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POSITIVSTELLENSÄTZE FOR NONCOMMUTATIVE

RATIONAL EXPRESSIONS

J. E. PASCOE

(Communicated by Stephan Ramon Garcia)

Abstract. We derive some Positivstellensätze for noncommutative rational
expressions from the Positivstellensätze for noncommutative polynomials.
Specifically, we show that if a noncommutative rational expression is positive
on a polynomially convex set, then there is an algebraic certificate witnessing
that fact. As in the case of noncommutative polynomials, our results are nicer
when we additionally assume positivity on a convex set, that is, we obtain a
so-called “perfect Positivstellensatz” on convex sets.

1. Introduction

We consider the positivity of noncommutative rational functions on polynomi-
ally convex sets. The theory on positive noncommutative polynomials has been well
studied [3,4,6], essentially inspired by the operator theoretic methods from the the-
ory of positive (commutative) polynomials on polynomially convex sets originating
in the work [9, 10]. We note that going from the polynomial to the rational case
is less clear than in the noncommutative case because we cannot “clear denomina-
tors”, as it were.

A noncommutative polynomial (over C) in d-variables is an element of the
free associative algebra over C in the noncommuting letters x1, . . . , xd. For example
1000x1x2x1 − x2

2 and x2
1 + x1x2 are noncommutative polynomials in two variables.

A matricial noncommutative polynomial is a matrix with noncommutative
polynomial entries. For example,

[
7i 1000x1x2x1−x2

2

x2
1+x1x2 0

]

is a matricial noncommutative polynomial. We define an involution ∗ on matricial
noncommutative polynomials to be the involution which treats each xi as a self-
adjoint variable. For example,

[
7i 1000x1x2x1−x2

2

x2
1+x1x2 0

]∗
=

[
−7i x2

1+x2x1

1000x1x2x1−x2
2 0

]
.
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We say a collection P of square matricial noncommutative polynomials is Archi-
median if P contains elements of the form Ci − x2

i for some real numbers Ci and
each element of P is self-adjoint.

Let H be the infinite dimensional separable Hilbert space. For a bounded and
self-adjoint operator T , we say T ≥ 0 if T is positive semidefinite, we say T > 0 if
T is strictly positive definite in the sense that 〈Th, h〉 > 0 for all nonzero vectors
h ∈ H. We define

DP = {X ∈ B(H)d|p(X) ≥ 0, ∀p ∈ P, Xi = X∗
i }.

Previously, Helton and McCullough showed the following Positivstellensatz for
matricial noncommutative polynomials.

Theorem 1.1 (Helton, McCullough [6]). Let P be an Archimedian collection of
matricial noncommutative polynomials. Let q be a square matricial noncommutative
polynomial. If q > 0 on DP , then

q =
∑
finite

s∗i si +
∑
finite

r∗j pjrj

where si, rj are all matricial noncommutative polynomials and pj ∈ P.

2. The rational Positivstellensatz

A noncommutative rational expression is a syntactically correct expression
involving +, (, ),−1 the letters x1, . . . , xd and scalar numbers. We say two nondegen-
erate expressions are equivalent if they agree on the intersection of their domains.
(Nondegeneracy means that the expression is defined for at least one input, or
equivalently that the domain is a dense set with interior. That is, examples such
as 0−1 are disallowed.) Examples of noncommutative rational expressions include

1, x1x
−1
1 , 1 + x2(8x

3
1x2x1 + 8)−1.

We note that the first two are equivalent.
A matricial noncommutative rational expression is a matrix with non-

commutative rational expression entries.
We show the following theorem.

Theorem 2.1. Let P be an Archimedian collection of noncommutative polynomials.
Let q be a square matricial noncommutative rational expression defined on all of
DP . If the noncommutative rational expression q > 0 on DP , then

(2.1) q ≡
∑
finite

s∗i si +
∑
finite

r∗j pjrj

where si, rj are all matricial noncommutative rational expressions defined on DP
and pj ∈ P.

Proof. We let gj(x) be such that the term gj(x)
−1 occurs in q. The proof will go

by strong induction on the number of such terms. Define

O = P ∪ {±[1− ujgj(x)]
∗[1− ujgj(x)],±[1− gj(x)uj ]

∗[1− gj(x)uj ]} ∪ {Dj − u∗
juj}

where Dj are positive real scalars chosen to be large enough so that Dj− [gj(x)
−1]∗

gj(x)
−1 is positive on DP .
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We now define a self-adjoint noncommutative polynomial q̂(x, u) so that q̂(x, g) =
q(x). Now q̂ is a noncommutative polynomial in terms of xi and uj . Moreover, in
terms of the xi and uj , we see that q(x, u) is positive on DO, so by Theorem 1.1,

q̂ =
∑

s∗i si +
∑

r∗j ojrj

for some oj ∈ O. We now analyze each term of the form tj = r∗j ojrj . We need
to show that tj(x, g) is of the form (2.1). If oj ∈ P, we are fine. If oj = ±[1 −
ujgj(x)]

∗[1 − ujgj(x)], we are also fine, since tj(x, g) = 0, and similarly for the
reversed case. If oj = Dj − [uj ]

∗uj we note that

oj(x, g) = Dj − [gj(x)
−1]∗gj(x)

−1 = [gj(x)
−1]∗[Djgj(x)

∗gj(x)− 1]gj(x)
−1,

and since Djgj(x)
∗gj(x)− 1 > 0 on DP , by induction it is of the form (2.1), so we

are done. �

We note that the same proof can be adapted for the hereditary case in [6].
Moreover, we note that this implies the Agler model theory for rational functions
on polynomially convex sets established previously in [1, 2].

3. The convex perfect rational Positivstellensatz

It is important to note that in Theorem 1.1 and Theorem 2.1, the complexity
of the sum of squares representation is unbounded and we needed strict inequality.
Specifically, in (2.1), the number of terms in each sum and the degree of each si
and rj are not bounded in the statement of the theorem. However, Helton, Klep
and McCullough [4] showed that bounds do exist when we additionally assume that
DP is convex and contains 0 and moreover that P consists of a single monic linear
pencil, L, a self-adjoint linear matrix polynomial such that L(0) is the identity.
We note that for any finite set P of noncommutative polynomials such that DP is
convex and contains 0, there exists such an L [7].

Our goal is to prove the following:

Theorem 3.1. Let L be a monic linear pencil. Suppose D{L} is convex. Let r be
a square matricial noncommutative rational expression defined on all of D{L}. The
noncommutative rational expression r ≥ 0 on all of D{L} if and only if

(3.1) r ≡
∑
finite

s∗i si +
∑
finite

r∗jLrj

where si, rj are all matricial noncommutative rational expressions defined on all of
D{L}.

Proof. Given an expression r(x), we consider the expression r̃(x, u) where each
gj(x)

−1 occurring in r has been replaced by uj as in the proof of Theorem 2.1.
First we consider the minimal set Cr of rational expressions such that:

(1) ab ∈ Cr ⇒ b ∈ Cr,
(2) (a+ b)c ∈ Cr ⇒ ac ∈ Cr, bc ∈ Cr,
(3) a+ b ∈ C ⇒ a ∈ Cr, b ∈ Cr,
(4) a−1b ∈ Cr ⇒ aa−1b ∈ Cr.

From Cr, form a set C̃r by replacing each occurence of gj(x)
−1 in elements of Cr

with a new symbol uj . We define the set of Mr to be

Mr = {gj(x)ujb− b|gj(x)ujb ∈ C̃r}.
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Define
Zr = {(X,U, v)|m(X,U)v = 0,m ∈ Mr, L(X) ≥ 0}.

We note that for (X,U, v) ∈ Zr and ã(x, u) ∈ C̃r, one can show we have that
ã(X,U)v = ã(x, g(X)−1)v via a recursive argument. We see that r̃(x, u) satisfies

〈r(X)v, v〉 = 〈r̃(X,U)v, v〉 ≥ 0,

on Zr since r̃(X,U)v = r(X)v on Zr by construction. Now, we apply the Helton-
Klep-Nelson convex Positivstellensatz [5, Theorem 1.9], where the variety is given
by Zr and the convex set is {(X,U)|L(X) ≥ 0}, to get that:

r̃(x, u) =
∑

s̃∗i s̃i +
∑

r̃∗jLr̃j +
∑

ι∗kmk +m∗
kιk

where each ιk is in the real radical of the ideal generated by the elements of Mr.
That is, each ιk(X,U)v vanishes on Zr. So, substituting gj(x)

−1 for uj we get that

r(x) ≡
∑

s∗i si +
∑

r∗jLrj .

�
We note that we could have proved a bit more: that on the variety Zr that r̃ is

positive and given by a sum of squares. This would essentially correspond to the
so-called Moore-Penrose evaluation in [8]. Moreover, we note that the main result
on positive rational functions, the noncommutative analogue of Artin’s solution
to Hilbert’s 17th problem, that regular positive rational expressions are sums of
squares [8], follows from our present theorem by taking an empty monic linear pen-
cil; in fact, we obtain a slightly better matricial version of that result. Specifically,
by taking the monic linear pencil L(X) = I. Now we note that D{L} consists of

all tuples of self-adjoint operators in B(H)d. Applying Theorem 3.1 gives that any
square matricial rational expression r such that r ≥ 0 on D{L} is a sum of squares
of the form

r ≡
∑
finite

s∗i si +
∑
finite

r∗jLrj ≡
∑
finite

s∗i si +
∑
finite

r∗j rj .

We note that, without loss of generality, we can assume the rj sum is empty. That
is, any square matricial rational expression r which is defined for all self-adjoint
inputs and takes positive semidefinite values everywhere must satisfy

r ≡
∑
finite

s∗i si,

and is thus a sum of squares of rational functions, as in Artin’s solution to Hilbert’s
17th problem. Moreover, one has size bounds inherited from the Helton-Klep-
Nelson convex Positivstellensatz [5], that is, checking that a noncommutative ra-
tional expression is effective using the algorithms given in [5].
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