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ON THE STABILITY OF THE C∞-HYPOELLIPTICITY

UNDER PERTURBATIONS

CESARE PARENTI AND ALBERTO PARMEGGIANI

(Communicated by Michael Hitrik)

Abstract. We study the problem of perturbations of C∞-hypoelliptic oper-
ators by lower order terms. After giving several examples which show many

different possibilities, we then prove a stability result which shows that a hy-
poelliptic linear partial differential operator P which loses finitely many deriva-
tives and whose formal adjoint P ∗ is still hypoelliptic (but with no assumption
on the loss of derivatives) remains hypoelliptic with the same loss of derivatives
after perturbation by a lower order linear partial differential operator (whose
order depends on the loss of derivatives).

1. Introduction

In some problems of the analysis of hypoelliptic PDEs one is faced with the
following natural question: To what extent is C∞-hypoellipticity preserved under
addition of a “lower order” term? (See Problem 2.2 below.)

As one may expect, it is basically impossible (with the present technology) to
give a thorough answer to the above question. This is mainly due to the fact
that we do not possess as yet general means to detect hypoellipticity, except for
pdos (partial differential operators) with constant coefficients and hence for pdos
of constant strength (see Hörmander [5]).

In Parmeggiani [9] a partial (but sharp in some cases) answer to the question
in the case of pdos was given, and in the present paper we plan to give a small
contribution by exhibiting a range (of classes) of examples of hypoelliptic pdos
and ψdos (pseudodifferential operators) for which addition of “certain” lower order
perturbations does destroy/does not destroy hypoellipticity (although the loss of
derivatives can possibly be affected) and a stability result that streamlines and
generalizes that of [9] (see Theorem 3.1 below).

For the sake of definiteness, we decided in this paper to deal with hypoellipticity
and not with microhypoellipticity. Although, as is well known, the two notions are
not equivalent (see for instance Parenti and Rodino [8]), it will be clear below that
most of our considerations on hypoellipticity may be rephrased into considerations
on microhypoellipticity.

We shall hence discuss the examples in the next section and in the third one we
shall state and prove the stability result.
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We close this introduction by mentioning a related problem (work in progress),
which in our opinion is a serious and interesting one: the study of the stabil-
ity of global hypoellipticity for operators on a compact boundaryless manifold (the
global analytic hypoellipticity case when the manifold is the flat n-torus was recently
studied by Chinni and Cordaro in [3]). In such a case it is reasonable to expect
an interaction between the topology of the manifold and the geometric structure of
the operator.

2. The setting

Since we shall deal with hypoellipticity and not with microellipticity, a natural
measure of control of the singularities of a distribution is the singular support and
the Sobolev singular support, which we next recall for the reader’s convenience.

If X ⊂ R
n is an open set, u ∈ D ′(X) and x0 ∈ X, we shall say that

(i) u is C∞ at x0 and write u ∈ C∞(x0) if for some ϕ ∈ C∞
0 (X) with ϕ(x0) �= 0

one has ϕu ∈ C∞(X);
(ii) u is in the s-Sobolev space Hs at x0, s ∈ R, and write u ∈ Hs(x0) if for

some ϕ ∈ C∞
0 (X) with ϕ(x0) �= 0 one has ϕu ∈ Hs(Rn) =: Hs.

Obviously the sets

{x0 ∈ X; u ∈ C∞(x0)} and {x0 ∈ X; u ∈ Hs(x0)}
are open (possibly empty) subsets of X, whose complements in X are called, re-
spectively, the singular support of u, denoted by SS(u), and the s-singular support
of u, denoted by SSs(u).

The following facts are well known:

(a) SSs′(u) ⊂ SSs′′(u) ⊂ SS(u), ∀u ∈ D ′(X), ∀s′, s′′ ∈ R, with s′ < s′′;

(b) SS(u) =
⋃
s∈R

SSs(u), the closure being taken in X.

Item (a) is straightforward. As for (b), since SS(u) and SSs(u) are closed in X,

the inclusion
⋃
s∈R

SSs(u) ⊂ SS(u) is a consequence of (a). Now, if x0 �∈
⋃
s∈R

SSs(u),

then one may find a neighborhood V ⊂ X of x0 such that V ∩ SSs(u) = ∅ for all
s ∈ R, whence by the Sobolev embedding theorem we have x0 �∈ SS(u).

Furthermore, if P is a classical properly supported ψdo of order m ∈ R (from
now on all the ψdos considered will be taken properly supported), then

(c)

⎧⎨
⎩

SS(Pu) ⊂ SS(u),

SSs(Pu) ⊂ SSs+m(u),
∀u ∈ D ′(X), ∀s ∈ R.

One hence says that P is (C∞-)hypoelliptic in X if

(2.1) SS(u) = SS(Pu), ∀u ∈ D ′(X),

and says that P is hypoelliptic in X with a loss of r ≥ 0 derivatives if

(2.2) SSs+m−r(u) ⊂ SSs(Pu), ∀u ∈ D ′(X), ∀s ∈ R.

Note that, as a consequence of (b), (2.2) implies (2.1).
In the sequel, we will consider hypoellipticity for operators which are nonelliptic.

Hence, if (2.2) holds it must hold for some r > 0.
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The following observation will be useful in the sequel.

Lemma 2.1. Condition (2.2) above is equivalent to

(2.3) SSs+m−r(v) ⊂ SSs(Pv), ∀v ∈ E ′(X), ∀s ∈ R.

Proof. We have only to prove that (2.3) =⇒ (2.2). Let u ∈ D ′(X) and suppose
x0 �∈ SSs(Pu). Let φ ∈ C∞

0 (X), φ ≡ 1 near x0. Obviously, x0 �∈ SSt(u − φu), for
all t ∈ R. Hence by (c) we get x0 �∈ SSs(Pu − P (φu)), so that x0 �∈ SSs(P (φu)),
which proves the claim by virtue of (2.3). �

The problem we will be considering in this paper is the following:

Problem 2.2. Given P , a ψdo of order m which is hypoelliptic in X with a loss of
r > 0 derivatives, what kind of ψdos Q of order m′ < m can we add to P so that
P +Q remains hypoelliptic in X? Can we estimate for P +Q the possible loss of
derivatives?

We next list a number of nontrivial examples that basically show that “everything
is possible”.

2.1. Example 1. This example deals with a perturbation that destroys hypoellip-
ticity. In X = R

ν
x × Y, Y ⊂ R

n−ν
y an open set (1 ≤ ν < n), consider the differential

operator with smooth coefficients

(2.4) P =
ν∑

j=1

(
D2

xj
+ μ2

jx
2
j |Dy|2

)
+

ν∑
j=1

aj(x, y)Dxj
+

n−ν∑
h=1

bh(x, y)Dyh
+ c(x, y),

where μj > 0 are fixed constants and aj , bh and c are complex valued. Consider
the map

γ : Zν
+ � α −→ 〈α, μ〉 =

ν∑
j=1

αjμj ∈ [0,+∞),

and let
γ(Zν

+) = {0 = �0 < �1 < · · · < �N −→ +∞}.

Suppose that the vector b(0, y) =

⎡
⎢⎣

b1(0, y)
...

bn−ν(0, y)

⎤
⎥⎦ ∈ R

n−ν . If

(2.5) |b(0, y)| < |μ| :=
ν∑

j=1

μj , ∀y ∈ Y,

then P is hypoelliptic in X with a loss of 1 derivative (see Boutet de Monvel, Grigis
and Helffer [2]). Next let

Q =
n−ν∑
j=1

qj(y)Dyj
,

with q = (q1, . . . , qn−ν) ∈ C∞(Y,Rn−ν), and suppose that for some N ≥ 1 we have

(2.6) 2�N−1 + |μ| < |b(0, y) + q(y)| < 2�N + |μ|, ∀y ∈ Y.

Then, as shown in Parenti and Parmeggiani [7], the operator P + Q is no longer
hypoelliptic in X, and, moreover, there is a propagation of C∞ singularities in the
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characteristic set {x = ξ = 0} (where (x, y, ξ, η) are the coordinates in T ∗X) along
the integral curves of the Hamilton vector field of the functions

(2.7) λj(y, η) = (2�j+ |μ|)|η|+〈b(0, y)+q(y), η〉, 0 ≤ j ≤ N−1, (y, η) ∈ T ∗Y \0.
Therefore, in this case addition of Q completely destroys hypoellipticity. Note that
perturbing P by an operator of order zero would not have changed hypoellipticity
and the loss of derivatives.

2.2. Example 2. This example deals with a perturbation that yields hypoelliptic-
ity with a smaller loss of derivatives. In X = R

n−1
x × Y, with Y ⊂ Ry and open

neighborhood of the origin, consider the 4th-order differential operator with smooth
real coefficients

P =
(n−1∑
j=1

(
D2

xj
+ μ2

jx
2
jD

2
y

))2

+ 〈A(x, y)Dx, Dx〉(2.8)

+ b(x, y)D2
y + 〈c(x, y), Dx〉+ d(x, y)Dy + e(x, y)

(μj > 0 as before). If

(2.9) b(0, y) + |μ|2 > 0, ∀y ∈ Y,

then P is hypoelliptic with a loss of 2 derivatives (see [2]). Now let Q = iD3
y. Since

(2.10)
(n−1∑
j=1

(
ξ2j + μ2

jx
2
jη

2
))2

+ iη3 �= 0, ∀x ∈ R
n−1, ∀(ξ, η) ∈ R

n \ {0},

by Theorem 4.1 of Helffer [4], the operator P + Q possesses a parametrix in the
Hörmander class S−3

ρ=3/4,δ=1/4(X×R
n), and hence P +Q is hypoelliptic with a loss

of 1 derivative, regardless of the coefficient b.

2.3. Example 3. This example deals with a perturbation that yields hypoellip-
ticity with a bigger loss of derivatives. In X = R

ν
x × Y, with Y ⊂ R

n−ν
y an open

neighborhood of the origin (1 ≤ ν < n − 1), consider the 4th-order differential
operator with real smooth coefficients

P =
( ν∑
j=1

(
D2

xj
+ μ2

jx
2
j |Dy|2

))2

+ 〈B(y)Dy, Dy〉(2.11)

+ 〈c(x, y), Dx〉+ 〈d(y), Dy〉+ e(x, y)

(μj > 0 as before). Consider the quadratic forms in η

(2.12) λj(y, η) := 〈Lj(y)η, η〉,
where

Lj(y) = B(y) + (2�j + |μ|)2In−ν , j ≥ 0.

If

(2.13) λ0(y, η) > 0, ∀(y, η) ∈ T ∗Y \ 0,
then, again, P is hypoelliptic with a loss of 2 derivatives. Let Q = 〈β(y)Dy, Dy〉,
with β real, symmetric and smooth. Suppose that for j ≥ 1 the matrices

Lj(y) + β(y) > 0, ∀y ∈ Y,
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whereas for j = 0

(2.14) λ0(y, η) + 〈β(y)η, η〉 = α1(y)η
2
1 + y21

n−ν∑
j=2

αj(y)η
2
j ,

with αj(y) > 0, for all y ∈ Y , 1 ≤ j ≤ n − ν. Consider, for y′ = (y2, . . . , yn−ν) ∈
Y ∩ {y1 = 0}, the (n− ν − 1)× (n− ν − 1) matrix

θ(y′) = diag
(
α1(0, y

′)α2(0, y
′), . . . , α1(0, y

′)αn−ν(0, y
′)
)

and the vector d0(y
′) =

⎡
⎢⎣

d2(0, y
′)

...
dn−ν(0, y

′)

⎤
⎥⎦ ∈ R

n−ν−1. If

(2.15) |θ(y′)−1/2d0(y
′)| < 1, ∀y′ ∈ Y ∩ {y1 = 0},

then (see [6] and [7]) the operator P + Q is hypoelliptic in X with a loss of 3
derivatives.

3. A stability result

Although the preceding examples are quite discouraging in that they show that
indeed “everything is possible”, taking the hint from [9] a “general” procedure can
be devised. We will consider the case of a differential operator P of order m with
smooth coefficients in an open set X ⊂ R

n. Let us suppose the following:

(H1) Both P and P ∗ (the formal adjoint of P ) are hypoelliptic in X;
(H2) P is hypoelliptic with a loss of r derivatives with 0 < r < m.

Then we have the following result.

Theorem 3.1. We have:

(i) P ∗ is itself hypoelliptic with the same loss r of derivatives.
(ii) For every differential operator Q of order m′ < m− r, the operator P +Q

is still hypoelliptic with the same loss of derivatives.

Proof. By Lemma 2.1, to prove (ii) we have to prove that

(3.1) SSs+m−r(u) ⊂ SSs((P +Q)u), ∀u ∈ E ′(X), ∀s ∈ R.

We claim that it suffices to prove the following:

For any given x0 ∈ X there exists an open neighborhood U ⊂ X of x0 such
that

(3.2) SSs+m−r(v) ⊂ SSs((P +Q)v), ∀v ∈ E ′(U), ∀s ∈ R.

In fact, given s ∈ R and u ∈ E ′(X) for which x0 �∈ SSs((P +Q)u), take ψ ∈ C∞
0 (U)

with ψ ≡ 1 near x0. Then x0 �∈ SSs((P +Q)(ψu)) by virtue of the local nature of
P and Q. Since ψu ∈ E ′(U), from (3.2) we then get x0 �∈ SSs+m−r(ψu), and the
claim follows.

To prove (3.2) we use Treves [11, Thm. 52.2]: because of the hypoellipticity of
both P and P ∗, given x0 ∈ X there exists a neighborhood U ⊂ X of x0 and a
distribution k ∈ D ′(U × U) with SS(k) ⊂ diag(U × U) for which the operator K,
whose Schwartz kernel is k, has the following properties:

(3.3) K is continuous as a map K : C∞
0 (U) → C∞(U) and K : E ′(U) → D ′(U),
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and

(3.4)

⎧⎨
⎩

PKf = f, ∀f ∈ E ′(U),

KPu = u, ∀u ∈ E ′(U).

From the first equality in (3.4) and hypothesis (H2) we obtain that

K
(
Hs ∩ E ′(U)

)
⊂ Hs+m−r

loc (U), ∀s ∈ R.

Now, the Borel Graph Theorem (see [11, Thm. A1]), ensures that

(3.5) K : Hs ∩ E ′(U) −→ Hs+m−r
loc (U) is continuous, ∀s ∈ R.

Next, to see (3.2), let v ∈ E ′(U) and suppose that for some s ∈ R and x̄ ∈ U one
has x̄ �∈ SSs((P +Q)v). Pick ψ ∈ C∞

0 (U), ψ ≡ 1 near x̄, so that

(P +Q)(ψv) =: f ∈ Hs ∩ E ′(U).

Applying K to the left, from (3.4) we get

(3.6) ψv = Kf −KQ(ψv).

Now, Kf ∈ Hs+m−r
loc (U), and since there exists t ∈ R such that ψv ∈ Ht ∩ E ′(U),

we have KQ(ψv) ∈ Ht+ε
loc (U) with 0 < ε = m− r −m′. Therefore

ψv ∈ Hmin{s+m−r,t+ε} ∩ E ′(U).

If t+ ε < s+m− r, again by (3.6) we get KQ(ψv) ∈ Ht+2ε
loc (U), so that

ψv ∈ Hmin{s+m−r,t+2ε} ∩ E ′(U).

In a finite number of steps we therefore conclude that ψv ∈ Hs+m−r∩E ′(U), which
thus proves (3.2) and (ii).

To prove (i), we note that (3.4) yields that K∗ is a two-sided inverse of P ∗. The
continuity of K : Hs ∩ E ′(U) −→ Hs+m−r

loc (U), for all s ∈ R, yields the continuity
of

K∗ : H−s−(m−r) ∩ E ′(U) −→ H−s
loc (U), ∀s ∈ R,

where K∗ is the operator whose Schwartz kernel k∗ is given by

k∗(x, y) = k(y, x).

To conclude that P ∗ is hypoelliptic with a loss of r derivatives it suffices to show
that

SSs+m−r(v) ⊂ SSs(P
∗v), ∀v ∈ E ′(U), ∀s ∈ R.

If x̄ ∈ U is such that x̄ �∈ SSs(P
∗v), then choose ψ ∈ C∞

0 (U), ψ ≡ 1 near x̄, so
that P ∗(ψv) ∈ Hs ∩ E ′(U) (note that P ∗ is also a differential operator). Hence
K∗P ∗(ψv) = ψv ∈ Hs+m−r ∩E ′(U), which proves that x̄ �∈ SSs+m−r(v). This ends
the proof of Theorem 3.1. �

Remark 3.2.

(a) We do not know whether the conclusion (ii) of Theorem 3.1 holds on as-
suming only that P is hypoelliptic with a loss of r derivatives (m− r > 0).

(b) Stein’s example (see Stein [10] and also Parenti and Parmeggiani [6]) shows
that when m − r = 0 even a perturbation by a constant may destroy
hypoellipticity.
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Note that (3.5) is a consequence of the fact that K is a two-sided fundamental
solution of P (see (3.4)). If we assume the continuity property (3.5) when K is only
a left inverse of P , then the bootstrap argument (3.6) works again. To be more
precise, let P be a classical ψdo of order m on X ⊂ R

n and assume:

There exists a continuous operator K : E ′(X) −→ D ′(X) and r > 0 such
that

(3.7) SSs+m−r(Kf) ⊂ SSs(f), ∀f ∈ E ′(X), ∀s ∈ R,

and

(3.8) KP = idX −R,

where R : E ′(X) −→ C∞(X) is a smoothing operator.

A first trivial consequence of these assumptions is that P is hypoelliptic with a
loss of r derivatives. Furthermore, the same bootstrap argument of Theorem 3.1
gives that P +Q is hypoelliptic with a loss of r derivatives for any given ψdo Q of
order m′ such that m′ < m − r (regardless of the sign of m − r). The core of the
argument is that KQ has the property that KQf is smoother than f . Therefore
one may dispose of the condition m′ < m− r provided that for some δ > 0 one has

(3.9) SSs+δ(KQf) ⊂ SSs(f), ∀f ∈ E ′(X), ∀s ∈ R.

That this may be the case depends on finer properties of K and Q and not only
on the rough balance of the orders.

A specific example is given by an operator P ∈ OPSm,k(X,Σ), Σ ⊂ T ∗X \ 0
symplectic, k ≥ 2 an even integer (see Boutet de Monvel [1]). It is known that
in this case P cannot be hypoelliptic with a loss of r < k/2 derivatives. Suppose
that P is hypoelliptic with a loss of k/2 derivatives. Then from Boutet’s work

[1] we know that P has a left parametrix K ∈ OPS−m,−k(X,Σ). Now, if Q ∈
OPSm−1,k−1(X,Σ) ⊂ OPSm−1(X), then

KQ ∈ OPS−1,−1(X,Σ) ⊂ OPS
−1/2
1/2,1/2(X),

so that (3.9) is satisfied with δ = 1/2, whence P +Q is hypoelliptic with a loss of
k/2 derivative.
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Partielles de Rennes (1975), pp. 93–121, Astérisque, No. 34-35, Soc. Math. France, Paris,
1976. MR0493005

[3] G. Chinni and P. D. Cordaro, On global analytic and Gevrey hypoellipticity on the torus and
the Métivier inequality, Comm. Partial Differential Equations 42 (2017), no. 1, 121–141, DOI
10.1080/03605302.2016.1258577. MR3605293
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