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Abstract. For b an odd integer whose square-free part has at most two prime
divisors, it is shown that the equations in the title have a common solution in
positive integers precisely when b divides 4a2 − 1 and the quotient is a perfect
square. The proof provides an explicit formula for the common solution, known
to be unique. Similar results are obtained assuming the square-free part of b
is even or has three prime divisors.

1. Introduction

It is well known that the solutions to a generalised Pell equation ax2 − by2 = c,
where a and b are positive integers whose product is not a perfect square, obey
the principle that if there is a solution in positive integers, then there are infinitely
many such solutions. The situation is somewhat unclear when one wants to count
the number of positive solutions to a pair of such equations sharing a common
unknown a1x

2− b1y
2 = c1, a2y

2− bz22 = c2: if a1b2 �= a2b1, then a celebrated result
of A. Thue [17] assures one that there are at most finitely many solutions.

Establishing explicit bounds on the number of solutions that are sufficiently sharp
to be exploited in practice is very difficult. D. W. Masser and J. H. Rickert [15]
have devised a procedure to associate to each positive integer N two integers c1
and c2 such that the two Pell equations x2 − 2z2 = c1, x2 − 3z2 = c2 have at
least N common solutions. On the other hand, Y. Bugeaud, C. Levesque and
M. Waldschmidt [6] have proved that the system x2 − b1z

2 = c1, y
2 − b2z

2 = c2
(b1c2 �= b2c1) has no more than 2+23996(ω(c1c2)+1) solutions. As usual, ω(n) denotes
the number of distinct prime divisors of a positive integer n.

Sharp uniform bounds for the number of solutions are available for specific classes
of equations. M. A. Bennett, M. Cipu, M. Mignotte and R. Okazaki have shown
in [5] that the system x2 − bz2 = 1, y2 − dz2 = 1 has at most two solutions in
positive integers. The same bound has been established by Cipu and Mignotte [9]
for simultaneous Pell equations of the type ax2 − bz2 = 1, cy2 − dz2 = 1, with
a > 1, b > 1. Both results are optimal, as the indicated bounds are attained by
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infinite classes of systems. In [9] one also finds the best published result concerning
the number of positive solutions for systems of the form

(1.1) x2 − by2 = 1, y2 − dz2 = 1 (b �= d).

The given bound is two. However, no example of a system of the kind is known to
have non-unique solution in positive integers. The uniqueness has been established
for the compatible equations

(1.2) x2 − (a2 − 1)y2 = 1, y2 − bz2 = 1 (a > 1)

by P. Z. Yuan (odd a) and the present author (even a) in [20] and [8], respectively.
Uniqueness is also assured for any combination of ±1 in the right hand sides of (1.1)
provided that one of the parameters involved is suitably large, as shown by Bennett
and Á. Pintér in [3].

Further information on the unique positive solution to (1.2) has been made
available in a recent paper by N. Irmak [10] based on the fact that the solutions
of any Pell equation are given by a second order linear recurrent sequence. The
main aim of this paper is to show that for b odd prime, the unique positive solution
to the system (1.2) appears at an even index in the sequence of solutions for the
first equation. The same paper purports to give all the positive solutions for (1.2)
in which one has 5 ≤ a ≤ 14 and b prime, thus extending [1]. Unfortunately,
the author fails both goals: the proof of the main result is based on a coprimality
assumption not always fulfilled and the explicit computations miss the solution
(x, y, z) = (287, 24, 5) for (a, b) = (12, 23).

This note grew out of an attempt to fill in the gaps in [10] and eventually
succeeded to treat systems of the form (1.2) under conditions on the factorization
of sqf(b), the square-free part of b, defined as b divided by its largest square factor.
We focus on easily verifiable criteria for solvability when sqf(b) has at most two
prime divisors. As in many other cases, the details are slightly different according
to parity of the numbers in question.

Theorem 1.1. Let a and b be integers greater than 1, with b not a perfect square.
a) Assume b is odd and its square-free part has at most two prime divisors. Then

the system (1.2) is solvable in positive integers if and only if b divides 4a2 − 1 and
the quotient is a perfect square. When it exists, this solution is

(x, y, z) =
(
2a2 − 1, 2a,

√
(4a2 − 1)/b

)
.

b) Assume sqf(b) = 2p with p either prime or equal to 1. Then the system (1.2)
is solvable in positive integers if and only if (2a2 − 1)/p is a perfect square and b
divides 8a2(2a2 − 1). When it exists, this solution is

(x, y, z) =
(
4a3 − 3a, 4a2 − 1,

√
8a2(2a2 − 1)/b

)
.

In particular, if sqf(b) = 2p for some prime p congruent to ±3 modulo 8, then
the system (1.2) has no integer solutions.

The main result is proven in Section 3. Section 2 contains all published results
used in the proof. In Section 4 we examine the situation when the square-free part
of b has three prime divisors.
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2. Preliminaries

Let a ≥ 2 be an integer and

(2.1) α = a+
√
a2 − 1, α = a−

√
a2 − 1,

For any non-negative integer k, put

(2.2) Uk = Uk(a) =
αk − αk

α− α
, Vk = Vk(a) =

αk + αk

2
.

In order to partially factorise the terms of the above Lucas sequences, we also
introduce the Lehmer sequences associated to

(2.3) ξ =

√
2a+ 2 +

√
2a− 2

2
, ξ =

√
2a+ 2−

√
2a− 2

2
.

Specifically, we consider

(2.4) xk =
ξk + ξ

k

ξ + ξ
, yk =

ξk − ξ
k

ξ − ξ
for odd k,

(2.5) xk =
ξk + ξ

k

2
, yk =

ξk − ξ
k

ξ2 − ξ
2 for even k.

The same numbers can be obtained from linear recurrence sequences:

U0 = 0, U1 = 1, Uk+2 = 2aUk+1 − Uk,

V0 = 1, V1 = a, Vk+2 = 2aVk+1 − Vk,

x0 = 1, x1 = 1, x2 = a, x3 = 2a− 1, xk+4 = 2axk+2 − xk,

y0 = 0, y1 = 1, y2 = 1, y3 = 2a+ 1, yk+4 = 2ayk+2 − yk.

These integers are interesting for their connection with solutions of generalised
Pell equations. The next results are classical, so well known and frequently em-
ployed that it is very difficult to locate their first appearance in print.

Lemma 2.1. The non-negative solutions to the Pell equation V 2 − (a2 − 1)U2 = 1
are precisely (Vk, Uk)k≥0.

Lemma 2.2. All solutions in positive integers to the generalised Pell equation
(a+ 1)X2 − (a− 1)Y 2 = 2 are (x2k+1, y2k+1)k≥0.

Strong relationships existing between the sequences considered above can be
explained by the identities

α = ξ2, α = ξ
2
, αα = ξξ = 1.

Thus, it can be easily seen that one has

(2.6) x2k = Vk, y2k = Uk for all k ≥ 0

and more generally

(2.7) Uk =

{
xkyk for odd k,
2xkyk for even k,

whence

(2.8) U2
k+1 − 1 = Uk+2Uk =

{
xk+2yk+2xkyk for odd k,
4xk+2yk+2xkyk for even k.
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The common divisors of the factors in the right side of (2.8) have been determined
in [20] for odd a and in [8] for even a.

Lemma 2.3. (i) If k is odd, then xk, yk, xk+2, yk+2 are pairwise coprime.
(ii) For k even one has:
gcd(xk, xk+2) = gcd(yk, yk+2) = gcd(xk, yk) = 1,

gcd(xk, yk+2) =

{
1 for k ≡ 0 (mod 4),
a for k ≡ 2 (mod 4),

gcd(xk+2, yk) =

{
a for k ≡ 0 (mod 4),
1 for k ≡ 2 (mod 4).

We shall be interested to know which terms of these Lucas / Lehmer sequences
are squares. Nowadays a lot of answers to this question are available. From the
wealth of accessible results, we selected the most convenient ones.

We begin with the relevant part of a theorem of Mignotte and A. Pethő.

Lemma 2.4 ([16]). For an integer A ≥ 3, define the sequence (wk(A))k≥0 by
the second order linear recurrence wk+2 = Awk+1 − wk with the initial conditions
w0 = 0, w1 = 1. Then the only solutions to the equation

wn(A) = X2, A ≥ 3, n ≥ 3,

are obtained for (A, n) ∈ {(3, 6), (338, 4)}.
The next results are phrased in terms of solutions to quartic equations. The first

of them is due to W. Ljunggren.

Lemma 2.5 ([13]). Let A, B be positive integers with A square-free and AB not
a perfect square. Assume the equation AU2 − BV 2 = 1 has solutions and denote
by (u, v) its minimal positive integer solution. If 4Bv2 + 3 is not a square, then
AS2 −BT 4 = 1 has at most one solution in positive integers.

Ljunggren has dealt with various other equations of the type AX2−BY 4 = C. In
recent years, his work has been refined and more precise results have been obtained
by many authors.

Lemma 2.6 ([4]). Let A > 1 and B > 0 be square-free integers. Suppose ε =

u+ v
√
B > 1 is the fundamental solution of Pell’s equation S2 −BT 2 = 1. Define

εn = un + vn
√
B for n = 1, 2, . . .. If the Diophantine equation A2X4 −BY 2 = 1 is

solvable, then it has at most one solution (x, y) in positive integers, which is given

by Ax2 + y
√
B = εt, where t is the least positive integer such that ut ≡ 0 (mod A).

Lemma 2.7 ([7]). Let the fundamental solution of the equation S2 −DT 2 = 1 be

ε = s + t
√
D. Then the only possible solutions of the equation X4 − DY 2 = 1 in

positive integers are given by x2 + y
√
D = ε and x2 + y

√
D = ε2; both solutions

occur in only one case, D = 1785.

Lemma 2.8 ([18]). For a positive non-square integer D, let ε = s + t
√
D be the

minimal unit in Z[
√
D] of norm 1. For n ≥ 1, define sn + tn

√
D = εn.

(i) There are at most two positive integer solutions to equation X2 −DY 4 = 1.
If two solutions y1 < y2 exist, then y21 = t1, y

2
2 = t2, except only if D = 1785 or

D = 16 · 1785, in which case y21 = t1, y
2
2 = t4.

(ii) If the positive solution is unique, it is given by y2 = tn, where t1 = nv2 for
some square-free integer n, and n = 1, n = 2, or n is some prime congruent to 3
modulo 4.
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The proof of Theorem 1.1 will also require a known result on the quartic Dio-
phantine equation

(2.9) AX2 −BY 4 = 2.

Lemma 2.9 ([14]). Consider the equation (2.9), where both A and B are positive
odd integers for which the equation

(2.10) AU2 −BV 2 = 2

is solvable in positive integers. Let (u1, v1) be the minimal positive solution of

(2.10). For odd n define integers un, vn by un

√
A + vn

√
B = 2(1−n)/2(u1

√
A +

v1
√
B)n. Then:

(i) If v1 is not a square, then equation (2.9) has no solutions.
(ii) If v1 is a square and v3 is not a square, then (u1,

√
v1) is the only solution

of equation (2.9).
(iii) If v1 and v3 are both squares, then (u1,

√
v1) and (u3,

√
v3) are the only

solutions of equation (2.9).

For the related Diophantine equation

(2.11) AX4 −BY 2 = 2

we need a result established by Y. Li and Yuan.

Lemma 2.10 ([11]). For any positive odd integers A, B the equation (2.11) has at
most one solution in positive integers, and such a solution arises from the funda-
mental solution to the quadratic equation (2.10).

After these preparations we can proceed with the proof of the theorem stated in
the Introduction.

3. Proof of the main result

Throughout this section, when we speak of ‘solution’ or ‘solvability’ we mean
solution in positive integers. For a positive integer n, we shall denote by sqf(n) its
square-free part and by ω(n) the number of distinct prime divisors.

Let (x, y, z) be the unique solution of (1.2) in positive integers. Notice that one
necessarily has y ≥ 2. This in conjunction with Lemma 2.1 implies that we have
x = Vk, y = Uk for some index k ≥ 2.

The details of the argument below are somewhat different according to k mod 4,
so we shall examine separately several cases.

Case I (k = 2r, r ≥ 1). By (2.7) and (2.2), we have

bz2 = y2 − 1 = U2
k − 1 = U2r+1U2r−1 = x2r+1y2r+1x2r−1y2r−1.

Having in mind Lemma 2.3, one sees that the factors in the rightmost side in this
chain of equalities are pairwise coprime. Since the square-free part of b has at most
two prime divisors, at least two of x2r+1, y2r+1, x2r−1, y2r−1 are perfect squares.

Subcase I.1: y2r+1 is a square. Then both (x2r+1,
√
y2r+1) and (1, 1) solve the

equation

(3.1) (a+ 1)S2 − (a− 1)T 4 = 2.

Let us examine first the situation for even a. According to Lemma 2.9, in case
2a + 1 is not a square, (1, 1) is the only solution in positive integers. This entails
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y2r+1 = 1, a contradiction. If there exists an integer c > 1 such that 2a + 1 = c2,
then Lemma 2.9 yields y2r+1 = 2a+ 1 = y3, whence r = 1 and

bz2 = 4a2 − 1.

This is precisely the conclusion of Theorem 1.1.
Suppose now that a is odd. Simplification in equation (3.1) results in the equa-

tion

(3.2)

(
a+ 1

2

)
S2 −

(
a− 1

2

)
T 4 = 1.

Writing a+1
2 = bc2 with b square-free and c > 0, one gets a−1

2 = bc2 − 1. As the

smallest solution in positive integers for bU2 − (bc2 − 1)V 2 = 1 is (u, v) = (c, 1),
from Lemma 2.5 it follows that (c, 1) is the unique positive solution for

(3.3) bS2 − (bc2 − 1)T 4 = 1.

Since any solution (s′, t′) to Eq. (3.2) gives rise to a solution (s, t) = (cs′, t′) to
Eq. (3.3), we conclude again that y2r+1 = 1, which is impossible.

Subcase I.2: y2r−1 is a square. Again Lemma 2.9 entails that for a even and 2a+1
not a perfect square one has y2r−1 = 1 = y1, so that r = 1 and, as seen in the
previous subcase, the desired conclusion is obtained. Moreover, when 2a+ 1 = c2,
it is possible to have y2r−1 = 2a+ 1 = y3, whence r = 2 and

(3.4) bz2 = c2(4a2 − 2a− 1)(4a2 + 2a− 1)(2a− 1).

Notice that from 2a+1 = c2 it follows, on the one hand, that 2a−1 is not a perfect
square and, on the other hand, that a is a multiple of 4. Then 4a2 ± 2a − 1 ≡ 7
(mod 8), so that none of the expressions within parentheses in (3.4) is a perfect
square. Thus, ω(sqf(b)) ≥ 3, in contradiction to our hypothesis.

Assume a is odd. The argument used in Subcase I.1 leads to the equality y2r−1 =
1. As seen above, this entails the desired conclusion.

It remains to examine the possibility that both x2r+1 and x2r−1 are perfect
squares. Then the equation (a + 1)S4 − (a − 1)T 2 = 2 has the solutions (1, 1)
and (

√
x2r±1, y2r±1). As a quartic equation of this kind has at most two positive

solutions (see [2] or [19]), it follows that one has r = 1. As already seen, the
conclusion of Theorem 1.1 follows.

Case (k = 4r + 1, r ≥ 1). By Lemma 2.3 we obtain

bz2 = 4x4r+2y4r+2x4ry4r = 4a2
(
V2r+1

a

)
U2r+1V2r

(
U2r

a

)

and, since the factors on the right side are pairwise coprime integers, again at least

two of V2r+1

a , U2r+1, V2r,
U2r

a must be perfect squares. Surely U2r+1 is not square
(see Lemma 2.4).

Subcase II.1: U2r = ac2 for some positive integer c. In this situation (V2r, c) is a
solution to the Diophantine equation

(3.5) X2 − a2(a2 − 1)Y 4 = 1.

Note that the fundamental solution to the associated Pell equation is (2a2 − 1, 2).
By Lemma 2.8, (3.5) has a unique solution, given by c2 = 4(2a2 − 1). Therefore
one has U2r = 4a(2a2 − 1) = U4, whence r = 2 and

bz2 = 4a2c2(16a4 − 20a2 + 5)(4a2 + 2a− 1)(4a2 − 2a− 1)(8a4 − 8a2 + 1).
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We claim that no expression within parentheses can be a square. As 2a2− 1 is a
square, say, d2, one has 8a4−8a2+1 = 2d4−1. A well-known result of Ljunggren [12]
gives that the only solutions to 2X4 − Y 2 = 1 are (1, 1) and (13, 239). Hence,
8a4−8a2+1 is never square for a > 1 satisfying 2a2−1 = d2. If 4a2−2a−1 = f2,
then 4f2 = (4a − 1)2 − 5, which does not hold for a ≥ 2. The same argument
employed for the other two factors establishes the claim.

Thus, the four expressions within parentheses are pairwise coprime and each con-
tributes with a distinct factor to the square-free part of b. This means ω(sqf(b)) ≥
4, in contradiction with our hypothesis.

Subcase II.2: V2r is a square. Now (
√
V2r, U2r) solves the quartic equation

S4 − (a2 − 1)T 2 = 1. Note that the fundamental solution for the associated Pell

equation X2 − (a2 − 1)Y 2 = 1 is ε = a +
√
a2 − 1. Therefore, Lemma 2.7 yields

either V2r +U2r = a+
√
a2 − 1 or V2r +U2r = 2a2−1+2a

√
a2 − 1. Having in view

that V1 = a < V2 = 2a2 − 1 < V3, the only possibility is 2r = 2. Hence,

(3.6) bz2 = 8a2(4a2 − 3)(2a2 − 1)(4a2 − 1).

This equality forces sqf(b) to be even. Under the hypotheses of Theorem 1.1, sqf(b)
can have at most one odd prime divisor. This in turn requires at least two of 2a2−1,
4a2 − 3, 4a2 − 1 to be perfect squares. Since none of the last two expressions is
square for a ≥ 2, we conclude that this subcase cannot appear.

Subcase II.3: V2r+1 = ac2 for some positive integer c. If this were true, write
a = a1a

2
2, a

2 − 1 = d1d
2
2, with a1 and d1 square-free positive integers. We see that

the equation a21S
4 − d1T

2 = 1 is solved by (a2c, d2U2r+1) as well as by (a2, d2).
Invoking the uniqueness asserted in Lemma 2.6, we conclude that one necessarily
has U2r+1 = 1, in contradiction with r ≥ 1.

Case (k = 4r − 1, r ≥ 1). Now it holds

bz2 = 4a2V2r

(
U2r

a

)(
V2r−1

a

)
U2r−1

and again from Lemma 2.3 it follows that at least two factors in the right side are
perfect squares.

Subcase III.1: U2r−1 is a square. By Lemma 2.4, this can happen only for r = 1.
Hence,

bz2 = 8a2(2a2 − 1).

This is impossible for odd sqf(b). For sqf(b) = 2p we obtain the solution

(x, y, z) =
(
4a3 − 3a, 4a2 − 1,

√
8a2(2a2 − 1)/b

)

for the system (1.2) under the condition that b divides 8a2(2a2−1) and (2a2−1)/p
is a perfect square.

Note that if sqf(b) = 2p for some prime p ≡ ±3 (mod 8), an equality of the
form 2a2 − 1 = pc2 is impossible in integers.

Subcase III.2: V2r is a square. Then (
√
V2r, U2r) is a solution to the equation

S4 − (a2 − 1)T 2 = 1. As in Subcase II.2, from Lemma 2.7 it results that V2r is
either a = V1 or 2a2 − 1 = V2. It follows that the only possibility is r = 1. The
arguments employed in the previous subcase lead to the desired conclusion.

Subcase III.3: V2r−1 = ac2 for some positive integer c. Writing as before a =
a1a

2
2, a

2 − 1 = d1d
2
2, with a1 and d1 square-free positive integers, one sees that
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the equation a21S
4 − d1T

2 = 1 is solved by (a2c, d2U2r−1) as well as by (a2, d2).
From Lemma 2.6 it results that r = 1, and the reasoning continues with the same
arguments and leads to the same conclusion as in the previous subcases.

Finally, let us examine the remaining possibility.

Subcase III.4: U2r = ac2 for some positive integer c. Then (V2r, c) is a solution
to the equation S2 − a2(a2 − 1)T 4 = 1. As already argued in Subcase II.1, this
entails c2 = 4(2a2 − 1), so that U2r = 4a(2a2 − 1) = U4. Hence, r = 2 and

bz2 = 16a2(8a4 − 8a2 + 1)(2a2 − 1)(4a2 − 3)(4a2 − 1).

As seen in the previous case, such an equality is prohibited by the condition
ω(sqf(b)) ≤ 2.

The proof of Theorem 1.1 is complete.

4. Extensions

As Lemma 2.1 gives ‘explicitly’ the solutions to the first equation in (1.2), the
solution of the system (when it exists) is of the form

(4.1) (x, y, z) =

(
Vk, Uk,

√
(U2

k − 1)/b

)

for some index k ≥ 2. Such a formula is not completely satisfactory without an
indication on how large could k be. The crux of Theorem 1.1 is to find a condition
enforcing k = 2 or k = 3.

A short computer search provided instances of (1.2) whose solutions are given
by (4.1) for some k ≥ 4. For example, one has k = 4 for (a, b) = (5, 11 · 89 · 109 · 32)
or (a, b) = (113, 61 ·227 ·50849 ·292), and k = 5 if (a, b) = (5, 23 ·11 ·97 ·72). One can
have k = 6 for (a, b) = (3, 29·41·239), and even k = 7 for (a, b) = (5, 11·97·4801·24).

These examples show that for ω(sqf(b)) ≥ 3 it is impossible to prove results as
precise as Theorem 1.1 without some additional requirements on a and b. Such
supplementary constraints are uncovered by examining the arguments given in Sec-
tion 3 and understanding what changes when only one of the four known factors of
U2
k − 1 is a perfect square. The next result points out several conditions that are

sufficient to establish an analogue of Theorem 1.1 for systems (1.2) in which sqf(b)
is the product of three prime numbers.

Theorem 4.1. Let a and b be integers greater than 1. Assume ω(sqf(b)) = 3.
a) If sqf(b) is odd, suppose that one of the following conditions holds:
(α) a is twice an odd number,
(β) a = 2c2 − 1 for some integer c,
(γ) a ≡ 2 (mod 6),
(δ) a ≡ 0 (mod 4) and sqf(b) �≡ 7 (mod 8).

Then the system (1.2) is solvable in positive integers if and only if b divides 4a2−1
and the quotient is a perfect square. When it exists, this solution is

(x, y, z) =
(
2a2 − 1, 2a,

√
(4a2 − 1)/b

)
.

b) If sqf(b) = 2pq with 2 < p < q, suppose that one of the following conditions
holds:

(ε) there is no integer c such that 2a2 − 1 = c2,
(ζ) {p mod 8, q mod 8} �= {1, 3}.
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Then the system (1.2) is solvable in positive integers if and only if 8a2(2a2 − 1) is
divisible by b and the quotient is a perfect square. When it exists, this solution is

(x, y, z) =
(
4a3 − 3a, 4a2 − 1,

√
8a2(2a2 − 1)/b

)
.
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