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ABSTRACT. We obtain isoperimetric inequalities under bounded integral norms
of Ricci curvature and mean curvature. Also we generalize the results to
metric-measure spaces.

1. INTRODUCTION

The classical isoperimetric inequality says that for a given bounded domain D
in R™,
n"w,vol(D)"~1 < A(OD)™,
where w,, is the volume of a unit ball in R™ and A is (n — 1)-dimensional volume.
For an n-dimensional Riemannian manifold M™, the v-isoperimetric constant
I,(M™) is defined as follows:
A(OD)

1 -

(1.1) L(M") = DCM" VOI(DT

If I,(M™) > 0, then an isoperimetric inequality is induced. In the case of v = oo,
I (M™) is Cheeger’s constant. If Io.(M™) > 0, we obtain a linear isoperimetric
inequality.

In many cases, the isoperimetric inequalities for Riemannian manifolds are locally
obtained [Ch2]. For example, Croke’s inequality says that if r < %inj Mn s then

A(DD) > c(n)vol(D) "+

for D C B(p,r) and a constant ¢(n), where inj,,~ is the injectivity radius of M™
and B(p,r) is the r-ball centered at p. Buser’s inequality is a linear isoperimetric
inequality as follows: If Ricpn > —(n — 1)k for k > 0, then there exists a constant
c(n, k,r) > 0 such that

min{vol(Dy),vol(D2)} < ¢(n, k,r)A(T)

for a dividing hypersurface I" and open subsets Dy, Dy C B(p,r) satisfying that
B(p,r)\I‘ = D1 UDQ.
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Recently, there have been many attempts in Riemannian geometry to replace
curvature bounds with integral norms of curvatures. In [Gal], Gallot obtained an
isoperimetric inequality with an integral norm of Ricci curvature for a closed man-
ifold. He obtained a lower bound of A(992) with min{vol(£2), vol(M™ \ Q)}l_% for
p > n under a condition on the integral norm of Ricci curvature. In [PW], Petersen
and Wei generalized the Bishop-Gromov volume comparison estimate with an inte-
gral norm of Ricci curvature. In [Pall, local linear isoperimetric inequalities were
obtained with an integral norm of Ricci curvature by using a technique in [PW].
In [DWZI, the authors obtained a local isoperimetric inequality under a sufficiently
small integral norm of Ricci curvature.

In this paper, we will consider (nonlocal) isoperimetric inequalities for manifolds
with boundary. It should be noted that for manifolds with boundary, the mean
curvature of 9M™ plays an essential role in isoperimetric inequality. For example,
let M, = S? — B(p,¢) and D = S? — B(p, e + d). Then the mean curvature of 9M,

diverges and % — 0 as €,0 — 0. Hence I,,(M,) — 0 as e — 0.

There have been some studies on isoperimetric inequality for manifolds with
boundary. In 1959, Reid generalized the classical isoperimetric inequality to region
D in a surface in R? [R]. Precisely, suppose D C R? is a C? image of a region in
the plane bounded by a simple closed curve. Let H be the mean curvature vector
on D and X be the position vector to D. If the origin is an arbitrary point on 0D,
then

(1.2) Length(0D)* > 47T(Area(D) +/ X - H)
D

In 1961, Hsiung [Hs] proved that the inequality proved by Reid still holds when
M™ is a 2-dimensional manifold imbedded in Euclidean space provided oM™ is
diffeomorphic to a circle. In 1972, Hanes [Ha] generalized the inequalities of Reid
and Hsiung to an n-dimensional manifold with boundary embedded in Euclidean
(n + p)-space, where the boundary is not necessarily diffeomorphic to the sphere.

However, in an inequality such as ([L2)), the mean curvature of 9D is needed to
obtain an isoperimetric inequality for vol(D) and A(9D). If I, (M™) > 0, then an
isoperimetric inequality is obtained for any domain D C M™ without conditions on
the mean curvature of 9D. We will obtain isoperimetric inequalities for a domain
D in an n-dimensional Riemannian manifold M™ with boundary under bounded
integral norms of Ricci curvature of M™ and mean curvature of OM™. We will not
use the mean curvature of 9D.

We will use the following notation. Let M™ be an n-dimensional Riemannian
manifold with smooth boundary and D be a domain in M"™. Let h be the mean
curvature of OM™ with respect to the inward normal vector field. Let p(q) =
max{(—Ricy(v,v))+ | |v] =1, v € T,M"} and hy = max{0, h}.

We define integral norms R, and H, as follows:

Ry = [ prav,

Mm
Hp = / hidvolaMn,
oM™

where dV is the volume form of M™ and dvolgyn is the volume form of oM™
induced from the volume form of M™.
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We will prove the following two isoperimetric inequalities with R, and H, for
M™. Our isoperimetric inequalities are not local, so we do not assume any condi-
tions on the shape of M™ such as M™ = B(p, r). In the first theorem, p = ¢ = n—1.
It is possible that 9D NIM™ = (. (For example, D = M™.) Let diam(M™) be the
diameter of M™.

Theorem 1.1. Let M™ be an n-dimensional Riemannian manifold with smooth
boundary. If diam(M™) = R, then for a domain D C M™ with smooth boundary,
we have

PR 1

vol(D) < B + A(0D)————,
f1
1 1
where By = R TR+ M I R"T.
If M™ is mean convex everywhere, then we have
_1
eR,,?:ll R2 . 1

vol(D) < eRii B 4 A(aD) (7).

R1R
For p > 4, we obtain the following inequality with R, and Ha,_1:

Theorem 1.2. Let M™ be an n-dimensional Riemannian manifold with smooth
boundary. If diam(M™) = R, then for a domain D C M™ with smooth boundary,
we have

1 —_ 1 1
A(@D) = Zvol(D) — (2Con, )R, +2Co(n, p)2;‘92+1)m01w)1m

1
1 1 V"2
for 2p >n and Co(n,p) = (=5 — 2p_1) 2

If M™ is mean convex everywhere, then we have

1

A(@OD) = %VOI(D) — (2"Co(n, p)*R,,) % vol(D)' ~

If we want a linear isoperimetric inequality from Theorem 1.2, we can modify
Theorem 1.2 as follows:
Hap—
vol(D) < 2RA(AD) + (2R)*P (2P Cy(n, p)* R, + ZCO(n,p)22 2P i).
p —
Although Hg,—1 is used in Theorem 1.2 for 2p — 1 > n — 1, if Ricym > 0 and
M™ is mean convex everywhere, then we obtain from Theorem 1.2 that

vol(D) < RA(0OD)
since R, = 0 and Hyp—1 = 0. On the other hand, we obtain from Theorem 1.1 that
vol(D) < RA(OD) + 1.

Hence Theorem 1.2 could give a sharper upper bound for the volume in the case
of almost nonnegative Ricci curvature. In particular, if the boundary is a minimal
surface, we have H, = 0. It is known that event horizons of black holes are minimal
surfaces which can be considered as the boundary of the universe. Then we can
apply the above theorems to estimate the volume of our universe with the area of
event horizons.

In the proof of Theorem 1.1, we estimate vol(D) by integrating the (n — 1)-
dimensional volume of S; = {z € D | d(z,0M™) = t}. On the other hand,
in the proof of Theorem 1.2, we integrate the volume form along a geodesic v,
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from ¢ € OM™ and then integrate it on OM™ to estimate vol(D). Therefore, un-
like Theorem 1.2, an isoperimetric inequality can be obtained for S; and D; =
{z € D | d(z,0M™) <t} in 2I0) in the proof of Theorem 1.1.

Current theories of physics postulate the presence of scalar fields in addition
to the metric [GW]. Hence, many results in Riemannian geometry have been gen-
eralized to the metric-measure space (M", g,e~fdV) with the Bakry-Emery Ricci
tensor (for example, [L], [WW]). Bakry and Emery studied this tensor and its rela-
tionship to diffusion processes [BE]. Wei and Wylie obtained a volume comparison
and a mean curvature comparison in [WW]. In Section 4, we will extend our results
to metric-measure spaces by using integral norms of the Bakry-Emery Ricci tensor.

2. PROOF OF THEOREM 1.1
We will use the following notation. Let
My ={xe M"|d(z,0M") > t},

OM; ={x € M" | d(z,0M") = t}.

Let v, be the normal geodesic such that v,(0) = ¢ and v;(0) is perpendicular to
OM™ for g € OM™. Let

ty = max{t | d(v4(t),0M") = t}.

Then we have

M= | ) [t <t}
qeEOM™
Let g be the metric of M™. We denote by ¢; the induced metric of OM; from
g. Let dvol; be the volume form of OM; induced from g;. Then the volume form
dvolgpsn of OM™ is dvoly, and the volume form of M™ satisfies dV = dt A dvol;. By
identifying ~,(t) € OM, with ¢ € oM™ for t < t,, we define w(t,q) and h(t,q) as
follows:

1) dvoly = w(t,-)dvolypsn,
) (& dvoly|y, (q) = w(t,q)F*dvolypn

a)s

where F is the projection from ~,(t) to ¢, and

(2.2 9 (i) = h(t, ) (t,a),

where h is the mean curvature of 9M;. We abbreviate w(t,q) and h(t,q) to w(t)
and h(t), respectively. Then h satisfies the Riccati equation for ¢ < t,, so we have

h? 0 0
2.3 n < —Ric(—, =
(2:3) Ty S R )
where % = 7,(t), which is the gradient of the distance function d(-,0M"), so
12| =1. Let

h ift <t
(2.4) T
0 if t > tg,
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and recall that p = max{(—Ric(v,v))+ | |[v| =1, v € T,M™}. Then

w2
< p.
n—l_p

(2.5) P+

In order to obtain the integral norm of mean curvature on 9M;, we use similar ar-
guments as in [Pa2]. Since faMt fdvoly= [5, . fwdvolayn, we have % faM, fdvol; =
Jong, (f' + fR)dvol,. From (Z35) and ¢ > 0, we have

d

— " tdvol, = / (n — 1)y 2" + " 'h)dvol,
dt Jou, oM,

(2.6) sLMwm%m—UW+w%mm

<(n-— 1)/ "2 p(q)dvol,.
oM,
Let
Roa)= [ gt
MTM,

Hyo1(t) = / ' dvoly.
OM;y
Then Hy,—1 = Hp—1(0) and Ry,—1 = Rp—1(R). Since we have

1

n—2
/ "2 p(q)dvol, < (/ W—ldvolt)"’l (/ p(q)”_ldvolt) "’1,
OM; OM, OM;

we obtain from (26) that

1

(2.7) L) < (= D) Ha (1) (/W p(q)n_ldvolt>m_
Then

no1(t) e =
= m—nﬂnmwﬁf<(AMf@)1“%) '

Integrating the above for ¢, we obtain that

t /
Hp ()77 — Hyp 1 (0) 7T :/ n-1(t) —du
0 (n—1DHp_1(u)»1

(2.9) S/O (/(W p(q)"‘ldvolu)mdu

_1 _
<([ sy
M\ M,

2

=Ry 1(t)7TtnT.

Since t < R, we obtain that

(2.10) 1 n—2 _1
SRy R M

Now we will use the following divergence theorem [HS]. Let

St :DmaMt
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The divergence of X on S; is defined as follows:
n—1
divs,(X) = trVX = > (Ve X, e;)
i=1
for an orthonormal basis {e;} on T'S;, where VX : T'S; — TM™ is the map Y —

Vy X for a covariant differentiation V on M™. Then for a vector field X on S;, we
have

(2.11) / divg, (X)dvol; = —/ (X, H)dvol, -|—/ (X, U>d935t,
St St 95y

where H is the mean curvature vector field of Sy, U is the outward normal vector
field on 05, which is tangent to S;, and dfpg, is the volume form of 9S;. (See
Figure 1.) Let X be a variational vector field of variation S;. Then the projection
of X to the normal direction to S; is %. We may assume that X is normal to 95¢;
i.e. we may consider (X, 2)2 + (X,U)U = £ + (X,U)U instead of X.

t

FIGURE 1. Variation vector field X of S,

Let V(t) = A(S:) = [, dvol;. Since

9 a8 = [ divs, (X)dvol,,
ot .,

we obtain from (2I0) that

V'(t) = / hdvol, + / (X,U)dbys,
0S¢

St
(2.12) < (/ @[J"‘ldvolt)"ll(/ dvolt>% +/ X |dfos,
St St Sy

< Hoa(OTTVOFE + [ (X|dss,
a5,
by @II) and H = —trVZ = —h 2.

If 0D is transversal to M, then |X| < oo and V'(t) < oco. Hence if 9D is
transversal to OM; for any ¢ € (0, R), then dvolgpp = |X|dfss,dt since X LISy,
where dvolyp is the volume form of dD. Then by integrating (2.12]), we obtain
@I3). Even if D is not transversal to dM;, we can obtain (ZI0) as follows.
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Let B = {t € (0,R) | V'(t) = oo} and (0,R) \ B = |J; I; for open intervals ;.
Integrating (2I2) over ¢, we have that

/Hn (W) TV (u) 7= 1du+2// | X|dfss, du
+ ) V() = V(t-),

teB

(2.13)

where V(t+) = limp, 04 V(¢ + h) and V(t—) = limp 04 V(¢ — D).

The second term Y [ 9 Jos, 1X1d0as,du of the right hand side is the volume
of 0D \ UteBU{O} OM; since dvolpp = | X|dbss,dt. For the third term, let Spy =
limp 504 Sern C OMy and Si— = limp_,04 Si—p, C OM; for t € B. (See Figure 2.)
Let z € OM; be an interior point of D. If y € B(z,h) N My, then y € OM;yp
for 0 < b’ < h. (Recall that M; = {& € M"™ | d(z,0M™) > t}.) Also we let
z = OM;_p, N7, for the shortest geodesic 7, from OM"™ to xz. Then y,z — x
as h - 0and y € OMyypy N D = Sy and z € OMy_p, N D = S;_p. So we have
x € S¢+NS;_ for an interior point = of D. Hence (Sy1\St— )U(S;—\Si+) C 0DNIM;.
Since |V(t+) — V(t—)| is the volume of (St+ \ St_) U (St_ \ St+) Cc oD N 8Mt,
Yoiep |V (t+) = V(t—)| is the volume of dD N, g OM;.

Since U, ¢ (0,p) 95w C 0D\ OM™ and 9D N ;e p OM; C 0D \ OM™, the sum of
the second and the third terms in the right hand side of ([2.I3) is smaller than or
equal to A(OD \ OM™). So we obtain that

n—2

Vo= v = (RERE e HE st ([ Vi)™
+ A(OD\ dM™)

< (R;R% +H;1;)Rn11(/otV(u)du)

+ A(OD) — A(OD N OM™).

(2.14)

Since A(OD NoM™) = V(0), we have

(2.15) V(t) < (R TRE Ly Rnl /V du + A(OD).

FIGURE 2. Singular point of V'
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_1_ _1_

1
Ifwelet Y = fg Vand /1 =R R+ ’H?’;:iRﬁ, then we obtain the following
differential inequality:

(2.16) Y’ — BY 1 < A(OD).

Assume that Y'(t) > 1 for t > tg. Then for ¢t > ¢y, we obtain the following linear
differential inequality:
Y' — BY < A(9D).

Then
Bi(R—to) _ 1
Y(R) < eﬂ—A((‘)D) + ¢fr(F—to)
1
BiR _ 1
< QTA(aD) L MR,
1

Otherwise, Y (¢) < 1 for any ¢ > 0. Since vol(D) < Y(R) and %A(@D)—i—eﬁl}% >
1, we obtain that

|
(2.17) vol(D) < e + A(0D) 3
1
1
If M™ is mean convex everywhere, then H,,_; =0 and 8 = R R. So
.
1 Rn—l R
= |
(2.18) vol(D) < eRi-t B 1 A(0D) ().
R IR

Remark 2.1. We can consider a functional inequality from our isoperimetric in-
equality. For a smooth function f: M™ — R, let Q(¢) = {z | |f(z)| > t}. By the
co-area formula and Cavalieri’s principle [Ch2], we have that

[floo
/ IV fldV = / A7 (1)),
M™ 0

/ fldV = / vol(Q(1)) .

Mn 0

Since 9Q(t) C |f|71(t) UOM™, we have A(Q(t)) < A(|f]71(t)) + A(OM™). Then
we obtain the following functional inequality from Theorem 1.1:

-1 it PYPIVT
(2.19) /w|f|dVg o /M"\Vf|dV+|f|oo( G A@M™) + ).

3. PROOF OF THEOREM 1.2

We use the same notation as in (1)), (Z2) and (Z4). We will follow a similar
procedure as in [Pal]. With an integral norm of Ricci curvature, we obtain the
following comparisons. Since w’ = hw, we have

d
S

Integrating the above for ¢, we obtain that

(3.1) w(r) —w(ry) < /T Ywds
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for 71 <r. Then we have for ro > rq,

(3.2) / ’ w(s)ds < (ro —r1)(w(ry) —I—/ : Ywds).
Let {v,(t) [t <t} ND = qu Yqlevj,, Bj,]- From (B.2)), we obtain that
Biq Biq
[ wtsras < (35, - g )wlay,) + [ v
(3.3) Yiq 5 AXjq
< R(w(ay,) + Ywds).

By 33), we have

Bjg
vol(D /a . Z / s)ds dvolypn
Biq
< R( /a . %:w(ajq)dvolam + /a o ; /a . Ywds dvolaMn>.

On the right hand side,
(3.5)

Biq Biq ﬁ
/ > / Ywds dvolgpm < ( / > / VPwds dvolaMn) vol(D)'~ 2
oM™ Jaq g oM™ Ja Qg

< ( /D yrav) ¥ ol(D) %

(3.4)

By [B.4), we have
vol(D) < R / E w(aj, )dvolgpm +
(D) ( omn (00) (

< r(A@D)+ (

. ¢2pdV) %vol(D) ——)
(3.6)

z/ﬂpdv) ﬁvol(l))l*%).

Mn

Now we estimate [ 1?? by using similar arguments as in [PW], [Pa2]. In [23),
multiplying ¥’ ~2w and integrating, we have

R R 2 R
(3.7) / PP 2wdt +/ w < / p?P 2wt
0 o n—1 0
By integration by parts, we obtain that
2p—2 Pt 1 f 2
P=2wdt > — — Pwdt.
/ VRt > —wl0) - oo [

Inserting into ([B.7]), we obtain that

(3.8) ( 1 / Y*Pwdt < / 2P 2wdt+w2p 1w(0)
‘ n—1 2p—1 o’ 1%
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Integrating on M™, then we have

Hop—1
2p —1

< Pdv%/ 2qV) v + :
([ pavyi([ wravyi s e

1 1
( - ) WAV < / 2P 2dV +
(3.9) n—1 2p—-1/ Jyn» n

If we let W = [ ., ¢*dV, then
H H
< 2P pl—r 2p—1y

If ¥ > ¢, then ¥ > eéllll_% and

1
W < Coln,p)*(e PREW +

If we let
€= 2”Co(n,p)2p7€p,

then Co(n,p)267%R§ = % So we have ¥ < QCo(n,p)Z?;;”_’ll. Consequently, we
obtain that
2 2 Hop—1
YPdV < max{e, 2Cy(n,p)  ——}
(3.10) M 21 2
< 2PCy(n, p)*PR, + ZC’O(n,p)QZ;%.

From ([B.6) and ([B.I0), we obtain that

1 — 1 1
A@D) = wvol(D) — (2Co(n, )R, +2Co(n, p)2;*2%)mol(mlw.
-

In order to obtain a linear isoperimetric inequality, we apply the same technique as
1 1
above. If vol(D) > ¢, then vol(D) > e2rvol(D)' 2 and

(3.11) A(OD) > %mw) — (2°Cy(n,p)*PR, + 2o (n, )2 TE2=1) 35 Fyol(D).

2p —1
If we let
€= (2R)2p(2pCO(n,p)2pRp + 2Co(n,p)2;{2%),
D —
then

1
A(OD) > ﬁvol(D).

Consequently, we obtain that

vol(D) < max{2RA(OD), e}

3.12 —
(3.12) < 2RA(OD) + (2R)*(2°Cy(n, p)**R, + 200(7%10)22 2”’1)-
D —
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4. ISOPERIMETRIC INEQUALITIES FOR METRIC-MEASURE SPACE

Let (M",g,e=fdV) be an n-dimensional metric-measure space with smooth
boundary. The Bakry—Emery Ricci tensor is Ricy = Ric + Hessf, and the weighted

mean curvature is hy = h—2 E Let dv = e=/dV and dyu; = e~ 7dvol,. In particular,

we denote djip by du. We define integral norms Ry, and Hy, as follows:

where py = max{ (—Rics(v,v))+ | |v| =1,v € TgN}.
We will prove the following theorems similarly as Theorems 1.1 and 1.2.

Theorem 4.1. If diam(M™) = R and |V f| < Ly, then for a domain D C M™ with
smooth boundary,

B2R _ 1
v(D) < PR 4 u(@D)ei,
B2

where By = et (’H]?nl 1R" T —l—R}‘nl 1R)

Theorem 4.2. If diam(M") = R and ([, |Vf|2pdl/)ﬁ < Ly, then for a domain
D C M™ with smooth boundary and 2p > n,

1
(4.1) (D) < R(M(ap) + (e + QCo(n,p)2%) ”V(D)l*ﬁ),
n,p 2 n,p)2 5 —
where € = (_ZCO(MI) L2+\/( S— L2)2+QC°(”’p)2RﬁP) 2p.

T
2Co(n,p)*RY ,

Proof of Theorem 4.1. We use similar notation as previously. Let du; = wyedp
similarly as in (2.I]) and

‘ 0 if t > tg.
Since h = hy + %, we have the following inequality from the Riccati equation:
AL LR s S 3
(4.3) Fon—1- ot ot n—1 n-1
Riey (2, 2y 2hy g1
= ar e a1

Recall that py = max{(—Rics(v,v))+ | |v]| =1, v € T;N}. Then

W 29|
(44) R
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Similarly as in the proof of Theorem 1.1, since %wf = hywy, we have

d — n— n—
R T N (T
oM, oM,

< / PR (0 — D)+ 6P dpg
oM,

(45) <=0 [ i 2 [V

; _1
< (n—l)( (U 1dut) (/ Pf(Q)n_ldﬂt> '
OM; OM,
+2L1/ " .
OM;y

We define Ry ,—1(t), Hfn—1(t) similarly as previously:

Rfn-1(t) = / p;ﬁfldu,
MM,

H o (t) = / By,
OM;
So we obtain that
1
=T n=2
(46) Hpuoa(t) < (0= 1)( /8 pr(@)" M) M (07 4 2L H g ().
M

Then we have

Hlp o1 (1) - ﬁ oL a1
(4.7) fm < (/ ps(a) 1dm) S H (1)
(TL — 1)7‘[f7n_1(t) n—1 OM; n

which implies that
1\’ 2L1 L 1 o
(48)  (Hpar®™7) = a7 < (| pp(a) )
OM,

Letting Y = Hﬁn_l(t)"_il, we have

2L A
(e Yy — ey - 2y <t (e )T
(4 9) n— OM;
: 1
< (/aM pf(q)”‘ldut) "
Hence
(4.10) e w Ny ()T <H}Ln1 1—|—R" T REET
so we obtain that
(4.11) My a(t)7T <e Z“R(an LRI R,

In the proof of Theorem 1.1, we use that

QA(St) = / diVSt (X)dVOlt
ot s,

hdvol; + / <X, U>d9(f)st.
St 851
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For the metric-measure space, we prove the following lemma:

Lemma 4.3. For the measures du; = e~/ dvol, and duss, = e_fdGast, we have
0
son(s) = [ hsdui+ [ (XU)duas.
ot Sy 85,
Proof. We have that

éut(st) = / LX(e_deOIt)
ot s

(4.12) = /S (divs, (X) — X[f])e 7 dvol,

- /S (divs, (X) — X[f])dpe.

where Lx is the Lie derivative. Since divg,(Z) = Z?:_ll (Ve Z,e;) for e; € TSy, we
have

(4.13) / divs, (e X)dvol, :/ (divs, (X) — XT[f])dpus,
St St
where X = 2 + (X, U)U and X7 = (X,U)U as we saw in Section 2. Since
X[f] - XT[f] Btf’ we obtain that
0 . _ 0
§,ut(5t) = /St leSt(e fX)dVOlt — s, a{d,ut

= - / (e=! X, H)dvol, + / (e X,U)dbss, — / ﬁdut
St oSt St ot

0
(4.14) = —/ (X, H)dp +/ (X,U)duss, — a{dut
St 9S St
0
~ [-Fhau+ [ 0o,
St 0S¢
= [ g+ [ U,

St 0S5y

which completes the proof of Lemma 4.3. O

Similarly as in the proof of Theorem 1.1, we obtain that

0
G0 < [ ydurt [ Xiduas,
St 0S¢

(4.15) 1 .
< Hpma (7T (S 5F 4 / X|dpos,.
0S5,

Since duss, = e*fdvolast and dugp = e~ Fdvolyp, we obtain from (@II)) that

(4.16) ulB) < € (Hflnl 1R o +R?n1 1R> (/Ot :ut(St)) .
+ pap(9D)

similarly as (ZI3]) in the proof of Theorem 1.1.
Now it remains only to follow the proof of Theorem 1 1 with (£I0)) instead of

[213), where we will use 5y = eﬂ = (’an an T —I—’an 1R) instead of 5;. 0O
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Proof of Theorem 4.2. We will follow the proof of Theorem 1.2. Since %wf < Yuwy,
we have

(4.17) /T2 wr(s)ds < (rg —r1)(wys(r) + /07“ Ywy)

T1

for 7o > r1. Multiplying ¢¥?’ 2wy in (@) and integrating, we have

R R ,pop
/ ’(//’(/sz_2wfdt+/ _1wf
0 0
R
S/ pf¢2p72wfdt+/ |vf‘w2p 1
0

Similarly as in ([B.8]), we obtain that

1 1 i 2 r 2p—2
— wpwdtg/ PP 2w edt
(n—l 2p—1>/0 ! . !

+L/R|Vf|w2p_1w dt+ Y (0)
n—1J, I Ty 1IN

(4.18)

(4.19)

Integrating on 9M™, we have

(ni 1 2p1— 1) / Y*rdy

2 H
S/ pwaP*QdV_Fﬁ |va}2p 1d1/+ f2p 1
Mn -

2p —1
(4.20)  <( /N ) phdv)7 ( /D V2Pdy) v

2 - B
h -1 2L2 2p—1 H 9p—1
< d 2pd 1 et / 2pd 5 ﬁ—p
_(/zw & V)p(/an T T
If we let ¥ = fM »?dy, then
1 2Ly g1 Hpope
If W >, then U > e% 0!~ % > 6%\1,1—% and
L 2L2 H 2p—1
R A T e

If

1
2olnp L \/ (30lurEe)2 4 20y (n,p)?R},

- n—1
e=(

1
then C’O(n,p)Q(e*%RJ‘E’p te 2L2) — 1. We obtain that

)

1
2Co(n,p)*R7},

Hf,prl }

/ ) Y?Pdv < max{e, 2Cy(n, p)? o1

(4.21)

Hryop—1
< 2C 2L
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Now we only need to follow the proof of Theorem 1.2. Then

(4.22) v(D) < R(u(0D) + (e + QCO(n,p)2%)2lpy(D)l2lp). -

REFERENCES

[BE] D. Bakry and Michel Emery, Diffusions hypercontractives (French), Séminaire de proba-
bilités, XIX, 1983/84, Lecture Notes in Math., vol. 1123, Springer, Berlin, 1985, pp. 177—
206, DOI 10.1007/BFb0075847. MRI889476

[B] Peter Buser, A note on the isoperimetric constant, Ann. Sci. Ecole Norm. Sup. (4) 15
(1982), no. 2, 213-230. MR683635

[Chl] Isaac Chavel, Riemannian geometry—a modern introduction, Cambridge Tracts in Math-
ematics, vol. 108, Cambridge University Press, Cambridge, 1993. MR1271141

[Ch2] Isaac Chavel, Isoperimetric inequalities, Differential geometric and analytic perspectives,
Cambridge Tracts in Mathematics, vol. 145, Cambridge University Press, Cambridge,
2001. MR1849187

[DWZ] X. Dai, G. Wei, and Z. Zhang, Local Sobolev constant estimate for integral Ricci curvature
bounds, arXiv:1601.0819 (2016).

[Ga] Sylvestre Gallot, Isoperimetric inequalities based on integral morms of Ricci curvature,
Astérisque 157-158 (1988), 191-216. Colloque Paul Lévy sur les Processus Stochastiques
(Palaiseau, 1987). MR976219

[GW] Gregory J. Galloway and Eric Woolgar, Cosmological singularities in Bakry—E'mery
spacetimes, J. Geom. Phys. 86 (2014), 359-369, DOI 10.1016/j.geomphys.2014.08.016.

MR3282334

[Ha] Kit Hanes, Isoperimetric inequalities for manifolds with boundary, J. Differential Geom-
etry 7 (1972), 525-534. MR0334081

[HS] David Hoffman and Joel Spruck, Sobolev and isoperimetric inequalities for Rie-

mannian submanifolds, Comm. Pure Appl. Math. 27 (1974), 715-727, DOI
10.1002/cpa.3160270601. MR0365424

[Hs] Chuan-chih Hsiung, Isoperimetric inequalities for two-dimensional Riemannian manifolds
with boundary, Ann. of Math. (2) 73 (1961), 213-220, DOI 10.2307/1970287. MR0130637
[L] John Lott, Some geometric properties of the Bakry-Emery-Ricci tensor, Comment. Math.

Helv. 78 (2003), no. 4, 865-883, DOI 10.1007/s00014-003-0775-8. MR2016700

[Pal] Seong-Hun Paeng, Buser’s isoperimetric inequalities with integral norms of Ricci curva-
ture, Proc. Amer. Math. Soc. 139 (2011), no. 8, 2903—2910, DOI 10.1090/S0002-9939-
2010-10725-6. MR2801631

[Pa2] Seong-Hun Paeng, Volumes and intrinsic diameters of hypersurfaces, J. Geom. Phys. 95
(2015), 96-107, DOI 10.1016/j.geomphys.2015.05.001. MR3357824

[PW] P. Petersen and G. Wei, Relative volume comparison with integral curvature bounds, Geom.
Funct. Anal. 7 (1997), no. 6, 1031-1045, DOI 10.1007/s000390050036. MR 1487753

R] William T'. Reid, The isoperimetric inequality and associated boundary problems, J. Math.
Mech. 8 (1959), 897-905. MR0130623

[WW] Guofang Wei and Will Wylie, Comparison geometry for the Bakry-Emery Ricci tensor,
J. Differential Geom. 83 (2009), no. 2, 377-405. MR2577473

DEPARTMENT OF MATHEMATICS, KONKUK UNIVERSITY, 1 HWAYANG-DONG, GWANGJIN-GU,
SEOUL 143-701, REPUBLIC OF KOREA
E-mail address: shpaeng@konkuk.ac.kr


http://www.ams.org/mathscinet-getitem?mr=889476
http://www.ams.org/mathscinet-getitem?mr=683635
http://www.ams.org/mathscinet-getitem?mr=1271141
http://www.ams.org/mathscinet-getitem?mr=1849187
http://www.ams.org/mathscinet-getitem?mr=976219
http://www.ams.org/mathscinet-getitem?mr=3282334
http://www.ams.org/mathscinet-getitem?mr=0334081
http://www.ams.org/mathscinet-getitem?mr=0365424
http://www.ams.org/mathscinet-getitem?mr=0130637
http://www.ams.org/mathscinet-getitem?mr=2016700
http://www.ams.org/mathscinet-getitem?mr=2801631
http://www.ams.org/mathscinet-getitem?mr=3357824
http://www.ams.org/mathscinet-getitem?mr=1487753
http://www.ams.org/mathscinet-getitem?mr=0130623
http://www.ams.org/mathscinet-getitem?mr=2577473

	1. Introduction
	2. Proof of Theorem 1.1
	3. Proof of Theorem 1.2
	4. Isoperimetric inequalities for metric-measure space
	References

