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TRIPLY IMPRIMITIVE REPRESENTATIONS OF GL(2)

RALF SCHMIDT AND SALAM TURKI

(Communicated by Matthew A. Papanikolas)

Abstract. We give a criterion for an irreducible, admissible, supercuspidal
representation π of GL(2,K), where K is a p-adic field, to become a principal
series representation under every quadratic base change. We determine all
such π that have trivial central character and conductor 2, and explain their
relevance for the theory of elliptic curves.

1. Introduction

Let K be a non-archimedean local field of characteristic zero. Let π be an
irreducible, admissible, supercuspidal representation of GL(2,K). For a quadratic
field extension L/K we denote by BCL/K(π) the base change of π to L, which is
an irreducible, admissible representation of GL(2, L); see [2] for basic properties of
base change. The representation BCL/K(π) may remain supercuspidal, or may be
a principal series representation. In this note we investigate the following question:
(1)
Is it possible that BCL/K(π) is a principal series representation for all quadratic
extensions L ?

We reformulate this question in terms of the local parameters corresponding to the
representations involved via the local Langlands correspondence (see [5] for basic
properties of this correspondence). Since π is supercuspidal, its parameter is an
irreducible, 2-dimensional representation (ϕ, V ) of the Weil group W (K̄/K),

ϕ : W (K̄/K) −→ GL(2, V ) ∼= GL(2,C).

Quadratic base change corresponds to restricting ϕ to subgroups of index-2; such
subgroups are precisely the Weil groups W (K̄/L) where L/K is a quadratic field
extension. The restriction of ϕ toW (K̄/L) remains irreducible exactly if BCL/K(π)
is supercuspidal. The above question is therefore equivalent to the following:
(2)

Is it possible that res
W (K̄/K)
H (ϕ) is reducible for all index-2 subgroups H of

W (K̄/K) ?

It follows from the representation theory of W (K̄/K) that if res
W (K̄/K)
H (ϕ) is re-

ducible, then it is a direct sum of two 1-dimensional representations. Via the local
Langlands correspondence, this direct sum corresponds to a principal series repre-
sentation of GL(2,K).

We will show that the answer to question (1) is “no” if the residual characteristic
of K is even. Assume that the residual characteristic of K is odd. For reasons to be
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explained, we call a supercuspidal π triply imprimitive if BCL/K(π) is a principal
series representation for all quadratic extensions L of K. In odd residual charac-
teristic it is known that every supercuspidal π is dihedral, i.e., can be constructed
via the Weil representation, as in §1 of [4]. The input for this construction is a
quadratic field extension F of K and a non-Galois invariant character ξ of F×; let
ωF,ξ be the supercuspidal representation of GL(2,K) attached to this data. Then
we will prove that ωF,ξ is triply imprimitive if and only if ξ2 is Galois-invariant; see
Corollary 3.2.

Next we consider those supercuspidal π which have trivial central character and
(exponent of the) conductor 2. Under the assumption that the residual character-
istic is not 2 or 3, only such supercuspidals are relevant for the theory of elliptic
curves. Our main result is Theorem 4.1 below. It states that if q ≡ 1 mod 4, then
there is no triply imprimitive such π, and if q ≡ 3 mod 4, then there is a unique
one; here, q is the cardinality of the residue class field.

In the final section we explain how one can easily determine from the Weierstrass
equation of an elliptic curve E over K whether the associated irreducible, admissi-
ble representation of GL(2,K) is the triply imprimitive supercuspidal exhibited in
Theorem 4.1.

2. Restricting representations to index-2 subgroups

Let G be a group, and H an index-2 subgroup. All representations of these
groups are assumed to be finite-dimensional and complex. By a character we mean
a 1-dimensional representation. We fix an element σ ∈ G which is not in H, so that
G = H � σH. If ξ is a representation of H, then the conjugate representation ξσ

is defined by ξσ(h) = ξ(σhσ−1). We denote by resGH and indGH the restriction and
induction functors. The following two lemmas are well known.

Lemma 2.1. Let G be a group, and H an index-2 subgroup. Let χ be the unique
non-trivial character of G/H. Let ϕ be an irreducible representation of G. Then
exactly one of the following two alternatives occurs:

(1) ϕ �∼= ϕ⊗ χ and resGH(ϕ) is irreducible. In this case

indGH(resGH(ϕ)) = ϕ⊕ (ϕ⊗ χ).

(2) ϕ ∼= ϕ ⊗ χ and resGH(ϕ) = ξ ⊕ ξσ, where ξ is an irreducible representation
of H. In this case ξ �∼= ξσ, and

ϕ = indGH(ξ) = indGH(ξσ).

Lemma 2.2. Let G be a group, and H an index-2 subgroup.

(1) Let ξ be a representation of H and μ a character of G. Then

(3) indGH(ξ)⊗ μ ∼= indGH(ξ ⊗ resGH(μ)).

(2) Let ξ1 and ξ2 be representations of H. Then

(4) indGH(ξ1) ∼= indGH(ξ2) ⇐⇒
(
ξ1 ∼= ξ2 or ξ1 ∼= ξσ2

)
.

We can now prove the following result about the restriction of 2-dimensional
representations to index-2 subgroups. It is closely related to the arguments in
Sect. 6 of [7].
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Proposition 2.3. Let G be a group with more than one index-2 subgroup.

(1) Assume that there exists an irreducible 2-dimensional representation ϕ of
G such that resGH(ϕ) is reducible for all index-2 subgroups H. Then G has
exactly three index-2 subgroups.

(2) Assume that G has exactly three index-2 subgroups H1, H2, H3. Let ξ be a
character of H1 with ξ �= ξσ; here, σ is an element of G that is not in H1.
Let ϕ = indGH1

(ξ). Then

(5) resGHi
(ϕ) is reducible for i = 1, 2, 3 ⇐⇒ (ξ2)σ = ξ2.

Proof. i) Let ϕ be an irreducible representation of G such that resGH1
(ϕ) is reducible

for some index-2 subgroup H1. By Lemma 2.1, there exists an irreducible repre-
sentation ξ of H1 such that resGH1

(ϕ) = ξ ⊕ ξσ. We have ξ �∼= ξσ and ϕ = indGH1
(ξ).

Let {Hi} be the set of index-2 subgroups of G. Let χi be the non-trivial character
of G that is trivial on Hi. Let σ be an element of G that is not in H1. By Lemmas
2.1 and 2.2, we have

resGHi
(ϕ) is reducible ⇐⇒ ϕ ∼= ϕ⊗ χi

⇐⇒ indGH1
(ξ) ∼= indGH1

(ξ)⊗ χi

⇐⇒ indGH1
(ξ) ∼= indGH1

(
ξ ⊗ resGH1

(χi)
)

⇐⇒
(
ξ ∼= ξ ⊗ resGH1

(χi) or ξσ ∼= ξ ⊗ resGH1
(χi)

)
.

Assume now that dim(ϕ) = 2, so that ξ is a character. Then ξ ∼= ξ ⊗ resGH1
(χi) if

and only if resGH1
(χi) = 1. But if i �= 1, then χi cannot be trivial on H1, since its

kernel is Hi. Hence, for i �= 1,

resGHi
(ϕ) is reducible ⇐⇒ ξσ ∼= ξ ⊗ resGH1

(χi)

⇐⇒ ξσ = ξ · resGH1
(χi).

Assume this condition is satisfied for i, j �= 1 with i �= j. Then resGH1
(χi) =

resGH1
(χj). Hence χiχj is a non-trivial quadratic character which is trivial on H1.

We conclude that χiχj = χ1. It follows that if resGHi
(ϕ) is reducible for all i,

then there cannot be more than three index-2 subgroups. Note that we cannot
have exactly two index-2 subgroups, since if χ1 and χ2 are two distinct quadratic
characters of G, then χ1χ2 is a third such character. Hence there are exactly three
index-2 subgroups.

ii) Let the notation be as in the first part of the proof. As we saw, χ2χ3 = χ1,
and hence resGH1

(χ2) = resGH1
(χ3). Let this common restriction be denoted by α.

The kernel of α is H1 ∩H2 = H1 ∩H3, which is an index-2 subgroup of H1. From
above, we see that

(6) resGHi
(ϕ) is reducible for i = 1, 2, 3 ⇐⇒ ξσ = ξ · α.

In particular, if resGHi
(ϕ) is reducible for i = 1, 2, 3, then (ξ2)σ = ξ2.

It remains to prove that if ξ is a character of H1 with ξ �= ξσ and (ξ2)σ = ξ2,
then resGHi

(ϕ) is reducible for i = 1, 2, 3. Let M ⊂ H1 be the kernel of ξ/ξσ. Since

(ξ/ξσ)2 = 1 by hypothesis, M is an index-2 subgroup of H1. We claim that σ
normalizes M . Indeed, for m ∈ M ,( ξ

ξσ

)
(σmσ−1) =

ξ(σmσ−1)

ξσ(σmσ−1)
=

ξ(σmσ−1)

ξ(m)
= 1.
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Since also σ2 ∈ M , it follows that M � σM is an index-2 subgroup of G, say
M �σM = H2. Evidently, M = H1 ∩H2. It follows that ξ/ξ

σ equals the character
α appearing in (6). This concludes the proof. �

Recall that a representation ϕ of a group G is called primitive if it is not in-
duced (from any subgroup), otherwise imprimitive. If the representation ϕ in ii) of
Proposition 2.3 satisfies (5), then, by ii) of Lemma 2.1, ϕ is induced from any of
the Hi. We will call such ϕ triply imprimitive. A similar terminology is used in [3].

3. Application to Weil groups

In this and the following sections, let K be a non-archimedean local field of
characteristic zero, o its ring of integers, p the maximal ideal of o, and 	 a generator
of p. Let q be the cardinality of the residue class field o/p. If L is an extension field,
we denote the corresponding objects for L by oL, etc. Let Kunr be the maximal
unramified extension of K in K̄.

Let W (K̄/K) be the Weil group of K; we refer to [10] for background. By
definition,

(7) W (K̄/K) =
⊔
n∈Z

ΦnI,

where I = Gal(K̄/Kunr) is the inertia subgroup, and Φ is an inverse Frobenius
element in Gal(K̄/K). Inverse means that Φ induces the inverse of the map x �→ xq

on the algebraic closure of the residue class field o/p. There is a topology on
W (K̄/K) making it into a topological group, such that I is an open subset, and
such that the induced topology on I coincides with the induced topology on I as a
subset of Gal(K̄/K).

Representations ϕ of W (K̄/K) are always assumed to be complex, finite-dimen-
sional and continuous. Observe that restriction to and induction from finite index
subgroups respect the continuity of a representation. We will apply Proposition 2.3
to W (K̄/K).

Note that the quadratic field extensions L of K correspond to the index-2 sub-
groups W (K̄/L) of W (K̄/K). If ϕ is a representation of W (K̄/K), we will abbre-
viate

resL/K(ϕ) := res
W (K̄/K)

W (K̄/L)
(ϕ),

and if ξ is a representation of W (K̄/L), we will abbreviate

indL/K(ξ) := ind
W (K̄/K)

W (K̄/L)
(ξ).

The quadratic field extensions of K correspond to the non-trivial elements of the
group K×/K×2. It thus follows from Proposition II.5.7 of [6] that there are three
quadratic field extensions L/K if the residual characteristic of K is odd, and more
than three otherwise. From Proposition 2.3 we therefore obtain the following result.

Proposition 3.1. Let L1, . . . , Lr be the quadratic field extensions of K.

(1) Assume that there exists an irreducible 2-dimensional representation ϕ of
W (K̄/K) such that resLi/K(ϕ) is reducible for i = 1, . . . , r. Then the
residual characteristic of K is odd.
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(2) Assume that the residual characteristic of K is odd, so that r = 3. Let ξ be
a character of W (K̄/L1) with ξ �= ξσ; here, σ is an element of W (K̄/K)
that is not in W (K̄/L1). Let ϕ = indL1/K(ξ). Then

(8) resLi/K(ϕ) is reducible for i = 1, 2, 3 ⇐⇒ (ξ2)σ = ξ2.

Let F/K be a quadratic extension. Recall that characters of W (K̄/F ) corre-
spond to characters of F× via local class field theory (this is also the local Langlands
correspondence for GL(1)). We will denote both kinds of characters by the symbol
ξ. Given such a ξ : F× → C×, there is an irreducible, admissible representation
ωF,ξ of GL(2,K) constructed via the Weil representation; see §1 of [4]. We refer
to ωF,ξ as a dihedral or a monomial representation. By Theorem 4.6 of [4], ωF,ξ is
supercuspidal if and only if ξ is not Galois invariant. In this case the representa-
tion of W (K̄/K) corresponding to ωF,ξ via the local Langlands correspondence is
nothing but indF/K(ξ).

If π is an irreducible, admissible, supercuspidal representation of GL(2,K) with
corresponding 2-dimensional representation ϕ of W (K̄/K), then the base change
BCL/K(π) to a quadratic extension L of K corresponds to resL/K(ϕ) (this is true
for all irreducible, admissible π if one works with the Weil-Deligne group instead
of the Weil group). Keeping these facts in mind, we may reformulate Proposition
3.1 as follows.

Corollary 3.2. Let π be an irreducible, admissible, supercuspidal representation of
GL(2,K).

(1) Assume that BCL/K(π) is a principal series representation for all quadratic
extensions L of K. Then the residual characteristic of K is odd.

(2) Assume that the residual characteristic of K is odd, so that π is a dihedral
supercuspidal. Write π = ωF,ξ, where F/K is a quadratic extension and ξ
is a non-Galois invariant character of F×. Then BCL/K(π) is a principal

series representation for all quadratic extensions L of K if and only if ξ2

is Galois invariant.

4. The case of conductor 2

Let π be an irreducible, admissible representation of GL(2,K). By definition,
the conductor a(π) is the smallest non-negative integer n such that π admits a
non-zero vector invariant under the congruence subgroup

GL(2, o) ∩
[
o o

pn 1 + pn

]
.

This number coincides with the conductor of the corresponding Weil-Deligne rep-
resentation, as defined in §10 of [10]; for our purposes, we may take this as an
alternative definition of a(π). In this section we consider triply imprimitive super-
cuspidals with conductor 2 and trivial central character.

Again let F/K be a quadratic extension. Let σ be the non-trivial Galois au-
tomorphism of this extension. Let ξ be a character of F× with ξ �= ξσ, where
ξσ(x) = ξ(σ(x)). Let ωF,ξ be the corresponding dihedral supercuspidal. By §10 of
[10], we have the conductor formula

(9) a(ωF,ξ) = d(F/K) + f(F/K)a(ξ).



976 RALF SCHMIDT AND SALAM TURKI

Here, d(F/K) is the valuation of the discriminant of F/K and f(F/K) is the
residue class degree. The number f(F/K) is 1 or 2, depending on whether F/K is
ramified or unramified. Assume that the residual characteristic of K is odd. Then
the number d(F/K) is 0 or 1, again depending on whether F/K is ramified or
unramified. Hence,

(10) a(ωF,ξ) =

{
2a(ξ) if F/K is unramified,

1 + a(ξ) if F/K is ramified.

We are especially interested in the case of conductor 2, since this case is relevant
for elliptic curves. From above, we see that

a(ωF,ξ) = 2 ⇐⇒ a(ξ) = 1.

Such ξ are tamely ramified, meaning their restriction to the unit group o
×
F is non-

trivial, but further restriction to 1 + pF is trivial. Hence, such ξ descend to a
character of the multiplicative group of the residue class field oF /pF . Conversely,
given ξ : (oF /pF )

× → C×, we can inflate ξ to a character of o×F , give it some value
on a uniformizer 	F , and thus obtain a tamely ramified character of F×.

In the following we continue to assume that the residual characteristic of K is
odd and look for characters ξ of F× satisfying the following conditions:

(11)

(A) ξσ �= ξ.
(B) ξ

∣∣
K× = χF/K .

(C) a(ξ) = 1.
(D) (ξ2)σ = ξ2.

Condition (A) assures that π := ωF,ξ is supercuspidal. Condition (B) is equivalent
to π having trivial central character. Condition (C) is equivalent to π having
conductor 2. Finally, by Proposition 3.1 ii), condition (D) means that BCL/K(π)
is a principal series representation for all quadratic field extensions L of K.

The unramified case. Assume first that F/K is the unramified quadratic ex-
tension of K. Then the residue class field oF /pF is a quadratic extension of o/p.
Assume ξ has the properties (A) – (D) in (11). By (C), ξ determines a character ξ̄
of (oF /pF )

× with the following properties:

(12)
(Ā) ξ̄σ̄ �= ξ̄.
(B̄) The restriction of ξ̄ to (o/p)× is trivial.
(D̄) (ξ̄2)σ̄ = ξ̄2.

Here, σ̄ is the non-trivial Galois automorphism of the residue class field extension.
Explicitly, σ̄ is the Frobenius, given by σ̄(x) = xq.

Let g be a generator of the cyclic group (oF /pF )
×. The order of g is q2−1. Any

character ξ̄ of (oF /pF )
× is determined by its value on g, and this value can be any

(q2 − 1)-th root of unity:

ξ̄(g) = e
2πi k

q2−1 , k = 1, 2, . . . , q2 − 1.

The conditions (12) are then equivalent to the following:

(13)
(Ā) k /∈ (q + 1)Z.
(B̄) k ∈ (q − 1)Z.
(D̄) 2k ∈ (q + 1)Z.
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Conditions Ā and D̄ imply that

k =
q + 1

2
(1 + 2m), m ∈ {0, 1, . . . , q − 2}.

Assume that B̄ is also satisfied, i.e.,

q + 1

2
(1 + 2m) = (q − 1)n

for some integer n. If q ≡ 1 mod 4, then the left side is odd and the right side is
even, so this is impossible. Assume that q ≡ 3 mod 4. Since the integers q+1

4 and
q−1
2 are relatively prime, it follows that 1+2m = j q−1

2 for some j ∈ Z. For reasons
of size we must have j ∈ {1, 2, 3}. Also, j must be odd, so the only possibilities are

j = 1 and j = 3. Hence the only possibilities for k are k = q2−1
4 and k = 3 q2−1

4 .
Note that

q
q2 − 1

4
≡ 3

q2 − 1

4
mod q2 − 1

due to our hypothesis q ≡ 3 mod 4, so that the two possible values of k lead to

Galois-conjugate characters ξ̄. We might as well fix k = q2−1
4 . Our character ξ̄ is

then given by

(14) ξ̄(g) = e2πi/4 = i

(its Galois-conjugate would have g �→ −i).
Conversely, assuming that q ≡ 3 mod 4, we can define ξ̄ by (14). Let ξ be the

inflation of ξ̄ to o
×
F . To obtain a character of F×, we also need to define the value

ξ(	F ), where 	F is a uniformizer in F . Since F/K is unramified, we can take
	F = 	, where 	 is a uniformizer in K. Condition (B) in (11) then forces us to
define ξ(	) = −1. Having defined ξ in this way, we see that all the conditions in
(11) are satisfied.

The ramified case. Now assume that F/K is a ramified quadratic extension of
K (there are two such extensions). In this case oF /pF = o/p. Assume that ξ
satisfies the conditions in (11). Since o

×
F = o×(1 + pF ), the restriction of ξ to o

×
F is

determined by ξ|o× . In view of (B), ξ is completely determined on o
×
F . We also see

that ξ = ξσ on o
×
F .

Choose the uniformizer 	 of K such that F = K(
√
	). Then σ(

√
	) = −

√
	,

and hence

ξσ(
√
	) = ξ(−

√
	) = χF/K(−1)ξ(

√
	).

In order to satisfy (A), we must have χF/K(−1) = −1; this holds exactly if q ≡ 3

mod 4. Assume this is the case, so that ξσ(
√
	) = −ξ(

√
	). We have

ξ(
√
	)2 = ξ(	) = χF/K(	) = χF/K(−1)χF/K(−	) = χF/K(−1) = −1,

since −	 is a norm. It follows that ξ(
√
	) = ±i, and up to Galois conjugation

we may assume ξ(
√
	) = i. We proved that ξ is unique up to Galois conjugation.

Conversely, we see how to construct a character ξ with the properties (A) – (D)
provided that q ≡ 3 mod 4.
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Summary. Assume that the residual characteristic of K is odd. Recall that an
irreducible, admissible, supercuspidal representation π of GL(2,K) is called triply
imprimitive if BCL/K(π) is a principal series representation for every quadratic field
extension L of K. The following theorem summarizes the results of this section.

Theorem 4.1. Assume that the residual characteristic of K is odd. Consider irre-
ducible, admissible, supercuspidal representations π of GL(2,K) with the following
properties:

• π has trivial central character.
• a(π) = 2.
• π is triply imprimitive.

If q ≡ 1 mod 4, then there exists no such representation. If q ≡ 3 mod 4, then
there exists a unique such representation π, given in any one of the following two
ways:

(1) Let F/K be the unramified quadratic extension. Let g be a generator of
(oF /pF )

×, and define a character ξ̄ of this group by ξ̄(g) = i. Inflate ξ̄ to a
character ξ of o×F , and extend ξ to a character of F× by setting ξ(	) = −1.
Then π = ωF,ξ.

(2) Let F/K be a ramified quadratic extension. Let ξ be the character of o×F =
o×(1+pF ) that is trivial on 1+pF and coincides with χF/K on o×. Extend

ξ to a character of F× by setting ξ(
√
	) = i; here, 	 is a uniformizer of

K such that F = K(
√
	). Then π = ωF,ξ.

We remark that the image of the representation W (K̄/K) → GL(2,C) corre-
sponding to π as in Theorem 4.1 is the quaternion group Q. Our result is thus
compatible with the fact that K admits a unique Galois extension E with Galois
group G(E/K) ∼= Q if q ≡ 3 mod 4, and no such extension if q ≡ 1 mod 4. We
would like to thank David Roberts for pointing this out.

5. The relevance for elliptic curves

We continue to let K be a non-archimedean local field of characteristic zero. Let
E/K be an elliptic curve. Then there is an irreducible, admissible representation
π of GL(2,K) attached to E/K via the following procedure:

• Choose a prime 
 different from the residual characteristic of K.
• The Galois group Gal(K̄/K) acts on the Tate module T�(E), yielding a
2-dimensional 
-adic representation ϕ� : Gal(K̄/K) → GL(2,Q�).

• Via the procedure outlined in §4 of [10], ϕ� can be converted to a complex
representation ϕ : W (K̄/K) → GL(2,C). The isomorphism class of this
representation is independent of the choice of 
.

• After a twist, we may assume that ϕ has image in SL(2,C).
• Via the local Langlands correspondence (see [5]), ϕ corresponds to an irre-
ducible, admissible representation π of GL(2,K). Since the image of ϕ is
contained in SL(2,C), this π has trivial central character.

The correspondence between E and π is such that L(E, s) = L(s − 1/2, π). Note
that these are local L-factors, not global L-functions; in particular, L(s, π) does
not necessarily characterize π. The shift in s is a consequence of the fact that we
normalized π to have trivial central character. In other words, L(E, s) is given in
arithmetic normalization, and L(s, π) in analytic normalization.
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Another feature of the correspondence between E and π is that the conductors
coincide, a(E) = a(π). This is by definition, since the conductors of both E and
π are defined as the conductor of the Weil-Deligne representation ϕ. Assume that
the residual characteristic of K is not 2 or 3. Then, as is well known, a(E) can only
take the values 0, 1 or 2. We have a(E) = 0 if E/K has good reduction, a(E) = 1
if E/K has multiplicative reduction, and a(E) = 2 if E/K has additive reduction.

A natural question is this: Given E/K (by some Weierstrass equation), de-
termine π. A uniform answer is possible in the case of potential multiplicative
reduction. Recall that E/K has potential multiplicative reduction if and only if its
j-invariant is not contained in o. In this case the γ-invariant γ(E/K) := −c4/c6 is
a well-defined element of K×/K×2; see Lemma 5.2 in Sect. V.5 of [11]. Here, c4
and c6 are the usual quantities derived from a Weierstrass equation for E over K.
Using the arguments in §15 of [10], one can show that

(15) π = (γ(E/K), ·)StGL(2).

Here, StGL(2) denotes the Steinberg representation of GL(2,K); the symbol (·, ·)
is the quadratic Hilbert symbol over K; and the notation in (15) means the twist
of StGL(2) by the quadratic character x �→ (γ(E/K), x) of K×. Note that this
character is trivial if and only if E has split multiplicative reduction over K, and
is the unique non-trivial unramified quadratic character if and only if E has non-
split multiplicative reduction over K. Note also that the formula (15) holds in any
residual characteristic.

We will now assume that E has potential good reduction, i.e., that the j-invariant
of E is contained in o. In this case π is either a principal series representation or
supercuspidal. The first case occurs if the Weil-Deligne representation ϕ is a direct
sum of two 1-dimensionals, and the second case occurs if ϕ is irreducible. Assuming
that the residual characteristic is ≥ 5, an easy-to-apply criterion to distinguish
between the two cases is given in Proposition 2 of [9]:

(16) π is a principal series representation ⇐⇒ (q − 1)v(Δ) ≡ 0 mod 12.

Here, Δ is the discriminant of E/K, for any Weierstrass equation with integral
coefficients, and v is the normalized valuation on K. (In [9], the criterion is for-
mulated for K = Qp, but the generalization is straightforward.) Equation (16) is
a good example for determining a property of the representation π directly from
the Weierstrass equation. For related results, including the more complicated cases
p = 2 and p = 3, see [1].

Let L/K be a field extension, and let EL be the base change of E to L. Let π
be the representation of GL(2,K) attached to E, and let πL be the representation
of GL(2, L) attached to EL. It is easy to see from the definitions that

(17) πL = BCL/K(π).

In other words, base change for elliptic curves corresponds to base change for the
associated irreducible, admissible representations. Using these facts, it is easy to
determine from the Weierstrass equation whether π is the triply imprimitive super-
cuspidal from Theorem 4.1:

Proposition 5.1. Assume that the residual characteristic of K is ≥ 5. Let E/K
be an elliptic curve with discriminant Δ. Assume that E has bad,but potential good



980 RALF SCHMIDT AND SALAM TURKI

reduction. Let π be the irreducible, admissible representation of GL(2,K) attached
to E/K. Then the following are equivalent:

(1) π is supercuspidal, and for every quadratic extension L of K, the irreducible,
admissible representation of GL(2, L) attached to EL is a principal series
representation.

(2) π is the triply imprimitive supercuspidal representation from Theorem 4.1.
(3) The following conditions are satisfied:

• (q − 1)v(Δ) �≡ 0 mod 12.
• 2(q − 1)v(Δ) ≡ 0 mod 12.

Here, v is the normalized valuation on K.

Proof. i) and ii) are equivalent by (17). Assume these conditions are satisfied. Then
(q−1)v(Δ) �≡ 0 mod 12 by (16). Let L/K be a ramified quadratic extension. Since
the representation attached to EL is a principal series by assumption, we have

(18) (qL − 1)vL(Δ) ≡ 0 mod 12

by (16). But qL = q and vL(Δ) = 2v(Δ), so that 2(q − 1)v(Δ) ≡ 0 mod 12.
Conversely, assume iii) is satisfied. Then π is supercuspidal by (16). Also,

we claim that (18) is satisfied for every quadratic extension L of K. For if L/K is
ramified, then (18) holds since qL = q and vL(Δ) = 2v(Δ), and if L/K is unramified,
then (18) holds since qL = q2. Thus, by (16), the representation attached to EL is
a principal series representation for every quadratic extension L/K. �

In the situation of Proposition 5.1, assume that i), ii) and iii) are satisfied.
While the representation πL = BCL/K(π) attached to EL is a principal series
representation, it is not unramified. One way to see this is to note that if π = ωF,ξ

with ξ as in i) or ii) of Theorem 4.1, then the parameter of πL is ξ ⊕ ξσ. Since
ξ is ramified, it follows that πL is a ramified principal series representation. As
a consequence, E does not acquire good reduction over any quadratic extension.
(This can also be seen from the conditions on v(Δ) in iii).)

For related results about the local and global representations attached to elliptic
curves, see [8].

Acknowledgements

The authors would like to thank David Rohrlich for drawing our attention to
related results in the literature, and David Roberts for several helpful comments.

References

[1] Ian Connell, Good reduction of elliptic curves in abelian extensions, J. Reine Angew. Math.
436 (1993), 155–175, DOI 10.1515/crll.1993.436.155. MR1207284

[2] P. Gérardin and J.-P. Labesse, The solution of a base change problem for GL(2) (follow-
ing Langlands, Saito, Shintani), Automorphic forms, representations and L-functions (Proc.
Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Proc. Sympos. Pure Math.,
XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 115–133. MR546613
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