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DERIVATIVES OF BLASCHKE PRODUCTS WHOSE ZEROS LIE

IN A STOLZ DOMAIN AND WEIGHTED BERGMAN SPACES

ATTE REIJONEN

(Communicated by Stephan Ramon Garcia)

Abstract. For a Blaschke product B whose zeros lie in a Stolz domain, we
find a condition regarding ω which guarantees that B′ belongs to the Bergman
space Ap

ω . In addition, the sharpness of this condition is considered.

1. Introduction and main results

Let H(D) be the space of analytic functions in the unit disc D = {z ∈ C : |z| < 1}
of the complex plane C. For 0 < p < ∞ and a weight ω, the weighted Bergman
space Ap

ω consists of those f ∈ H(D) satisfying

‖f‖p
Ap

ω
=

∫
D

|f(z)|pω(z) dA(z) < ∞,

where dA(z) is the Lebesgue area measure on D. A function ω : D → [0,∞), which
is integrable over D, is called a weight. A weight ω is radial if ω(z) = ω(|z|) for
all z ∈ D. If ω(z) = (1 − |z|)α with −1 < α < ∞, then we write Ap

ω = Ap
α. The

notation Ap is used in the case α = 0.
If {zn} is a sequence of points in D which satisfies the Blaschke condition∑
n(1 − |zn|) < ∞, then the Blaschke product associated with {zn} is defined

by

B(z) =
∏
n

|zn|
zn

zn − z

1− znz
, z ∈ D.

Information about Blaschke products can be found in [3] and [5]. In this note, we
consider Blaschke products with zeros in Stolz domains,

Ωη(ξ) = {z ∈ D : |1− ξz| ≤ η(1− |z|)},
where ξ ∈ T and 1 < η < ∞ are given. Write Ωη(1) = Ωη for short, and denote the
family of all Blaschke products whose zeros lie in some Stolz domain by B.

Blaschke products B in B have been studied earlier in [2, 4, 6–10, 12], to name
a few. In particular, the behavior of B′ has been studied there. For example, the
main results of [6] show that B′ ∈ Ap for every B ∈ B if and only if 0 < p < 3

2 .
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Our purpose is to generalize this result for the weighted Bergman space Ap
ω. The

first part of this generalization reads as follows.

Theorem 1. Let 0 < p < ∞ and B ∈ B, and let ω be a radial weight on D. Then:

(a) B′ ∈ Ap
ω for all 0 < p < 1

2 .

(b) If
∫ 1

0
ω(r) log

(
1

1−r

)
dr < ∞, then B′ ∈ A

1/2
ω .

(c) If 1
2 < p < ∞ and

∫ 1

0
ω(r)(1− r)

1
2−p dr < ∞, then B′ ∈ Ap

ω.

For Theorem 2, which shows the sharpness of Theorem 1 in the case 1
2 < p < ∞,

we need to recall some conditions on weights. We limit our investigations to the class

D̂ of doubling weights, which consists of radial weights ω satisfying ω̂(r) � ω̂( 1+r
2 ),

where ω̂(r) =
∫ 1

r
ω(s) ds. The notation a � b means that there exists a constant

C > 0 such that a ≤ Cb, while a � b is understood in an analogous manner. If

a � b and a � b, then we write a � b. A radial weight ω belongs to D̂ if and only if

(1.1) D̂p(ω) = sup
0<r<1

(1− r)p

ω̂(r)

∫ r

0

ω(s)

(1− s)p
ds < ∞

for some 0 < p < ∞ [16]. If (1.1) holds for some fixed p, then we write ω ∈ D̂p.

Regarding inner functions Θ, weights ω in D̂p with some 0 < p < ∞ have the
following property [17]:

(1.2) ‖Θ′‖p
Ap

ω
�

∫
D

(
1− |Θ(z)|
1− |z|

)p

ω(z) dA(z).

Inner functions are bounded analytic functions in D having unimodular radial limits
at almost every point on the boundary T = {z ∈ D : |z| = 1} [5, 13]. Hence (1.2) is
valid, in particular, when Θ is a Blaschke product. Using (1.2), one can also show
that a finite product of the derivatives of inner functions belongs to Ap

ω induced by

ω ∈ D̂p if and only if all members of the product belong to Ap
ω.

We say that ω ∈ D if there exist C = C(ω) ≥ 1, α = α(ω) > 0 and β = β(ω) ≥ α
such that

C−1

(
1− r

1− t

)α

ω̂(t) ≤ ω̂(r) ≤ C

(
1− r

1− t

)β

ω̂(t), 0 ≤ r ≤ t < 1.(1.3)

In (1.3), only the left-hand side inequality is a restriction because the right-hand

side inequality is valid for some β > 0 if and only if ω ∈ D̂ [16]. In addition, we
denote log0 x = x, log1 x = log x and logk+1 x = log(logk x) for sufficiently large

0 < x < ∞ and k ∈ N, and y[1] = y, y[2] = yy and y[j+1] = yy
[j]

for 0 < y < ∞ and
j ∈ N. Using this notation, we state the following theorem.

Theorem 2. Let N ∈ N, 1
2 < p < ∞ and ω ∈ D̂p. For 1 < p < ∞, we assume in

addition that the left-hand side inequality of (1.3) holds for some α = α(ω) > p−1.
There exists a Blaschke product B with zeros in the positive real axis such that if
B′ ∈ Ap

ω, then ∫ 1

0

ω(r)

(1− r)p−1/2

(
logN

e[N ]

1− r

)− 1
2

dr < ∞.

Roughly speaking, for 1
2 < p < ∞, we are searching for a weighted Bergman

space Ap
ω which contains {B′ : B ∈ B} and is as close as possible to Ap

p−3/2.
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Hence the hypotheses of ω in Theorem 2 are not very restricting, because if ω(z) =
(1 − |z|)α for all z ∈ D, then these hypotheses are satisfied if and only if p − 2 <
α < p− 1.

We close this section with a concrete example which shows that Theorems 1 and 2
really improve the above-mentioned result from [6]. The next sections contain proofs
of these theorems. Note that, in the following example, we use the interpretation∏0

k=1(·) = 1.

Example. Let 1
2 < p < ∞, M ∈ N and

υα(z) = (1− |z|)p−3/2

(
logM

e[M ]

1− |z|

)−α M−1∏
k=1

(
logk

e[k]

1− |z|

)−1

, z ∈ D,

for some 0 < α < ∞. Then B′ ∈ Ap
υα

for every B ∈ B if and only if α > 1.

Theorem 1 implies that B′ ∈ Ap
υα

for every B ∈ B if α > 1. Since υα satisfies
the hypotheses of Theorem 2 for any α, the converse statement follows from this
result by choosing N = M + 1.

2. Proof and corollary of Theorem 1

Since the integral mean

Mp(r, f) =

(
1

2π

∫ 2π

0

|f(reit)|p dt
)1/p

, 0 < p < ∞,

of every f ∈ H(D) is increasing with r [5], Theorem 1 is a direct consequence of
the following upper estimate of Mp(r, B

′), where B ∈ B.

Theorem 3. Let 0 < p < ∞ and B ∈ B. Then there exists R ∈ (0, 1) such that

(2.1) Mp
p (r, B

′) �

⎧⎪⎨⎪⎩
1, p < 1

2 ,

log
(

1
1−r

)
, p = 1

2 ,

(1− r)1/2−p, p > 1
2 ,

for R ≤ r < 1.

It is worth noting that Theorem 3 for p ≥ 1 is essentially proved in [9]. In fact,
using [9, Corollary 1.10] together with the Schwarz-Pick lemma, we obtain

Mp
p (r, B

′)

(1− r)1/2−p
−→ 0+, r → 1−, p ≥ 1.

Furthermore, the case 0 < p ≤ 1
2 is a consequence of the proof of [7, Theorem 2.3],

as we can see in the proof below. Hence our contribution to Theorem 3 limits to
the case 1

2 < p < 1.

Proof of Theorem 3. Assume, without loss of generality, that the zero-sequence
{zn} of B is contained in Ωη for some 1 < η < ∞. Then |B′(z)| � |1− z|−2 for all
z ∈ D by the proof of [7, Theorem 2.3]. Now the assertion in the case p ≤ 1

2 follows
directly from this fact by using [11, Theorem 1.7].

Let 1
2 < p < ∞, and set

f(θ) = fB(θ) =
∑
n

1− |zn|
(θ + (1− |zn|))2

, 0 < θ < 2π.
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By the proof of [6, Theorem 3], we find constants 0 < R < 1, K = K(η,R) > 0
and A = A(η,R) > 0 such that

|B′(reit)| ≤ Af((1− r) + |t|) exp (−K(1− r)f((1− r) + |t|))
for −π ≤ t ≤ π and R ≤ r < 1. Hence, by the change of variable θ = (1 − r) + t,
we obtain

Mp
p (r, B

′) ≤ 2Ap

∫ π

0

f((1− r) + t)p exp (−Kp(1− r)f((1− r) + t)) dt

�
∫ 2π

1−r

f(θ)p exp (−Kp(1− r)f(θ)) dθ, R ≤ r < 1.

(2.2)

Since {zn} is a Blaschke sequence, there exists C = C(B) > K
2p−1
2p+1 such that

f(θ) ≤ Cθ−2 for all θ. To estimate the last formula of (2.2), for 0 < r < 1, we set

Dr = {θ ∈ (1− r, 2π) : f(θ) ≥ θ−1− 1
2p } and consider the auxiliary function

g(x) = xp exp(−Kp(1− r)x), 0 < x < ∞.

A simple calculation shows that g is non-decreasing for x ≤ K−1(1 − r)−1 and

decreasing for x > K−1(1− r). If θ ≥
√
CK

√
1− r, then

f(θ) ≤ Cθ−2 ≤ K−1(1− r)−1;

and if θ ∈ Dr and θ < K
2p

2p+1 (1− r)
2p

2p+1 , then

f(θ) ≥ θ−1− 1
2p > K−1(1− r)−1.

Since f is continuous and decreasing, by the inequalities above, there exists θr
satisfyingK

2p
2p+1 (1−r)

2p
2p+1 < θr ≤

√
CK

√
1− r such that g(f(θ)) is non-decreasing

for θ ∈ Dr and θ ≥ θr and decreasing for θ ∈ Dr and θ < θr. Using (2.2) together
with these monotonicity properties of g(f(θ)), we obtain

Mp
p (r, B

′) �
(∫

Dr

+

∫
(1−r,2π)\Dr

)
f(θ)p exp (−Kp(1− r)f(θ)) dθ

≤
(∫

Dr∩{θ:θ<θr}
+

∫
Dr∩{θ:θ≥θr}

)
f(θ)p exp (−Kp(1− r)f(θ)) dθ

+

∫
(1−r,2π)\Dr

θ−p− 1
2 dθ

�
∫
Dr∩{θ:θ<θr}

θ−p− 1
2 exp

(
−Kp

1− r

θ1+
1
2p

)
dθ

+

∫
Dr∩{θ:θ≥θr}

θ−2p exp

(
−CKp

1− r

θ2

)
dθ + (1− r)

1
2−p

�
∫ 2π

1−r

θ−2p exp

(
−W

1− r

θ2

)
dθ + (1− r)

1
2−p = Ip(r), R < r < 1,

where W = W (C, p,K) = CKp. The change of variable x = W (1− r)/θ2 yields

Ip(r) =
W

1
2−p

2
(1− r)

1
2−p

∫ W
1−r

W (1−r)

4π2

xp− 3
2 e−x dx+ (1− r)

1
2−p

� (1− r)
1
2−p

(
Γ

(
p− 1

2

)
+ 1

)
� (1− r)

1
2−p, 0 ≤ r < 1.
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This completes the proof. �

Recall that any inner function can be represented as the product of a Blaschke
product (which may have zeros also at the origin) and a singular inner function

S(z) = Sσ(z) = exp

(∫
T

z + w

z − w
dσ(w) + iθ

)
, z ∈ D,

where 0 ≤ θ < 2π and σ is a positive measure on T and singular with respect to
the Lebesgue measure [5]. Regarding this fact, we state and prove the following
consequence of Theorem 1.

Corollary 4. Let 0 < p < ∞ and ω ∈ D̂p. Let Θ = BS be an inner function,
where B ∈ B and S is a non-constant singular inner function. Then Θ′ ∈ Ap

ω if
and only if S′ ∈ Ap

ω.

Proof. Using (1.2), one can show that Θ′ ∈ Ap
ω if and only if S′ ∈ Ap

ω and B′ ∈ Ap
ω.

Thus the case 0 < p < 1
2 is clear by Theorem 1. If

∫ 1

0
ω(r) log

(
e

1−r

)
dr < ∞, then

B′ ∈ A
1/2
ω by Theorem 1. Furthermore, (1.2) and [15, Theorem 4.4.5] yield

‖S′‖1/2
A

1/2
ω

�
∫
D

(
1− |S(z)|
1− |z|

) 1
2

ω(z) dA(z) �
∫ 1

0

ω(r) log

(
e

1− r

)
dr.

Hence the assertion for p = 1
2 follows by combining these facts. The remaining case

can be proved in a similar manner using the first corollary of [1, Theorem 5] or
[15, Theorem 4.4.4]. �

It is obvious that the statement of Corollary 4 is not true in general if the
hypothesis B ∈ B is removed. For example, the derivative of the atomic singular

inner function S(z) = exp
(

z+1
z−1

)
belongs to Ap for any 1 < p < 3

2 , but (BS)′ /∈ Ap

if B is a Blaschke product associated with {zn}, which is a finite union of separated
sequences satisfying the condition

∑
n(1 − |zn|)2−p = ∞. See, for instance, the

main result of [14] and [18, Theorem 1].

3. Proof of Theorem 2

Let us begin by recalling [18, Corollary 6], referred to here as Lemma A. Write
ω ∈ Jp if

Jp(ω) = sup
0<r<1

(1− r)p

ω̂(r)

∫ 1

r

ω(s)

(1− s)p
ds < ∞.

Furthermore, for q ∈ R and a weight ω, we write ωq(z) = ω(z)(1 − |z|)q for all
z ∈ D.

Lemma A. Let 1
2 < p < ∞, 0 < q < ∞ and ω ∈ D, and let Θ be an inner

function. If

(a) 1 < p < ∞ and ω ∈ D̂p ∩ Jp−1, or

(b) p+ q ≤ 1 and ω ∈ D̂2p−1, or

(c) 1 < p+ q ≤ 1 + q and ω ∈ D̂2p−1 ∩ Jp−1,

then ‖Θ′‖p
Ap

ω
� ‖Θ′‖p+q

Ap+q
ωq

.
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Proof of Theorem 2. Assume that B is the Blaschke product with zeros

zn = 1− 1

(logN n)2
∏N−1

k=0 logk n
, n > e[N ].

Let υ(r) be the number of zeros of B in {z ∈ D : |z| < r}, and write λ(r) = υ(1−r).
In addition, let δ be a function such that

(3.1) δ(r)−2

∫ δ(r)

0

λ(s) ds � (1− r)−1,

when 0 ≤ r < 1 is close enough to one. Since the zeros of B lie in Ωη for any
1 < η < ∞, by simple modifications of [9, Theorems 1.9 and 1.14], we find 0 ≤ R < 1
depending on the comparison constants of (3.1) such that

(3.2)

∫ 2π

0

(1− |B(reiθ)|) dθ � δ(r), R ≤ r < 1.

More precisely, by imitating the proofs of [9, Theorems 1.9 and 1.14], one can show
that (3.2) is valid for δC satisfying h(δC(r)) = C(1 − r)−1, where C is a positive
constant and

h(t) = t−2

∫ t

0

λ(s) ds, 0 < t ≤ 1.

Since h is decreasing by [9, Lemma 1.4(c)], this fact implies (3.2) for any δ defined

by (3.1). Now, if p ≤ 1 and δ(r) �
√
1− r

(
logN

e[N]

1−r

)− 1
2

for R ≤ r < 1, then (1.2)

yields

‖B′‖p
Ap

ω
�

∫
D

(
1− |B(z)|
1− |z|

)p

ω(z) dA(z) ≥
∫
D

(1− |B(z)|) ω(z)

(1− |z|)p dA(z)

� 1 +

∫ 1

R

ω(r)

(1− r)p−1/2

(
logN

e[N ]

1− r

)− 1
2

dr.

Hence, in the case p ≤ 1, it suffices to show that δ(r) �
√
1− r

(
logN

e[N]

1−r

)− 1
2

,

when 0 ≤ r < 1 is close enough to one.
We have

λ(t) �

⎡⎣t(logN 1

t

)2 N−1∏
j=1

logj
1

t

⎤⎦−1

, 0 < t < e−[N ],

because, for n > e[N ],

λ(1− zn)

� n(logN n)2
∏N−1

k=1 logk n[
logN

(
n(logN n)2

∏N−1
k=1 logk n

)]2 ∏N−1
j=1 logj

(
n(logN n)2

∏N−1
k=1 logk n

) � n,

where the latter asymptotic equation is due to the estimates

logN

(
n(logN n)2

N−1∏
k=1

logk n

)
� logN n and logj

(
n(logN n)2

N−1∏
k=1

logk n

)
� logj n.
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Moreover, since

d

dt

(
logN

1

t

)−1

=

⎡⎣t(logN 1

t

)2 N−1∏
j=1

logj
1

t

⎤⎦−1

, 0 < t < e−[N ],

we obtain ∫ t

0

λ(s) ds �
(
logN

1

t

)−1

, 0 < t < e−[N ].

Finally, we can verify that δ(r) �
√
1− r

(
logN

e[N]

1−r

)− 1
2

, when r is close enough to

one, because δ is unique in the asymptotic sense by (3.2), and then

δ(r)−2

∫ δ(r)

0

λ(s) ds � δ(r)−2

(
logN

1

δ(r)

)−1

� (1− r)−1.

Thus the assertion for p ≤ 1 has been proved.
Let 1 < p < ∞, and assume that there exists α = α(ω) > p− 1 such that

ω̂(t)

(1− t)α
� ω̂(r)

(1− r)α
, 0 ≤ r ≤ t < 1.

Since
ω̂(t)

(1− t)p−1
� 2αω̂

(
1

2

)
(1− t)α+1−p −→ 0, t → 1−,

an integration by parts yields∫ 1

r

ω(s)

(1− s)p−1
ds =

ω̂(r)

(1− r)p−1
+ (p− 1)

∫ 1

r

ω̂(s)

(1− s)p
ds.

In particular, ω ∈ Jp−1 because∫ 1

r

ω̂(s)

(1− s)p
ds =

∫ 1

r

ω̂(s)

(1− s)α
ds

(1− s)p−α

� ω̂(r)

(1− r)α

∫ 1

r

ds

(1− s)p−α
� ω̂(r)

(1− r)p−1
, 0 ≤ r < 1.

Now, using these properties of ω, we obtain

ω̂1−p(t)

(1− t)α+1−p
� ω̂(t)

(1− t)α
� ω̂(r)

(1− r)α
≤ ω̂1−p(r)

(1− r)α+1−p
, 0 ≤ r ≤ t < 1.

Since ω ∈ D̂p implies that ω1−p ∈ D̂1, we have ω1−p ∈ D ∩ D̂1. Thus, by Lemma A
and the reasoning in the case p = 1, we find 0 ≤ R < 1 such that

‖B′‖p
Ap

ω
� ‖B′‖A1

ω1−p
� 1 +

∫ 1

R

ω1−p(r)

(1− r)1/2

(
logN

e[N ]

1− r

)− 1
2

dr

= 1 +

∫ 1

R

ω(r)

(1− r)p−1/2

(
logN

e[N ]

1− r

)− 1
2

dr.

This completes the proof. �
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