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(Communicated by Jeremy Tyson)

Abstract. The pinwheel triangle of Conway and Radin is a standard example
for tilings with self-similarity and statistical circular symmetry. Many mod-
ifications were constructed, all based on partitions of triangles or rectangles.
The fractal example of Frank and Whittaker requires 13 different types of tiles.
We present an example of a single tile with fractal boundary and very simple
geometric structure which has the same symmetry and spectral properties as

the pinwheel triangle.

1. Self-similar tilings

A compact set A ⊂ R
d with non-empty interior is called a replication tile with m

pieces, or reptile for short, if there exist a similarity map g and isometries h1, ..., hm

on Euclidean R
d such that

(1) g(A) = h1(A) ∪ ... ∪ hm(A) ,

and any two different sets hi(A) have no interior points in common. Figure 1 shows
an example; others can be found in [17, Chapter 11] or in [14, 21, 22, 29]. A well-
known theorem of Hutchinson says that A is determined by the data g, h1, ..., hm

[8, 11].
The union of m isometric copies of A is an enlarged copy B = g(A), so the

union of m isometric copies of B will be a still larger copy of A. Continuing this
procedure and subdividing the larger copies, one can see that the whole R

d is tiled
by isometric copies of A, forming a self-similar tiling. There are different ways to
form supertiles. Multiplying (1) by h−1

j for any j, we get h−1
j g(A) as a supertile

for A. The supertile can again be chosen as the first, second, or mth piece of a still
larger supertile, and so on.

Our assumptions are quite restrictive. Among others, comparison of the volume
in equation (1) shows that all eigenvalues of g must have modulus d

√
m. There are

more general concepts in the literature, allowing for affine maps g, for copies hi(A)
with different sizes, and for several types of tiles. Here we stick to the simplest case,
and we take d = 2 so that g has ratio

√
m. Moreover, we assume that h1 = id, and

consider only tiles A which are homeomorphic to a disk, bounded by a closed Jordan
curve. Our point is that even under such restrictive assumptions new examples can
be found.

To see why Figure 1 is important, we give a brief review of self-similar tilings.
The main point is that the tiling property of A is fulfilled only for very special
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Figure 1. The new fractal pinwheel tile. Numbers i = 1, ..., 5
mark the pieces hi(A) in (1). Capital letters denote landmark
points discussed in Section 2.

choices of similarities g and isometries hi. The standard assumption is that the
mappings hi generate a certain crystallographic group Γ, and the expanding map
g produces a subgroup Γ0 = gΓg−1 ⊂ Γ.

There are tilings which have Γ as their symmetry group. This happens when
H = {h1, ..., hm} is a complete residue system, that is, H ·Γ0 = Γ [14]; cf. [4,5,21].
This necessary and sufficient condition for crystallographic tilings is easy to check.
For given data g, hi there exists only one tiling and many ways to assemble the
tiles into larger and larger supertiles. Examples include the plane regular tilings by
squares and by equilateral triangles, with m = 4.

A second class of tilings with Γ0 ⊆ Γ and non-complete residue system has
been considered by many authors [3, 5, 17, 19–21, 29, 31]. We have more tilings
but fewer symmetric tilings, and fewer choices for forming supertiles than in the
crystallographic case. The simplest case is g(x) = 4x on R with hi(x) = x + vi,
where vi = 0, 1, 8, 9 and A = [0, 1]∪ [2, 3] [19]. There are two possible tilings with a
fixed tile A obtained by considering A as the left or as the right part in a supertile.
With the IFStile program package [22], a lot of new cases in this class have been
detected. Necessary and sufficient conditions for the second class were found only
in the one-dimensional case [20].

An extreme subclass of this class includes the chair and sphinx tilings [3,17,29].
These tilings are not periodic: no translation will transform them into themselves.
We have a continuum of different tilings, which can be made a tiling space [26,30],
and the composition of supertiles is unique in each given tiling [31]. Such tilings
are often associated with quasicrystals, although their Fourier spectra are not much
different from those of periodic tilings [3, 29]. The ‘typical quasicrystal’ Penrose,
Robinson and Ammann tilings are made from several types of tiles [17, Chapter 11]
and are not considered here. They have symmetries of the Fourier spectrum which
are forbidden for crystallographic pattern and which have been found by physicists
in quasicrystallic alloys [3, 29].
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There is a third class of self-similar tilings, where either H does not generate a
crystallographic group or Γ0 = gΓg−1 is not a subset of Γ. In the language of Section
3 below, the neighbor maps are not contained in a crystallographic group. The first
example was the pinwheel triangle of Conway and Radin, where it is easy to verify
that Γ0 contains an irrational rotation. Using ergodicity, Radin [24] proved that the
orientations of triangles in an infinite pinwheel triangle tiling are equidistributed
on the circle. This implies that the tiling has a continuous spectrum. A physical
material modelled by pinwheel triangles would have an extraordinary diffraction
pattern consisting of circles, like a disordered system; cf. [2, 23]. At the same
time, the pinwheel triangle tilings have a finite set of matching rules, similar to a
crystal, as proved in [25]. This apparent contradiction motivated the work of the
mathematical physicist Radin. For mathematical work on tiling spaces and spectra
of tilings see [26, 30].

Various modifications of the pinwheel triangle have been presented [13,27]. They
use triangles, and most of them have a larger number of tiles. There is also a fractal
pinwheel version [12] which uses 13 different types of tiles.

Figure 1 shows an unexpected single fractal tile with irrational rotations between
neighbor tiles, denoted as ‘fractal pinwheel’. Irrational rotations imply statistical
circular symmetry of orientations [13, Section 6] and continuous diffraction and
dynamical spectrum [2, 23, 30]. The assumptions of Goodman-Strauss [16] are also
fulfilled, so there exists a finite set of matching rules. Straight line boundaries are
not necessary for such tiles.

Figure 2. Second subdivision of the fractal pinwheel, based on
colors as in Figure 1. The small piece hi(fj(A)) is colored with a
mixture of 2/3 color i and 1/3 color j. Neighboring subpieces at
the border between pieces 1, 2 (and 4, 5) differ by irrational rota-
tions.

In the following section the reptile in Figure 1 is defined, and geometrical prop-
erties are studied. While the tiling property is obvious for a triangle like Radin’s
pinwheel, considerable effort is needed for the proof in the fractal case where the
tile is defined only implicitly by contraction maps. Theorem 3 in Section 3 uses
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the technique of neighbor maps. Actually, the tile was found by a computer search
with IFStile [22], which analyzed neighbor graphs of many random parameter sets.
Since then, a search of 109 parameter sets with IFStile [22] has not provided further
pinwheels. In Section 4 we study a second reptile structure on the fractal pinwheel
A which is quite different.

After this paper was completed, we found that both of our tiles were already
presented by Ventrella in his inspiring book [33, pp. 85-86] on plane-filling curves.
Ventrella used L-systems and gave no rigorous argument for the plane-filling prop-
erty. He noted that these two curves do not fit into a square grid and show an
extraordinary ‘mixture of 90- and 45-degree angles’. Our careful analysis of irra-
tional angles will provide mathematical clarity.

2. Definition and geometry of the fractal tile

The two outer pieces 1 and 5 of Figure 1 have different orientation from the
whole figure, while the three middle pieces have the same orientation. The apparent
vertices of the tiles are on a lattice. We take part 1 as our basic tile A and choose
coordinates so that A has vertices O =

(
0
0

)
, V =

(
1
0

)
, and W =

(
1
1

)
. Then g(A) is

a triangle with fractal boundaries and vertices O,P =
(
2
1

)
, and Q =

(
3
−1

)
. For an

affine mapping h
(
x
y

)
=

(
ax+by+c
dx+ey+f

)
, the coefficients are given as

(
c
f

)
= h

(
0
0

)
,
(
a
d

)
=

h
(
1
0

)
− h

(
0
0

)
, and

(
b
e

)
= h

(
1
1

)
− h

(
1
0

)
. Now g is the linear mapping determined by

g(V ) = P, g(W ) = Q. The hi are symmetries of the square lattice determined by
similar equations, for instance h2(O) = V, h2(V ) = W,h2(W ) = P. Calculation
yields that

g
(
x
y

)
=

(
2 1
1−2

)(
x
y

)
=

(
2x+y
x−2y

)
,(2)

h2

(
x
y

)
=

(
y+1
x

)
, h3

(
x
y

)
=

(
2−y
1−x

)
, h4

(
x
y

)
=

(
x+1
−y

)
, h5

(
x
y

)
=

(
y+2
−x

)
.(3)

Of course, other descriptions are possible. Choosing part 4 as basic tile A and
point M as origin of a coordinate system with N =

(
1
0

)
, V =

(
0
1

)
, we would get the

expanding matrix as
(
2−1
1 2

)
. Thus the expansion map is the same as for the pinwheel

triangle in [12, 24, 25]. The hi are quite different: in Figure 1, piece k is connected
only with pieces k − 1, k + 1 by a fractal edge, while in the pinwheel triangle three
pieces are pairwise connected by edges or ‘half-edges’.

Proposition 1 (Convex hull and diameter of fractal pinwheel). The convex hull

of the fractal g(A) in Figure 1 is the hexagon OUQPWL with L =
(3/5
4/5

)
. The

diameter of g(A) is
√
10, and the diameter of A is

√
2.

Proof. We denote the convex hexagon OUQPWL by C. The self-similar set A
contains the points O and W which are fixed points of mappings f1 and f5; see
(4) below. Thus g(A) contains O,W, P = h3(O), Q = h5(W ), U = h4(W ), and
L = g−1(U). So the hexagon C is a subset of the convex hull of g(A). On the other
hand, it is easy to check that C1 = g−1(C) ⊂ C and Ck = hk(C1) ⊂ C. This implies
that g(A) ⊂ C (the Hutchinson operator F for g(A) fulfills F (C) ⊂ C; its iteration
yields a decreasing sequence converging to g(A) (see [8])). Thus C is the convex

hull of g(A). It has three sides of length 1, two of length
√
5, and a short side of

length 1/
√
5.
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Since the diameter of a polygon is its longest side or diagonal, the diameter of
C and of g(A) is

√
10, the length of OQ. Since g has factor

√
5, the diameter of A

is
√
2. �

Two Jordan arcs γ and γ′ with a common endpoint P will be said to form a
Jordan angle of size α if a rotation by α with center P transforms γ into γ′. The
fractal boundary curves between O,P, and Q are called sides of the triangle�OPQ.

Proposition 2 (The fractal pinwheel as a triangle).

a) The fractal triangle g(A) = �OPQ has two congruent sides OP,PQ. The
fractal curves OU and V Q on the long side OQ are also congruent to the
short sides.

b) The short sides are symmetric with reflection at the perpendicular bisectors
of OP,PQ. The long side is symmetric with respect to a 180o rotation
around its midpoint M.

c) The triangle has Jordan angle 90o at P, and irrational angles α = ∠UOP =
2 · arctan 1

2 ≈ 53.1o at O and 90o − α ≈ 36.9o at Q.

d) In dimension δ = log(1 +
√
2)/ log

√
5 all sides have positive and finite

Hausdorff measure. Taking this as length measure, Pythagoras’ theorem
holds for the triangle.

e) The area of A = �OVW is 1
2 .

First part of proof. Properties a) and b) seem obvious from Figure 1, and a proof
is given in Section 3. c) immediately follows from a). The Euclidean triangle
�OPN is a Radin pinwheel and has angle arctan 1

2 at O. The size of the Jordan

angle ∠V QP can be checked by noting that ∠V QZ = 90o, where Z =
(
4
1

)
is

outside Figure 1. Irrational angles are the basis for concluding that the tilings are
statistically circular symmetric [13, 25].

Concerning d), we shall prove in Section 3 that the sides of �OPQ form a
graph-directed system of self-similar sets. Calculation of the Hausdorff dimension
δ of such fractal boundaries is standard, starting with classical work of Gilbert in
the 1980s [7,10,15,18,32]. The Hausdorff measure μ of dimension δ of each side is
positive and finite. Assuming this fact, we can prove d) by the following argument.

Hausdorff measure is invariant under isometry, and Hausdorff measure of an
image under a similitude with factor r < 1 decreases by the factor rδ. Here the
factor of g−1 is r = 1/

√
5, and we let y = rδ. If we put a = μ(OP ) = μ(PQ), then

μ(OQ) = μ(OU)+μ(UQ) = a(1+y) and a = μ(OW )+μ(WP ) = y(μ(OQ)+a) .

Now a cancels out, and y =
√
2−1 is the positive solution of the quadratic equation.

Thus μ(OQ) = a
√
2, which means that Pythagoras’ theorem is true for our triangle

with fractal side lengths. Under contractions like g−1 where Euclidean distances
shrink by r = 1/

√
5 ≈ .447, the lengths of fractal boundaries shrink faster, by√

2 − 1 ≈ .414. The dimension of boundaries is δ = log y/ log r ≈ 1.1 , as stated in
d).

It is a well-known open problem that there exists a single puzzle tile T such that
the plane can be tiled with isometric copies of T, but it cannot be tiled periodically.
See [17, Chapter 11] and the foreword of [6] by Penrose for a historical account
and Chapter 6 of Baake and Grimm [6] for recent contributions, in particular the
decorated hexagons of Taylor and Socolar which almost solve the problem. Could
Figure 1 be such an aperiodic tile? Unfortunately not. If we add to g(A) three
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copies obtained by successive 90o rotation around P, we get a fractal square which
tiles the plane like an ordinary square. This directly follows from a) and b). Another
periodic tile is the fractal rectangle PNVW, the union of parts 2 and 3 in Figure
1. If we consider the square lattice as a checkerboard, and we put a copy of the
rectangle on each white square and a copy rotated around 90o on each black square,
we have a tiling, due to Proposition 2a) and b). Part of such a checkerboard pattern
can be seen in Figure 2. As a consequence, the fractal rectangle must have area
one, and the area of tile A is 1

2 . This proves e). �

3. The neighbor graph

Applying g−1 to both sides of (1), we represent A = A1 as a self-similar set or
IFS attractor

(4) A = f1(A) ∪ ... ∪ fm(A) with fi = g−1 · hi for i = 1, ...,m.

For our example, let us list the expressions of fi
(
x
y

)
, i = 1, .., 5, to be used below.

(5) 1
5

(
2x+y
x−2y

)
, 1

5

(
x+2y+2
−2x+y+1

)
, 1

5

(−x−2y+5
2x−y

)
, 1

5

(
2x−y+2
x+2y+1

)
, 1

5

(−x+2y+4
2x+y+2

)
.

A basic theorem of Hutchinson says that there is exactly one compact solution
A of (4) for given contractions fi [8, 11]. To get good topological and geometric
properties, however, we have to assume that the fi(A) do not overlap too much.
Usually one assumes the open set condition: there is an open set U so that the
fi(U) are disjoint subsets of U. Such a set U is hard to determine, so one requires
that A, or better f1, ..., fm, is of finite type. This means that the neighbor graph,
defined below, is finite. The topology of A is determined by a finite automaton
which is obtained from the fi by an algorithm. We shall calculate the automaton
for our example.

The technique of neighbor graphs is now well established. The beginnings go
back to Gilbert in the eighties; see [15] and references in [4]. In [6], neighbor maps
were introduced as h = f−1

i fj where i, j ∈ {1, ...,m}n for some n ≥ 1. The open
set condition was shown to be equivalent to the fact that neighbor maps cannot
converge to the identity map. For tiles A, neighbor maps are exactly the isometries
between neighboring pieces in any self-similar tiling made up of copies of A; cf.
[5]. We shall consider only proper neighbors, for which fi(A) ∩ fj(A) �= ∅. Here
i = i1...in and fi = fi1 · ... · fin . Thus a neighbor map transforms A to an isometric
copy h(A) which intersects A and is a tile in some patch obtained by inflation of A
around one of its pieces fi(A).

A neighbor map h = f−1
i fj describes a potential boundary set A ∩ h(A). Actu-

ally, the study of tile boundaries, especially for the Levy curve [10, 32], was a key
motivation for developing the method of neighbor graphs [1,7,18,28]. The neighbor
graph yields a system of set equations for the boundary of A, similar to (4). In
the program IFStile [22], a fast and very general algorithm was implemented to
determine neighbor graphs and dimensions of boundary tiles.

The vertices of the neighbor graph G are the neighbor maps h. An arrow with
label i, j is drawn from vertex h to vertex h̄ if h̄ = f−1

i hfj , for two marks i, j ∈
{1, ...,m}. We keep only those arrows which correspond to proper neighbors, that
is, fi(A) ∩ h(fj(A)) �= ∅. See [7] for details. The identity map id is the root vertex
of the graph, with loops labelled i, i. It is not drawn in Figure 4, and arrows from
id have no intial vertex.
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Figure 3. Edge neighbors. Pieces number 2 and 4 are displayed
darker in A and in the neighbor h(A) to recognize neighbor pieces
which define arrows in the neighbor graph.

If G is a finite graph, the reptile or IFS attractor A generated by g, h1, ..., hm,
resp. f1, ..., fm, is called finite type. If there are no incoming edges to the root
vertex id, then the open set condition is fulfilled, which together with the condition
that all fi have similarity ratio 1/

√
m implies the tiling property [5, 6].

In a plane tiling, we can have two different kinds of neighbors: point neighbors,
which have a single intersection point, and edge neighbors, which have uncountably
many points in common. Other kinds of neighbors can occur [6] but not in the
case of our example. Moreover, the intersection of two edge neighbors is always
homeomorphic to an interval, as will be proved now.

Theorem 3 (Neighbor graph and boundary of fractal pinwheel). Let A denote the
fractal pinwheel, with mappings defined by (4), (2) and (3).

a) There are exactly 11 edge neighbors illustrated in Figure 3, 69 point neigh-
bors and no other neighbors. Thus A is finite type, has non-empty interior
and is a reptile.

b) Two of the maps for edge neighbors are irrational rotations. So there is a
continuum of different tilings. They are not lattice tilings and have statis-
tical circular symmetry.
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c) Edges are of two types: k · 90o rotation on one hand, glide reflections and
irrational rotations on the other. All subedges of an edge at any level have
the same type as the original edge.

d) A is homeomorphic to a disk, bounded by a closed Jordan curve of dimension

δ = log(1 +
√
2)/ log

√
5. This boundary set is the union of intersections of

A with its three neighbors by rational rotation.

Proof. First we sketch our proof of the difficult part a) by calculation of all neighbor
maps with a computer. This was done independently by two authors with different
software. We build the graph G recursively, calculating all possible h′ = f−1

i hfj for
all previously constructed maps h. We want to neglect h if A ∩ h(A) = ∅, but this
cannot be checked directly. However, by Proposition 1, the diameter of A∪h(A) is

smaller than 2
√
2 whenever A intersects h(A). Since the origin belongs to A, this

implies that ‖h
(
0
0

)
‖ ≤

√
8.

We determine the graph of neighbor maps h
(
x
y

)
= O

(
x
y

)
+
(
e
f

)
with an orthogonal

matrix O for which e2 + f2 ≤ 8 is fulfilled. This graph turns out to be finite, with
955 vertices. Then we take the subgraph of all vertices which lie on cycles of the
large graph. This is our graph G of proper neighbors with only 81 vertices including
the root. Point neighbor maps h have the property that for each n, only one path
of length n starts at vertex h. They are easily singled out by checking powers of
the adjacency matrix of G. There were 69 point neighbors, 11 remaining neighbor
maps and the identity, which proves a). On a PC, all this is done in less than 2
seconds.

Now we give a computer-free proof of the theorem, except for the number of
point neighbors. As explained below, the 11 edge neighbors in Figure 3 can be
found by inspection of the second subdivision of g(A), Figure 2, and confirming by
calculation. A check of the next subdivision, or of Figure 3, then verifies that no
other edge neighbors exist, and there are no incoming arrows to the root vertex in
the neighbor graph.

Note that (4) implies f−1
i = h−1

i g and thus f−1
i fj = h−1

i hj for i, j = 1, ...,m = 5.

So the successors of the root vertex id include the rational rotations p = h−1
2 h3 =

h−1
3 h2 = −x +

(
1
1

)
, a 180o rotation around

( 1
2
1
2

)
and r = h−1

3 h4, a clockwise 90o

rotation with center V =
(
1
0

)
. Since the inverse of any neighbor map h = f−1

i fj is the

neighbor map f−1
j fi, we have to add the inverse r− = h−1

4 h3, the counterclockwise
90o rotation with center V. The mapping p is self-inverse.

So far we have studied the maps between pieces 2 and 3, and 3 and 4 in Figure 1.
Now we consider their subpiece neighbors in Figures 2 or 3. We see that subpieces
24 and 34 have the same relative position as pieces 2 and 3, which is algebraically
verified by the equation p = f−1

4 pf4 and results in a loop from vertex p to itself
with label 4, 4. Subpieces 41 and 35 also intersect and correspond to the neighbor
map p, which results in arrows from vertex r to p with label 1, 5, and from r−

to p with label 5, 1. Checking two other pairs of subpieces of 2 and 3, and one
remaining pair of subpieces of 3 and 4 in Figure 2, we obtain the graph in Figure
4. This argument proves that there are no other arrows starting in p, r, r− (which
the computer checked algebraically). It is enough to take only the first label i of
any arrow from a vertex h to a vertex h̄ since the second label j is the same as the
first label of the arrow from h−1 to h̄−1. Drawing arrows from the root without an
initial vertex, we obtain a reduced form of the graph [7] on the left of Figure 4.



A SINGLE FRACTAL PINWHEEL TILE 1279

Table 1. Arrows between edge neighbors and their labels. To
each arrow (h, h′, i, j) there is another arrow (h−1, h′−1, j, i) which
is not listed here, except for (p, p, 4, 4) with p = p−1.

rational rotations glide reflections, irrational rotations
initial vertex id id p p r r id id s s s a a a t b b b
terminal vertex p r p r p r− s s a t b a− t− b− s− a− t− b−

first label 2 3 4 5 5 3 1 4 3 5 5 1 1 2 1 4 4 5
second label 3 4 4 1 1 5 2 5 1 1 2 1 4 4 5 3 5 5

To get all edge neighbors, we still have to consider the boundary between pieces
1 and 2, or 4 and 5. There we get the glide reflection s = h2 = h−1

4 h5 and its
inverse s− seen in the second row of Figure 3. The subpieces 15 and 21 lead to
the glide reflection t = f−1

15 f21 = f−1
5 s and its inverse t−. Subpieces 13 and 21

yield the neighbor map a = f−1
13 f21 = f−1

3 s, which is an irrational rotation by α
around O; see Section 2 and Figure 3. Subpieces 15 and 22 yield the neighbor map
b = f−1

15 f22 = f−1
5 sgf2, which is an irrational rotation by 90o −α around W =

(
1
1

)
.

We found edge neighbors in the second subdivision for which the neighbor map
is an irrational rotation! This shows the non-crystallographic character of our
fractal tile. This property implies that for each self-similar tiling by copies of A,
the orientations of tiles, defined as angles, are dense in [0, 2π]. Their distribution
within a large circle of radius R around 0 converges to the uniform distribution on
[0, 2π] when R runs to infinity. This is called ‘statistical circular symmetry’ [13].
The Fourier spectrum, important from the physicists’ viewpoint, is also symmetric
under rotations. This was shown in [13, 23, 25], which completes the proof of b).

To get the complete graph of edge neighbors, we still have to study the subpieces
of neighbors t, a, b, t−, a−, b− in Figure 3. They all represent neighbor maps of the
second and third row of Figure 3, providing arrows in G leading to previous vertices.
Instead of drawing this part of G, which is not planar, we list the arrows in Table
1. To each arrow (h, h′, i, j) in the table, except (p, p, 4, 4), there is another arrow
(h−1, h′−1, j, i) which is not listed for brevity. This proves a) when we neglect point
neighbors. Assertion c) follows since the right part of Table 1 contains no arrows
leading to rational rotations. The graph of edge neighbors, without root, splits into
two components.

Can we really neglect point neighbors? Yes, we can. The proof of d) will be done
only with the graph of rational rotations in Figure 4 which was derived by simple
calculation. d) implies that the three sides of the triangle A studied in Section 2 are
really Jordan curves, and thus the angles α, 90o−α are correctly defined. Together
with the list of edge neighbors and the Jordan curve theorem, this implies that
any non-edge neighbor can intersect A only in one of the vertices O, V,W, g−1(U)
or g−1(V ). Moreover, since subtiles meet at such a point with their vertices, only
finitely many angles are possible. This shows that beside edge neighbors, only
finitely many point neighbors exist and shows the finite type property of A. (If
we are satisfied with the open set condition for A, instead of finite type, the finite
number of angles will not be needed.)
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Figure 4. Left: Graph of edged neighbors by rational rotation;
arrows marked by first label only. Right: Convex hulls of associated
boundary sets and their images in (7).

Now let us prove d). Abstract methods as in [1,7] are not needed since our case
is rather simple. Consider A with three edge neighbors defined by p, r, r−. The
subpiece 33 in the middle of Figure 2 has this structure. Let P = A ∩ p(A), R =
A ∩ r(A) and R− = A ∩ r−(A) denote the corresponding boundary sets of A. The
reduced form of the neighbor graph for this configuration in Figure 4 yields the
equation system

(6) P = f5(R) ∪ f4(P ) ∪ f1(R
−) , R = f3(R

−) ∪ f5(P ) , R− = f1(P ) ∪ f2(R).

The sets P,R,R− form a so-called graph-directed construction. The crucial point
is that the convex hulls CP , CR and CR− provide the open set condition for this
system. Similar to Proposition 1, these are the quadrilaterals CP = convOLWL′

with L =
(3/5
4/5

)
and L′ =

(2/5
1/5

)
, CR = convWVKK ′ with K =

(4/5
2/5

)
and K ′ =(4/5

3/5

)
, and CR− = convOVHH ′ with H =

( 3/5
−1/5

)
and H ′ =

( 2/5
−1/5

)
. The open

set condition says that the interiors of the quadrilaterals contain disjoint unions of
their images defined in (6):
(7)
CP ⊃f5(CR)∪f4(CP )∪f1(CR−) , CR⊃f3(CR−)∪f5(CP ) , CR− ⊃f1(CP )∪f2(CR) .

This is verified by simply calculating images of vertices with (5). We get chains
where each quadrilateral has one vertex in common with its predecessor and suc-
cessor. Moreover, each of the points O, V,W belongs to two components of the
boundary J = P ∪ R ∪ R−. (Details: Addresses of points of a boundary set are
given by the paths starting in the corresponding vertex of the graph in Figure 4.
Paths with 555... = 5 start in both p and r. So the point with address 5, fixed
point W of f5, belongs to P ∩R. Similarly, fixed point O of f1 belongs to P ∩R−.
Since V = f2(W ) = f3(O) and paths labelled 31, 25 start in R,R−, respectively,
{V } = R ∩R−.)

The intersection points of consecutive small quadrilaterals belong to A since
they are images of such intersection points on previous levels, for example L′ =
f4(O), L = f4(W ). Iterating the graph-directed construction on quadrilaterals we
obtain longer chains of smaller quadrilaterals with vertices in J. This is a classical
‘Koch curve’ construction. In the limit we have three Jordan arcs P,R,R− which
form the closed Jordan curve J. By definition, J ⊂ A.
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We show that A has no points in the exterior region of J. The neighbors p(A),
r(A), r−(A) contain the closed Jordan arcs p(J), r(J), and r−(J) which have similar
neighborhoods of quadrilaterals as J. Comparing slopes of lines, we see that the
convex hull of A, given as the outer boundary in Figure 4, is within the interior
region of the union J ∪ p(J) ∪ r(J) ∪ r−(J) (for the neighbors, use inner sides of
quadrilaterals as bound). Thus each point of A exterior to J must belong to one
neighbor. So by definition it belongs to J. Thus such exterior points cannot exist.

We note that the fractal arc R is invariant under the reflection σ at the line
y = 1

2 . To see this, we check that for each point connecting two quadrilaterals in
the approximating chain of R on some level n, the reflected point will also be on
two quadrilaterals, at least on level n+1. For K and K ′ this can be seen in Figure
4. By induction we prove that all vertices of the quadrilaterals within CR lie on R.
They form a reflection symmetric set.

As a consequence, the neighbor map s = σ · r describes the same boundary set
R as r. On one hand ρ(R) = R implies that s(A) contains R. On the other hand,
points in r(J) \ R fulfill x > 1, as do their images under ρ, so that s(A) cannot
contain other points of A.

Now J and all boundaries between the pieces fi(A) form a network of Jordan
curves which belong to A, because the edge neighbor maps within g(A) are p, r, r−,
and s. We can apply the fi to the union of all these Jordan curves and get a more
dense network of Jordan curves bounding the second level pieces and forming a
subset of A. The diameter of holes within this network is at most

√
2/5. Iterating

further, the diameter of holes tends to zero. Thus the closed set A contains the
whole interior region of J.

Once we know that A is homeomorphic to a disk, we immediately have the open
set condition and the tiling property. For topological reasons, disk-like neighbors
can only meet in a Jordan arc or in a single point. So all remaining neighbors of
A are point neighbors. As mentioned above, this implies the finite type property.
Since we had a graph-directed system (6) with open set condition (7), the calcu-
lation of the dimension δ in Section 2 is justified. The computer-free proof of the
theorem is finished. �

Completion of proof of Proposition 2. We know that A is homeomorphic to a disk,
and the neighbors r(A), p(A) and r−(A) intersect A in the fractal arcs R =
VW,P = WO, and R− = OV, respectively. This immediately implies that the
long side P is invariant under 180o rotation p and that R− is mapped by 90o ro-
tation r onto R. Reflection-invariance of R was shown above. The congruence of
R with the fractal arc WL′ and of R− with OL is given by the neighbor maps b
and a; see Figure 3. This proves the corresponding statements a)–c) for g(A). The
argument of d) was justified above, and e) is based on the neighbor map p and the
reflection invariance of R. Everything is proved. �

4. The second inflation structure

The union of pieces 2 and 3 in Figure 1 has the symmetry group of a rectangle.
It is mapped to itself by the 180o rotation p = h−1

2 h3, and also by reflection σ
(
x
y

)
=(

x
1−y

)
at the line y = 1

2 . This kind of symmetry is rare in fractal tiles. We apply the
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Figure 5. Second subdivision of the second fractal pinwheel.

reflection to h2 and h3, obtaining new maps

(8) h̄2 = σh2 =

(
y + 1

1− x

)
, h̄3 = σh3 =

(
2− y

x

)
.

Since h̄2(A)∪ h̄3(A) = h2(A)∪h3(A), there is a new reptile with maps g, h1, h̄2, h̄3,
h4, and h5. As a set, this reptile coincides with A, but the subdivision is different,
as shown in Figure 5. This leads to other tilings.

Figure 6. For the second structure, these glide reflections replace
the irrational rotations in the last row of Figure 3 as neighbor maps.
Pieces 2 and 5 are displayed darker in A and h(A) to recognize
adjacent pieces.

Reflection of a rectangle consisting of two pieces in a self-similar triangle was
Radin’s trick to come from a crystallographic tile to the non-crystallographic pin-
wheel triangle. A similar trick was used by Conway and Radin [9] to obtain three-
dimensional quaquaversal tilings from crystallographic ones. In our case, however,
the reflection of pieces 2, 3 leads from one non-crystallographic tile to another
non-crystallographic tile.
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The second subdivision of this fractal structure is shown in Figure 5. Four of the
mappings fi are orientation-reversing. All three vertices of the fractal triangle are
fixed points of corresponding contraction maps, resulting in a smaller number of
point neighbors. The graph of edge neighbors is planar, as shown in Figure 7. This
second similarity structure has quite different matching rules than the first. The
irrational rotations in the last row of Figure 3 do not appear as neighbor maps.
Instead, we have the glide reflections shown in Figure 6. An irrational rotation
occurs between point neighbors, as for the pinwheel triangle: h = f−1

44 f51 has the

form h
(
x
y

)
=

(
.8x−.6y+1
.6x+.8y−1

)
with h(L) = V in both structures. Part a) of the following

statement is proved like Theorem 3. c) follows from the graph in Figure 7.

Figure 7. Graph of edge neighbors for the second inflation structure.

Proposition 4 (Neighbor graph of the second fractal pinwheel structure). The
second fractal pinwheel structure on A has the following properties.

a) There are exactly 11 edge neighbors, given in the first two rows of Figure
3 and in Figure 6. Their graph is shown in Figure 7. There are 35 point
neighbors and no other neighbors. Thus A is finite type, has non-empty
interior and is a reptile.

b) Point neighbor maps include irrational rotations. So there are no lattice
tilings, and we have statistical circular symmetry.

c) Edges come with two types of maps: rational rotations on one hand, glide
reflections on the other. All subedges of an edge of first type are again of
first type. Edges of second type contain a dense set of subedges of first type.
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