mathcal{D}_{\{L\}}$ if and only if

$$
\begin{equation*}
r \equiv \sum_{\text {finite }} s_{i}^{*} s_{i}+\sum_{\text {finite }} r_{j}^{*} L r_{j} \tag{3.1}
\end{equation*}
$$

where s_{i}, r_{j} are all matricial noncommutative rational expressions defined on all of $\mathcal{D}_{\{L\}}$.
Proof. Given an expression $r(x)$, we consider the expression $\tilde{r}(x, u)$ where each $g_{j}(x)^{-1}$ occurring in r has been replaced by u_{j} as in the proof of Theorem 2.1.

First we consider the minimal set \mathcal{C}_{r} of rational expressions such that:
(1) $a b \in \mathcal{C}_{r} \Rightarrow b \in \mathcal{C}_{r}$,
(2) $(a+b) c \in \mathcal{C}_{r} \Rightarrow a c \in \mathcal{C}_{r}, b c \in \mathcal{C}_{r}$,
(3) $a+b \in \mathcal{C} \Rightarrow a \in \mathcal{C}_{r}, b \in \mathcal{C}_{r}$,
(4) $a^{-1} b \in \mathcal{C}_{r} \Rightarrow a a^{-1} b \in \mathcal{C}_{r}$.

From \mathcal{C}_{r}, form a set $\tilde{\mathcal{C}}_{r}$ by replacing each occurence of $g_{j}(x)^{-1}$ in elements of \mathcal{C}_{r} with a new symbol u_{j}. We define the set of \mathcal{M}_{r} to be

$$
\mathcal{M}_{r}=\left\{g_{j}(x) u_{j} b-b \mid g_{j}(x) u_{j} b \in \tilde{\mathcal{C}}_{r}\right\} .
$$

Define

$$
\mathcal{Z}_{r}=\left\{(X, U, v) \mid m(X, U) v=0, m \in \mathcal{M}_{r}, L(X) \geq 0\right\}
$$

We note that for $(X, U, v) \in \mathcal{Z}_{r}$ and $\tilde{a}(x, u) \in \tilde{\mathcal{C}_{r}}$, one can show we have that $\tilde{a}(X, U) v=\tilde{a}\left(x, g(X)^{-1}\right) v$ via a recursive argument. We see that $\tilde{r}(x, u)$ satisfies

$$
\langle r(X) v, v\rangle=\langle\tilde{r}(X, U) v, v\rangle \geq 0
$$

on \mathcal{Z}_{r} since $\tilde{r}(X, U) v=r(X) v$ on \mathcal{Z}_{r} by construction. Now, we apply the Helton-Klep-Nelson convex Positivstellensatz [5, Theorem 1.9], where the variety is given by \mathcal{Z}_{r} and the convex set is $\{(X, U) \mid L(X) \geq 0\}$, to get that:

$$
\tilde{r}(x, u)=\sum \tilde{s}_{i}^{*} \tilde{s}_{i}+\sum \tilde{r}_{j}^{*} L \tilde{r}_{j}+\sum \iota_{k}^{*} m_{k}+m_{k}^{*} \iota_{k}
$$

where each ι_{k} is in the real radical of the ideal generated by the elements of \mathcal{M}_{r}. That is, each $\iota_{k}(X, U) v$ vanishes on \mathcal{Z}_{r}. So, substituting $g_{j}(x)^{-1}$ for u_{j} we get that

$$
r(x) \equiv \sum s_{i}^{*} s_{i}+\sum r_{j}^{*} L r_{j} .
$$

We note that we could have proved a bit more: that on the variety \mathcal{Z}_{r} that \tilde{r} is positive and given by a sum of squares. This would essentially correspond to the so-called Moore-Penrose evaluation in [8. Moreover, we note that the main result on positive rational functions, the noncommutative analogue of Artin's solution to Hilbert's 17th problem, that regular positive rational expressions are sums of squares [8], follows from our present theorem by taking an empty monic linear pencil; in fact, we obtain a slightly better matricial version of that result. Specifically, by taking the monic linear pencil $L(X)=I$. Now we note that $D_{\{L\}}$ consists of all tuples of self-adjoint operators in $\mathcal{B}(\mathcal{H})^{d}$. Applying Theorem 3.1 gives that any square matricial rational expression r such that $r \geq 0$ on $D_{\{L\}}$ is a sum of squares of the form

$$
r \equiv \sum_{\text {finite }} s_{i}^{*} s_{i}+\sum_{\text {finite }} r_{j}^{*} L r_{j} \equiv \sum_{\text {finite }} s_{i}^{*} s_{i}+\sum_{\text {finite }} r_{j}^{*} r_{j}
$$

We note that, without loss of generality, we can assume the r_{j} sum is empty. That is, any square matricial rational expression r which is defined for all self-adjoint inputs and takes positive semidefinite values everywhere must satisfy

$$
r \equiv \sum_{\text {finite }} s_{i}^{*} s_{i}
$$

and is thus a sum of squares of rational functions, as in Artin's solution to Hilbert's 17th problem. Moreover, one has size bounds inherited from the Helton-KlepNelson convex Positivstellensatz [5], that is, checking that a noncommutative rational expression is effective using the algorithms given in [5].

References

[1] Jim Agler and John E. McCarthy, Global holomorphic functions in several noncommuting variables, Canad. J. Math. 67 (2015), no. 2, 241-285, DOI 10.4153/CJM-2014-024-1. MR 3314834
[2] Joseph A. Ball, Gilbert Groenewald, and Tanit Malakorn, Conservative structured noncommutative multidimensional linear systems, The state space method generalizations and applications, Oper. Theory Adv. Appl., vol. 161, Birkhäuser, Basel, 2006, pp. 179-223, DOI 10.1007/3-7643-7431-4_4. MR2187744
[3] J. William Helton, "Positive" noncommutative polynomials are sums of squares, Ann. of Math. (2) 156 (2002), no. 2, 675-694, DOI 10.2307/3597203. MR 1933721
[4] J. William Helton, Igor Klep, and Scott McCullough, The convex Positivstellensatz in a free algebra, Adv. Math. 231 (2012), no. 1, 516-534, DOI 10.1016/j.aim.2012.04.028. MR2935397
[5] J. William Helton, Igor Klep, and Christopher S. Nelson, Noncommutative polynomials nonnegative on a variety intersect a convex set, J. Funct. Anal. 266 (2014), no. 12, 6684-6752, DOI 10.1016/j.jfa.2014.03.016. MR 3198852
[6] J. William Helton and Scott A. McCullough, A Positivstellensatz for non-commutative polynomials, Trans. Amer. Math. Soc. 356 (2004), no. 9, 3721-3737, DOI 10.1090/S0002-9947-04-03433-6. MR2055751
[7] J. William Helton and Scott McCullough, Every convex free basic semi-algebraic set has an LMI representation, Ann. of Math. (2) 176 (2012), no. 2, 979-1013, DOI 10.4007/annals.2012.176.2.6. MR 2950768
[8] Igor Klep, James Eldred Pascoe, and Jurij Volčič, Regular and positive noncommutative rational functions, J. Lond. Math. Soc. (2) 95 (2017), no. 2, 613-632, DOI 10.1112/jlms. 12030. MR 3656284
[9] Mihai Putinar, Positive polynomials on compact semi-algebraic sets, Indiana Univ. Math. J. 42 (1993), no. 3, 969-984, DOI 10.1512/iumj.1993.42.42045. MR1254128
[10] Konrad Schmüdgen, The K-moment problem for compact semi-algebraic sets, Math. Ann. 289 (1991), no. 2, 203-206, DOI 10.1007/BF01446568. MR 1092173

Department of Mathematics, Washington University in St. Louis, 1 Brookings Drive, Campus Box 1146, St. Louis, Missouri 63130

E-mail address: pascoej@math.wustl.edu

[^0]: Received by the editors March 21, 2017 and, in revised form, April 12, 2017.
 2010 Mathematics Subject Classification. Primary 13J30, 16K40, 47L07; Secondary 15A22, 26C15, 47A63.

 Key words and phrases. Noncommutative rational function, positive rational function, Hilbert's 17th problem, noncommutative Positivstellensatz.

 This research was supported by NSF Mathematical Science Postdoctoral Research Fellowship DMS 1606260.

