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ISOPERIMETRIC INEQUALITIES UNDER BOUNDED

INTEGRAL NORMS OF RICCI CURVATURE

AND MEAN CURVATURE

SEONG-HUN PAENG

(Communicated by Guofang Wei)

Abstract. We obtain isoperimetric inequalities under bounded integral norms
of Ricci curvature and mean curvature. Also we generalize the results to
metric-measure spaces.

1. Introduction

The classical isoperimetric inequality says that for a given bounded domain D
in R

n,

nnωnvol(D)n−1 ≤ A(∂D)n,

where ωn is the volume of a unit ball in R
n and A is (n− 1)-dimensional volume.

For an n-dimensional Riemannian manifold Mn, the ν-isoperimetric constant
Iν(M

n) is defined as follows:

(1.1) Iν(M
n) = inf

D⊂Mn

A(∂D)

vol(D)1−
1
ν

.

If Iν(M
n) > 0, then an isoperimetric inequality is induced. In the case of ν = ∞,

I∞(Mn) is Cheeger’s constant. If I∞(Mn) > 0, we obtain a linear isoperimetric
inequality.

In many cases, the isoperimetric inequalities for Riemannian manifolds are locally
obtained [Ch2]. For example, Croke’s inequality says that if r < 1

2 injMn , then

A(∂D) ≥ c(n)vol(D)
n−1
n

for D ⊂ B(p, r) and a constant c(n), where injMn is the injectivity radius of Mn

and B(p, r) is the r-ball centered at p. Buser’s inequality is a linear isoperimetric
inequality as follows: If RicMn ≥ −(n− 1)k for k ≥ 0, then there exists a constant
c(n, k, r) > 0 such that

min{vol(D1), vol(D2)} ≤ c(n, k, r)A(Γ)

for a dividing hypersurface Γ and open subsets D1, D2 ⊂ B(p, r) satisfying that
B(p, r) \ Γ = D1 ∪D2.
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Recently, there have been many attempts in Riemannian geometry to replace
curvature bounds with integral norms of curvatures. In [Ga], Gallot obtained an
isoperimetric inequality with an integral norm of Ricci curvature for a closed man-

ifold. He obtained a lower bound of A(∂Ω) with min{vol(Ω), vol(Mn \ Ω)}1− 1
p for

p > n under a condition on the integral norm of Ricci curvature. In [PW], Petersen
and Wei generalized the Bishop-Gromov volume comparison estimate with an inte-
gral norm of Ricci curvature. In [Pa1], local linear isoperimetric inequalities were
obtained with an integral norm of Ricci curvature by using a technique in [PW].
In [DWZ], the authors obtained a local isoperimetric inequality under a sufficiently
small integral norm of Ricci curvature.

In this paper, we will consider (nonlocal) isoperimetric inequalities for manifolds
with boundary. It should be noted that for manifolds with boundary, the mean
curvature of ∂Mn plays an essential role in isoperimetric inequality. For example,
let Mε = S2 −B(p, ε) and D = S2 −B(p, ε+ δ). Then the mean curvature of ∂Mε

diverges and A(∂D)

vol(D)1−
1
ν
→ 0 as ε, δ → 0. Hence Iν(Mε) → 0 as ε → 0.

There have been some studies on isoperimetric inequality for manifolds with
boundary. In 1959, Reid generalized the classical isoperimetric inequality to region
D in a surface in R

3 [R]. Precisely, suppose D ⊂ R
3 is a C2 image of a region in

the plane bounded by a simple closed curve. Let H be the mean curvature vector
on D and X be the position vector to D. If the origin is an arbitrary point on ∂D,
then

(1.2) Length(∂D)2 ≥ 4π
(
Area(D) +

∫
D

X ·H
)
.

In 1961, Hsiung [Hs] proved that the inequality proved by Reid still holds when
Mn is a 2-dimensional manifold imbedded in Euclidean space provided ∂Mn is
diffeomorphic to a circle. In 1972, Hanes [Ha] generalized the inequalities of Reid
and Hsiung to an n-dimensional manifold with boundary embedded in Euclidean
(n+ p)-space, where the boundary is not necessarily diffeomorphic to the sphere.

However, in an inequality such as (1.2), the mean curvature of ∂D is needed to
obtain an isoperimetric inequality for vol(D) and A(∂D). If Iν(M

n) > 0, then an
isoperimetric inequality is obtained for any domain D ⊂ Mn without conditions on
the mean curvature of ∂D. We will obtain isoperimetric inequalities for a domain
D in an n-dimensional Riemannian manifold Mn with boundary under bounded
integral norms of Ricci curvature of Mn and mean curvature of ∂Mn. We will not
use the mean curvature of ∂D.

We will use the following notation. Let Mn be an n-dimensional Riemannian
manifold with smooth boundary and D be a domain in Mn. Let h be the mean
curvature of ∂Mn with respect to the inward normal vector field. Let ρ(q) =
max{(−RicN (v, v))+ | |v| = 1, v ∈ TqM

n} and h+ = max{0, h}.
We define integral norms Rp and Hp as follows:

Rp =

∫
Mn

ρpdV,

Hp =

∫
∂Mn

hp
+dvol∂Mn ,

where dV is the volume form of Mn and dvol∂Mn is the volume form of ∂Mn

induced from the volume form of Mn.
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We will prove the following two isoperimetric inequalities with Rp and Hq for
Mn. Our isoperimetric inequalities are not local, so we do not assume any condi-
tions on the shape of Mn such as Mn = B(p, r). In the first theorem, p = q = n−1.
It is possible that ∂D ∩ ∂Mn 
= ∅. (For example, D = Mn.) Let diam(Mn) be the
diameter of Mn.

Theorem 1.1. Let Mn be an n-dimensional Riemannian manifold with smooth
boundary. If diam(Mn) = R, then for a domain D ⊂ Mn with smooth boundary,
we have

vol(D) ≤ eβ1R + A(∂D)
eβ1R − 1

β1
,

where β1 = R
1

n−1

n−1R+H
1

n−1

n−1R
1

n−1 .
If Mn is mean convex everywhere, then we have

vol(D) ≤ eR
1

n−1
n−1 R2

+A(∂D)(
eR

1
n−1
n−1 R2 − 1

R
1

n−1

n−1R
).

For p > n
2 , we obtain the following inequality with Rp and H2p−1:

Theorem 1.2. Let Mn be an n-dimensional Riemannian manifold with smooth
boundary. If diam(Mn) = R, then for a domain D ⊂ Mn with smooth boundary,
we have

A(∂D) ≥ 1

R
vol(D)− (2pC0(n, p)

2pRp + 2C0(n, p)
2H2p−1

2p− 1
)

1
2p vol(D)1−

1
2p

for 2p > n and C0(n, p) = ( 1
n−1 − 1

2p−1

)− 1
2 .

If Mn is mean convex everywhere, then we have

A(∂D) ≥ 1

R
vol(D)− (2pC0(n, p)

2pRp)
1
2p vol(D)1−

1
2p .

If we want a linear isoperimetric inequality from Theorem 1.2, we can modify
Theorem 1.2 as follows:

vol(D) ≤ 2RA(∂D) + (2R)2p(2pC0(n, p)
2pRp + 2C0(n, p)

2H2p−1

2p− 1
).

Although H2p−1 is used in Theorem 1.2 for 2p − 1 > n − 1, if RicMn ≥ 0 and
Mn is mean convex everywhere, then we obtain from Theorem 1.2 that

vol(D) ≤ RA(∂D)

since Rp = 0 and H2p−1 = 0. On the other hand, we obtain from Theorem 1.1 that

vol(D) ≤ RA(∂D) + 1.

Hence Theorem 1.2 could give a sharper upper bound for the volume in the case
of almost nonnegative Ricci curvature. In particular, if the boundary is a minimal
surface, we have Hq = 0. It is known that event horizons of black holes are minimal
surfaces which can be considered as the boundary of the universe. Then we can
apply the above theorems to estimate the volume of our universe with the area of
event horizons.

In the proof of Theorem 1.1, we estimate vol(D) by integrating the (n − 1)-
dimensional volume of St = {x ∈ D | d(x, ∂Mn) = t}. On the other hand,
in the proof of Theorem 1.2, we integrate the volume form along a geodesic γq
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from q ∈ ∂Mn and then integrate it on ∂Mn to estimate vol(D). Therefore, un-
like Theorem 1.2, an isoperimetric inequality can be obtained for St and Dt =
{x ∈ D | d(x, ∂Mn) ≤ t} in (2.15) in the proof of Theorem 1.1.

Current theories of physics postulate the presence of scalar fields in addition
to the metric [GW]. Hence, many results in Riemannian geometry have been gen-
eralized to the metric-measure space (Mn, g, e−fdV ) with the Bakry-Emery Ricci
tensor (for example, [L], [WW]). Bakry and Emery studied this tensor and its rela-
tionship to diffusion processes [BE]. Wei and Wylie obtained a volume comparison
and a mean curvature comparison in [WW]. In Section 4, we will extend our results
to metric-measure spaces by using integral norms of the Bakry-Emery Ricci tensor.

2. Proof of Theorem 1.1

We will use the following notation. Let

Mt = {x ∈ Mn | d(x, ∂Mn) ≥ t},

∂Mt = {x ∈ Mn | d(x, ∂Mn) = t}.
Let γq be the normal geodesic such that γq(0) = q and γ′

q(0) is perpendicular to
∂Mn for q ∈ ∂Mn. Let

tq = max{t | d(γq(t), ∂Mn) = t}.

Then we have

Mn =
⋃

q∈∂Mn

{γq(t) | t ≤ tq}.

Let g be the metric of Mn. We denote by gt the induced metric of ∂Mt from
g. Let dvolt be the volume form of ∂Mt induced from gt. Then the volume form
dvol∂Mn of ∂Mn is dvol0, and the volume form of Mn satisfies dV = dt∧ dvolt. By
identifying γq(t) ∈ ∂Mt with q ∈ ∂Mn for t ≤ tq, we define ω(t, q) and h(t, q) as
follows:

(2.1)
dvolt = ω(t, ·)dvol∂Mn ,

(⇔ dvolt|γt(q) = ω(t, q)F ∗dvol∂Mn |q),

where F is the projection from γq(t) to q, and

(2.2)
∂

∂t
ω(t, q) = h(t, q)ω(t, q),

where h is the mean curvature of ∂Mt. We abbreviate ω(t, q) and h(t, q) to ω(t)
and h(t), respectively. Then h satisfies the Riccati equation for t ≤ tq, so we have

(2.3) h′ +
h2

n− 1
≤ −Ric(

∂

∂t
,
∂

∂t
),

where ∂
∂t = γ′

q(t), which is the gradient of the distance function d(·, ∂Mn), so

| ∂∂t | = 1. Let

(2.4) ψ =

{
h+ if t ≤ tq,

0 if t > tq,
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and recall that ρ = max{(−Ric(v, v))+ | |v| = 1, v ∈ TqM
n}. Then

(2.5) ψ′ +
ψ2

n− 1
≤ ρ.

In order to obtain the integral norm of mean curvature on ∂Mt, we use similar ar-
guments as in [Pa2]. Since

∫
∂Mt

fdvolt=
∫
∂Mn fωdvol∂Mn , we have d

dt

∫
∂Mt

fdvolt=∫
∂Mt

(f ′ + fh)dvolt. From (2.5) and ψ ≥ 0, we have

(2.6)

d

dt

∫
∂Mt

ψn−1dvolt =

∫
∂Mt

((n− 1)ψn−2ψ′ + ψn−1h)dvolt

≤
∫
∂Mt

ψn−2((n− 1)ψ′ + ψ2)dvolt

≤ (n− 1)

∫
∂Mt

ψn−2ρ(q)dvolt.

Let

Rn−1(t) =

∫
Mn\Mt

ρn−1dV,

Hn−1(t) =

∫
∂Mt

hn−1
+ dvolt.

Then Hn−1 = Hn−1(0) and Rn−1 = Rn−1(R). Since we have∫
∂Mt

ψn−2ρ(q)dvolt ≤
(∫

∂Mt

ψn−1dvolt

)n−2
n−1

(∫
∂Mt

ρ(q)n−1dvolt

) 1
n−1

,

we obtain from (2.6) that

(2.7) H′
n−1(t) ≤ (n− 1)Hn−1(t)

n−2
n−1

(∫
∂Mt

ρ(q)n−1dvolt

) 1
n−1

.

Then

(2.8)
H′

n−1(t)

(n− 1)Hn−1(t)
n−2
n−1

≤
(∫

∂Mt

ρ(q)n−1dvolt

) 1
n−1

.

Integrating the above for t, we obtain that

(2.9)

Hn−1(t)
1

n−1 −Hn−1(0)
1

n−1 =

∫ t

0

H′
n−1(u)

(n− 1)Hn−1(u)
n−2
n−1

du

≤
∫ t

0

(∫
∂Mu

ρ(q)n−1dvolu

) 1
n−1

du

≤
(∫

Mn\Mt

ρ(q)n−1dV
) 1

n−1

t
n−2
n−1

= Rn−1(t)
1

n−1 t
n−2
n−1 .

Since t ≤ R, we obtain that

(2.10)
Hn−1(t)

1
n−1 ≤ Rn−1(t)

1
n−1 t

n−2
n−1 +Hn−1(0)

1
n−1

≤ R
1

n−1

n−1R
n−2
n−1 +H

1
n−1

n−1 .

Now we will use the following divergence theorem [HS]. Let

St = D ∩ ∂Mt.
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The divergence of X on St is defined as follows:

divSt
(X) = tr∇X =

n−1∑
i=1

〈∇eiX, ei〉

for an orthonormal basis {ei} on TSt, where ∇X : TSt → TMn is the map Y �→
∇Y X for a covariant differentiation ∇ on Mn. Then for a vector field X on St, we
have

(2.11)

∫
St

divSt
(X)dvolt = −

∫
St

〈X,H〉dvolt +
∫
∂St

〈X,U〉dθ∂St
,

where H is the mean curvature vector field of St, U is the outward normal vector
field on ∂St which is tangent to St, and dθ∂St

is the volume form of ∂St. (See
Figure 1.) Let X be a variational vector field of variation St. Then the projection
of X to the normal direction to St is

∂
∂t . We may assume that X is normal to ∂St;

i.e. we may consider 〈X, ∂
∂t 〉

∂
∂t + 〈X,U〉U = ∂

∂t + 〈X,U〉U instead of X.

Figure 1. Variation vector field X of St

Let V (t) = A(St) =
∫
St

dvolt. Since

∂

∂t
A(St) =

∫
St

divSt
(X)dvolt,

we obtain from (2.10) that

(2.12)

V ′(t) =

∫
St

hdvolt +

∫
∂St

〈X,U〉dθ∂St

≤
(∫

St

ψn−1dvolt

) 1
n−1

(∫
St

dvolt

)n−2
n−1

+

∫
∂St

|X|dθ∂St

≤ Hn−1(t)
1

n−1V (t)
n−2
n−1 +

∫
∂St

|X|dθ∂St

by (2.11) and H = −tr∇ ∂
∂t = −h ∂

∂t .
If ∂D is transversal to ∂Mt, then |X| < ∞ and V ′(t) < ∞. Hence if ∂D is

transversal to ∂Mt for any t ∈ (0, R), then dvol∂D = |X|dθ∂St
dt since X⊥∂St,

where dvol∂D is the volume form of ∂D. Then by integrating (2.12), we obtain
(2.15). Even if ∂D is not transversal to ∂Mt, we can obtain (2.15) as follows.
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Let B = {t ∈ (0, R) | V ′(t) = ∞} and (0, R) \ B =
⋃

j Ij for open intervals Ij .

Integrating (2.12) over t, we have that

(2.13)

V (t)− V (0) ≤
∫ t

0

Hn−1(u)
1

n−1V (u)
n−2
n−1 du+

∑
j

∫
Ij

∫
∂Su

|X|dθ∂Su
du

+
∑
t∈B

V (t+)− V (t−),

where V (t+) = limh→0+ V (t+ h) and V (t−) = limh→0+ V (t− h).
The second term

∑
j

∫
Ij

∫
∂Su

|X|dθ∂Su
du of the right hand side is the volume

of ∂D \
⋃

t∈B∪{0} ∂Mt since dvol∂D = |X|dθ∂St
dt. For the third term, let St+ =

limh→0+ St+h ⊂ ∂Mt and St− = limh→0+ St−h ⊂ ∂Mt for t ∈ B. (See Figure 2.)
Let x ∈ ∂Mt be an interior point of D. If y ∈ B(x, h) ∩ Mt, then y ∈ ∂Mt+h′

for 0 ≤ h′ ≤ h. (Recall that Mt = {x ∈ Mn | d(x, ∂Mn) ≥ t}.) Also we let
z = ∂Mt−h ∩ γx for the shortest geodesic γx from ∂Mn to x. Then y, z → x
as h → 0 and y ∈ ∂Mt+h′ ∩ D = St+h′ and z ∈ ∂Mt−h ∩ D = St−h. So we have
x ∈ St+∩St− for an interior point x ofD. Hence (St+\St−)∪(St−\St+) ⊂ ∂D∩∂Mt.
Since |V (t+) − V (t−)| is the volume of (St+ \ St−) ∪ (St− \ St+) ⊂ ∂D ∩ ∂Mt,∑

t∈B |V (t+)− V (t−)| is the volume of ∂D ∩
⋃

t∈B ∂Mt.
Since

⋃
u∈(0,R) ∂Su ⊂ ∂D \ ∂Mn and ∂D ∩

⋃
t∈B ∂Mt ⊂ ∂D \ ∂Mn, the sum of

the second and the third terms in the right hand side of (2.13) is smaller than or
equal to A(∂D \ ∂Mn). So we obtain that

(2.14)

V (t)− V (0) ≤
(
R

1
n−1

n−1R
n−2
n−1 +H

1
n−1

n−1

)
R

1
n−1

(∫ t

0

V (u)du
)n−2

n−1

+A(∂D \ ∂Mn)

≤
(
R

1
n−1

n−1R
n−2
n−1 +H

1
n−1

n−1

)
R

1
n−1

(∫ t

0

V (u)du
)n−2

n−1

+A(∂D)−A(∂D ∩ ∂Mn).

Since A(∂D ∩ ∂Mn) = V (0), we have

(2.15) V (t) ≤
(
R

1
n−1

n−1R
n−2
n−1 +H

1
n−1

n−1

)
R

1
n−1

(∫ t

0

V (u)du
)n−2

n−1

+A(∂D).

Figure 2. Singular point of V ′
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If we let Y =
∫ t

0
V and β1 = R

1
n−1

n−1R+H
1

n−1

n−1R
1

n−1 , then we obtain the following
differential inequality:

(2.16) Y ′ − β1Y
n−2
n−1 ≤ A(∂D).

Assume that Y (t) ≥ 1 for t ≥ t0. Then for t ≥ t0, we obtain the following linear
differential inequality:

Y ′ − β1Y ≤ A(∂D).

Then

Y (R) ≤ eβ1(R−t0) − 1

β1
A(∂D) + eβ1(R−t0)

≤ eβ1R − 1

β1
A(∂D) + eβ1R.

Otherwise, Y (t) ≤ 1 for any t > 0. Since vol(D) ≤ Y (R) and eβ1R−1
β1

A(∂D)+eβ1R ≥
1, we obtain that

(2.17) vol(D) ≤ eβ1R + A(∂D)
eβ1R − 1

β1
.

If Mn is mean convex everywhere, then Hn−1 = 0 and β1 = R
1

n−1

n−1R. So

(2.18) vol(D) ≤ eR
1

n−1
n−1 R2

+A(∂D)(
eR

1
n−1
n−1 R2 − 1

R
1

n−1

n−1R
).

Remark 2.1. We can consider a functional inequality from our isoperimetric in-
equality. For a smooth function f : Mn → R, let Ω(t) = {x | |f(x)| > t}. By the
co-area formula and Cavalieri’s principle [Ch2], we have that∫

Mn

|∇f |dV =

∫ |f |∞

0

A(|f |−1(t))dt,

∫
Mn

|f |dV =

∫ |f |∞

0

vol(Ω(t))dt.

Since ∂Ω(t) ⊂ |f |−1(t) ∪ ∂Mn, we have A(∂Ω(t)) ≤ A(|f |−1(t)) + A(∂Mn). Then
we obtain the following functional inequality from Theorem 1.1:

(2.19)

∫
Mn

|f |dV ≤ eβ1R − 1

β1

∫
Mn

|∇f |dV + |f |∞
(eβ1R − 1

β1
A(∂Mn) + eβ1R

)
.

3. Proof of Theorem 1.2

We use the same notation as in (2.1), (2.2) and (2.4). We will follow a similar
procedure as in [Pa1]. With an integral norm of Ricci curvature, we obtain the
following comparisons. Since ω′ = hω, we have

d

dt
ω ≤ ψω.

Integrating the above for t, we obtain that

(3.1) ω(r)− ω(r1) ≤
∫ r

r1

ψωds
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for r1 ≤ r. Then we have for r2 > r1,

(3.2)

∫ r2

r1

ω(s)ds ≤ (r2 − r1)(ω(r1) +

∫ r2

r1

ψωds).

Let {γq(t) | t ≤ tq} ∩D =
⋃

jq
γq[αjq , βjq ]. From (3.2), we obtain that

(3.3)

∫ βjq

αjq

ω(s)ds ≤ (βjq − αjq )(ω(αjq ) +

∫ βjq

αjq

ψωds)

≤ R(ω(αjq ) +

∫ βjq

αjq

ψωds).

By (3.3), we have

(3.4)

vol(D) =

∫
∂Mn

∑
jq

∫ βjq

αjq

ω(s)ds dvol∂Mn

≤ R
(∫

∂Mn

∑
jq

ω(αjq )dvol∂Mn +

∫
∂Mn

∑
jq

∫ βjq

αjq

ψωds dvol∂Mn

)
.

On the right hand side,
(3.5)∫

∂Mn

∑
jq

∫ βjq

αjq

ψωds dvol∂Mn ≤
(∫

∂Mn

∑
jq

∫ βjq

αjq

ψ2pωds dvol∂Mn

) 1
2p

vol(D)1−
1
2p

≤
(∫

D

ψ2pdV
) 1

2p

vol(D)1−
1
2p .

By (3.4), we have

(3.6)

vol(D) ≤ R
(∫

∂Mn

∑
jq

ω(αjq )dvol∂Mn +
(∫

Mn

ψ2pdV
) 1

2p

vol(D)1−
1
2p

)

≤ R
(
A(∂D) +

(∫
Mn

ψ2pdV
) 1

2p

vol(D)1−
1
2p

)
.

Now we estimate
∫
ψ2p by using similar arguments as in [PW], [Pa2]. In (2.5),

multiplying ψ2p−2ω and integrating, we have

(3.7)

∫ R

0

ψ′ψ2p−2ωdt+

∫ R

0

ψ2p

n− 1
ω ≤

∫ R

0

ρψ2p−2ωdt.

By integration by parts, we obtain that∫ R

0

ψ′ψ2p−2ωdt ≥ − ψ2p−1

2p− 1
ω(0)− 1

2p− 1

∫ R

0

ψ2pωdt.

Inserting into (3.7), we obtain that

(3.8)
( 1

n− 1
− 1

2p− 1

)∫ R

0

ψ2pωdt ≤
∫ R

0

ρψ2p−2ωdt+
ψ2p−1

2p− 1
ω(0).
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Integrating on ∂Mn, then we have

(3.9)

( 1

n− 1
− 1

2p− 1

)∫
Mn

ψ2pdV ≤
∫
Mn

ρψ2p−2dV +
H2p−1

2p− 1

≤ (

∫
Mn

ρpdV )
1
p (

∫
Mn

ψ2pdV )1−
1
p +

H2p−1

2p− 1
.

If we let Ψ =
∫
Mn ψ2pdV , then

Ψ ≤ C0(n, p)
2(R

1
p
p Ψ

1− 1
p +

H2p−1

2p− 1
).

If Ψ ≥ ε, then Ψ ≥ ε
1
pΨ1− 1

p and

Ψ ≤ C0(n, p)
2(ε−

1
pR

1
p
p Ψ+

H2p−1

2p− 1
).

If we let

ε = 2pC0(n, p)
2pRp,

then C0(n, p)
2ε−

1
pR

1
p
p = 1

2 . So we have Ψ ≤ 2C0(n, p)
2H2p−1

2p−1 . Consequently, we

obtain that

(3.10)

∫
Mn

ψ2pdV ≤ max{ε, 2C0(n, p)
2H2p−1

2p− 1
}

≤ 2pC0(n, p)
2pRp + 2C0(n, p)

2H2p−1

2p− 1
.

From (3.6) and (3.10), we obtain that

A(∂D) ≥ 1

R
vol(D)− (2pC0(n, p)

2pRp + 2C0(n, p)
2H2p−1

2p− 1
)

1
2p vol(D)1−

1
2p .

In order to obtain a linear isoperimetric inequality, we apply the same technique as

above. If vol(D) ≥ ε, then vol(D) ≥ ε
1
2p vol(D)1−

1
2p and

(3.11) A(∂D) ≥ 1

R
vol(D)− (2pC0(n, p)

2pRp + 2C0(n, p)
2H2p−1

2p− 1
)

1
2p ε−

1
2p vol(D).

If we let

ε = (2R)2p(2pC0(n, p)
2pRp + 2C0(n, p)

2H2p−1

2p− 1
),

then

A(∂D) ≥ 1

2R
vol(D).

Consequently, we obtain that

(3.12)

vol(D) ≤ max{2RA(∂D), ε}

≤ 2RA(∂D) + (2R)2p(2pC0(n, p)
2pRp + 2C0(n, p)

2H2p−1

2p− 1
).
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4. Isoperimetric inequalities for metric-measure space

Let (Mn, g, e−fdV ) be an n-dimensional metric-measure space with smooth
boundary. The Bakry-Emery Ricci tensor is Ricf = Ric+Hessf , and the weighted

mean curvature is hf = h− ∂f
∂t . Let dν = e−fdV and dμt = e−fdvolt. In particular,

we denote dμ0 by dμ. We define integral norms Rf,p and Hf,p as follows:

Rf,p =

∫
Mn

ρpfdν,

Hf,p =

∫
Mn

(hf )
p
+dμ

where ρf = max{ (−Ricf (v, v))+ | |v| = 1, v ∈ TqN}.
We will prove the following theorems similarly as Theorems 1.1 and 1.2.

Theorem 4.1. If diam(Mn) = R and |∇f | ≤ L1, then for a domain D ⊂ Mn with
smooth boundary,

ν(D) ≤ eβ2R + μ(∂D)
eβ2R − 1

β2
,

where β2 = e
2L1
n−1R

(
H

1
n−1

f,n−1R
1

n−1 +R
1

n−1

f,n−1R
)
.

Theorem 4.2. If diam(Mn) = R and (
∫
Mn |∇f |2pdν) 1

2p ≤ L2, then for a domain
D ⊂ Mn with smooth boundary and 2p > n,

(4.1) ν(D) ≤ R
(
μ(∂D) +

(
ε+ 2C0(n, p)

2Hf,2p−1

2p− 1

) 1
2p

ν(D)1−
1
2p

)
,

where ε =
(− 2C0(n,p)2L2

n−1 +

√
(
2C0(n,p)2L2

n−1 )2+2C0(n,p)2R
1
p
f,p

2C0(n,p)2R
1
p
f,p

)−2p

.

Proof of Theorem 4.1. We use similar notation as previously. Let dμt = ωfdμ
similarly as in (2.1) and

(4.2) ψ =

{
(hf )+ if t ≤ tq,

0 if t > tq.

Since h = hf + ∂f
∂t , we have the following inequality from the Riccati equation:

(4.3)
h′
f +

h2
f

n− 1
≤ −Ricf (

∂

∂t
,
∂

∂t
)−

2hf
∂f
∂t

n− 1
−

(∂f∂t )
2

n− 1

≤ −Ricf (
∂

∂t
,
∂

∂t
)−

2hf
∂f
∂t

n− 1
.

Recall that ρf = max{(−Ricf (v, v))+ | |v| = 1, v ∈ TqN}. Then

(4.4) ψ′ +
ψ2

n− 1
≤ ρf +

2|∇f |
n− 1

ψ.
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Similarly as in the proof of Theorem 1.1, since ∂
∂tωf = hfωf , we have

(4.5)

d

dt

∫
∂Mt

ψn−1dμt =

∫
∂Mt

((n− 1)ψn−2ψ′ + ψn−1hf )dμt

≤
∫
∂Mt

ψn−2((n− 1)ψ′ + ψ2)dμt

≤ (n− 1)

∫
∂Mt

ψn−2ρf (q)dμt + 2

∫
∂Mt

|∇f |ψn−1dμt

≤ (n− 1)
(∫

∂Mt

ψn−1dμt

)n−2
n−1

(∫
∂Mt

ρf (q)
n−1dμt

) 1
n−1

+ 2L1

∫
∂Mt

ψn−1dμt.

We define Rf,n−1(t),Hf,n−1(t) similarly as previously:

Rf,n−1(t) =

∫
Mn\Mt

ρn−1
f dν,

Hf,n−1(t) =

∫
∂Mt

hn−1
+ dμt.

So we obtain that

(4.6) H′
f,n−1(t) ≤ (n− 1)

(∫
∂Mt

ρf (q)
n−1dμt

) 1
n−1Hf,n−1(t)

n−2
n−1 + 2L1Hf,n−1(t).

Then we have

(4.7)
H′

f,n−1(t)

(n− 1)Hf,n−1(t)
n−2
n−1

≤
(∫

∂Mt

ρf (q)
n−1dμt

) 1
n−1

+
2L1

n− 1
Hf,n−1(t)

1
n−1 ,

which implies that

(4.8)
(
Hf,n−1(t)

1
n−1

)′
− 2L1

n− 1
Hf,n−1(t)

1
n−1 ≤

(∫
∂Mt

ρf (q)
n−1dμt

) 1
n−1

.

Letting Y = Hf,n−1(t)
1

n−1 , we have

(4.9)

(e−
2L1
n−1 tY )′ = e−

2L1
n−1 t(Y ′ − 2L1

n− 1
Y ) ≤ e−

2L1
n−1 t

(∫
∂Mt

ρf (q)
n−1dμt

) 1
n−1

≤
(∫

∂Mt

ρf (q)
n−1dμt

) 1
n−1

.

Hence

(4.10) e−
2L1
n−1 tHf,n−1(t)

1
n−1 ≤ H

1
n−1

f,n−1 +R
1

n−1

f,n−1R
n−2
n−1 ,

so we obtain that

(4.11) Hf,n−1(t)
1

n−1 ≤ e
2L1
n−1R

(
H

1
n−1

f,n−1 +R
1

n−1

f,n−1R
n−2
n−1

)
.

In the proof of Theorem 1.1, we use that

∂

∂t
A(St) =

∫
St

divSt
(X)dvolt

=

∫
St

hdvolt +

∫
∂St

〈X,U〉dθ∂St
.
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For the metric-measure space, we prove the following lemma:

Lemma 4.3. For the measures dμt = e−fdvolt and dμ∂St
= e−fdθ∂St

, we have

∂

∂t
μt(St) =

∫
St

hfdμt +

∫
∂St

〈X,U〉dμ∂St
.

Proof. We have that

(4.12)

∂

∂t
μt(St) =

∫
St

LX(e−fdvolt)

=

∫
St

(divSt
(X)−X[f ])e−fdvolt

=

∫
St

(divSt
(X)−X[f ])dμt,

where LX is the Lie derivative. Since divSt
(Z) =

∑n−1
i=1 〈∇eiZ, ei〉 for ei ∈ TSt, we

have

(4.13)

∫
St

divSt
(e−fX)dvolt =

∫
St

(divSt
(X)−XT [f ])dμt,

where X = ∂
∂t + 〈X,U〉U and XT = 〈X,U〉U as we saw in Section 2. Since

X[f ]−XT [f ] = ∂
∂tf , we obtain that

(4.14)

∂

∂t
μt(St) =

∫
St

divSt
(e−fX)dvolt −

∫
St

∂f

∂t
dμt

= −
∫
St

〈e−fX,H〉dvolt +
∫
∂St

〈e−fX,U〉dθ∂St
−
∫
St

∂f

∂t
dμt

= −
∫
St

〈X,H〉dμt +

∫
∂St

〈X,U〉dμ∂St
−
∫
St

∂f

∂t
dμt

=

∫
St

(h− ∂f

∂t
)dμt +

∫
∂St

〈X,U〉dμ∂St

=

∫
St

hfdμt +

∫
∂St

〈X,U〉dμ∂St
,

which completes the proof of Lemma 4.3. �

Similarly as in the proof of Theorem 1.1, we obtain that

(4.15)

∂

∂t
μt(St) ≤

∫
St

hfdμt +

∫
∂St

|X|dμ∂St

≤ Hf,n−1(t)
1

n−1μt(St)
n−2
n−1 +

∫
∂St

|X|dμ∂St
.

Since dμ∂St
= e−fdvol∂St

and dμ∂D = e−fdvol∂D, we obtain from (4.11) that

(4.16)
μt(St) ≤ e

2L1
n−1R

(
H

1
n−1

f,n−1R
1

n−1 +R
1

n−1

f,n−1R
)(∫ t

0

μt(St)
)n−2

n−1

+ μ∂D(∂D)

similarly as (2.15) in the proof of Theorem 1.1.
Now it remains only to follow the proof of Theorem 1.1 with (4.16) instead of

(2.13), where we will use β2 = e
2L1
n−1R

(
H

1
n−1

f,n−1R
1

n−1 +R
1

n−1

f,n−1R
)
instead of β1. �
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Proof of Theorem 4.2. We will follow the proof of Theorem 1.2. Since d
dsωf ≤ ψωf ,

we have

(4.17)

∫ r2

r1

ωf (s)ds ≤ (r2 − r1)(ωf (r1) +

∫ r

0

ψωf )

for r2 > r1. Multiplying ψ2p−2ωf in (4.4) and integrating, we have

(4.18)

∫ R

0

ψ′ψ2p−2ωfdt+

∫ R

0

ψ2p

n− 1
ωf

≤
∫ R

0

ρfψ
2p−2ωfdt+

∫ R

0

2|∇f |
n− 1

ψ2p−1ωfdt.

Similarly as in (3.8), we obtain that

(4.19)

( 1

n− 1
− 1

2p− 1

)∫ R

0

ψ2pωfdt ≤
∫ R

0

ρfψ
2p−2ωfdt

+
2

n− 1

∫ R

0

|∇f |ψ2p−1ωfdt+
ψ2p−1

2p− 1
ωf (0).

Integrating on ∂Mn, we have

(4.20)

( 1

n− 1
− 1

2p− 1

)∫
Mn

ψ2pdν

≤
∫
Mn

ρfψ
2p−2dν +

2

n− 1

∫
Mn

|∇f |ψ2p−1dν +
Hf,2p−1

2p− 1

≤ (

∫
Mn

ρpfdν)
1
p (

∫
DT

ψ2pdν)1−
1
p

+
2

n− 1
(

∫
Mn

|∇f |2pdν) 1
2p (

∫
Mn

ψ2pdν)
2p−1
2p +

Hf,2p−1

2p− 1

≤ (

∫
Mn

ρpfdν)
1
p (

∫
Mn

ψ2pdν)1−
1
p +

2L2

n− 1
(

∫
Mn

ψ2pdν)
2p−1
2p +

Hf,2p−1

2p− 1
.

If we let Ψ =
∫
Mn ψ2pdν, then

Ψ ≤ C0(n, p)
2(R

1
p

f,pΨ
1− 1

p +
2L2

n− 1
Ψ1− 1

2p +
Hf,2p−1

2p− 1
).

If Ψ ≥ ε, then Ψ ≥ ε
1
2pΨ1− 1

2p ≥ ε
1
pΨ1− 1

p and

Ψ ≤ C0(n, p)
2(ε−

1
pR

1
p

f,pΨ+ ε−
1
2p

2L2

n− 1
Ψ +

Hf,2p−1

2p− 1
).

If

ε =
(− 2C0(n,p)

2L
n−1 +

√
( 2C0(n,p)2L2

n−1 )2 + 2C0(n, p)2R
1
p

f,p

2C0(n, p)2R
1
p

f,p

)−2p

,

then C0(n, p)
2(ε−

1
pR

1
p

f,p + ε−
1
2p 2L2

n−1 ) =
1
2 . We obtain that

(4.21)

∫
Mn

ψ2pdν ≤ max{ε, 2C0(n, p)
2Hf,2p−1

2p− 1
}

≤ ε+ 2C0(n, p)
2Hf,2p−1

2p− 1
.
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Now we only need to follow the proof of Theorem 1.2. Then

�(4.22) ν(D) ≤ R
(
μ(∂D) +

(
ε+ 2C0(n, p)

2Hf,2p−1

2p− 1

) 1
2p

ν(D)1−
1
2p

)
.
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