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LEFSCHETZ PROPERTIES FOR ARTINIAN GORENSTEIN

ALGEBRAS PRESENTED BY QUADRICS

RODRIGO GONDIM AND GIUSEPPE ZAPPALÀ

(Communicated by Irena Peeva)

Abstract. We introduce a family of Artinian Gorenstein algebras, whose
combinatorial structure characterizes the ones presented by quadrics. Under
certain hypotheses these algebras have non-unimodal Hilbert vector. In par-
ticular we provide families of counterexamples to the conjecture that Artinian

Gorenstein algebras presented by quadrics should satisfy the weak Lefschetz
property.

1. Introduction

It is very useful in algebraic geometry and in commutative algebra to produce
geometric or algebraic objects from combinatoric ones. Toric varieties ([CLS]) and
toric ideals ([Stu]) are the more stablished of these associations. We can also cite
tropical varieties ([S]), Stanley-Reisner theory ([St,St2]), Artinian algebras given by
posets ([HMMNWW]), as incarnations of this fruitful interaction among algebra,
geometry and combinatorics. In this paper we propose a new construction in this
direction, associating simplicial complexes to certain Bigraded Artinian Gorenstein
algebras.

The combinatoric structure of the simplicial complex, in our association, char-
acterizes the algebras presented by quadrics. To be more precise, it determines the
quotient algebra and its ideal on a natural embedding. In particular, the Hilbert
vector of such Artinian algebra is determined by the face vector of the complex.
In this way we construct a concrete family of algebras presented by quadrics and
whose Hilbert vector is non-unimodal. These algebras provide counterexamples for
two conjectures posed in [MN1,MN2].

The kind of algebra we introduce is closely related to Stanley-Reisner theory
([St, St2]). The starting point of both constructions is a homogeneous simplicial
complex with m ≥ 2 vertices and dimension d− 1 ≥ 1, associated to a set of square
free monomials in m variables of degree d. Each monomial represents a facet of
the simplicial complex. The very distinct point of view is that our construction is
also related to Nagata’s idealization ([HMMNWW]). This point of view is related
to the vanishing of Hessian determinant (see [Go,GRu,CRS,MW]).
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A standard graded K-algebra is said to be presented by quadrics if it is isomor-
phic to the quotient of a polynomial ring over K by a homogeneous ideal generated
by quadratic forms. Also called quadratic algebras, they are related to Koszul al-
gebras and Gröbner basis (see for instance [Co]). From a more geometric point of
view quadratic ideals appear as homogeneous ideals of very positive embeddings of
any smooth projective varieties. As pointed out in [MN2], Artinian Gorenstein al-
gebras presented by quadrics are also related to Eisenbud-Green-Harris conjectures
motivated by the Cayley-Bacharach theorem ([EGH]).

The Lefschetz properties, on the other side, have attracted a great deal of atten-
tion over the years of research in different subjects including commutative algebra,
algebraic geometry and combinatorics; see [St,St2,MN1,HMMNWW,HMNW]. The
present work lies in the border of these three areas.

In [MN2], the authors studied Artinian Gorenstein algebras presented by
quadrics. They provided some constructions of such algebras and described their
possible Hilbert vectors in low codimension. In [MN1] and [MN2] the authors pro-
posed two conjectures.

Conjecture 1.1 (Migliore-Nagel injective conjecture). For any Artinian Goren-
stein algebra of socle degree at least three, presented by quadrics, defined over a
field K of characteristic zero there exists L ∈ A1, such that, the multiplication map
•L : A1 → A2 is injective.

Conjecture 1.2 (Migliore-Nagel WLP conjecture). Any Artinian Gorenstein al-
gebra presented by quadrics, over a field K of characteristic zero, has the Weak Lef-
schetz Property, that is, there exists L ∈ A1 such that all the maps •L : Ai → Ai+1

have maximal rank.

In [MN2] the authors proved the WLP conjecture for complete intersection of
quadratic forms and presented computational evidence for the conjectures in low
codimension. We want to stress the fact that as soon as the codimension increases
with respect to the socle degree surprising phenomena begin to appear. For in-
stance, in codimension ≤ 2 every Artinian algebra has the strong Lefschetz prop-
erty (see [HMNW]) and in codimension ≤ 3 every Artinian Gorenetein algebra
has unimodal Hilbert vector (see [St3]). On the contrary, in high codimension the
Hilbert vector of an Artinian Gorensten algebra does not need to be unimodal. In
[BL], the authors studied Artinian Gorenstein algebras whose Hilbert vector are
non-unimodal. They appear in codimension ≥ 5.

We recall that the Lefschetz properties for standard graded Artinian K-algebras
are algebraic abstractions motivated by the Hard Lefschetz Theorem on the coho-
mology rings of smooth complex projective varieties; see for instance the survey [La]
for the theorem and [Ru] for an overview. The Poincaré duality for these cohomol-
ogy rings inspired the definition of Poincaré duality algebras which, in this context,
is equivalent to the Gorenstein hypothesis (see [MW] and [Ru]). In [Wa2] and
[MW] the authors used Macaulay-Matlis duality in characteristic zero to present
the Artinian Gorenstein algebra as A = Q/AnnQ(f) where f ∈ R = K[x1, . . . , xn]
a polynomial ring and Q = K[X1, . . . , XN ] the associated ring of differential oper-
ators.

Our strategy to construct standard graded Artinian Gorenstein algebras pre-
sented by quadrics is to deal with the simplest ones, which are those whose defining
ideal contains the complete intersection (x2

1, . . . , x
2
n). This assumption forces all
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monomials that occur in f to be square free. As a matter of fact we deal with biho-
mogeneous forms of bidegree (1, d−1) of special type, here called of monomial square
free type (see Definition 2.8). We associate to any bihomogeneous form of monomial
square free type, bijectively, a pure simplicial complex whose combinatoric struc-
ture determines a set of generators of the annihilator ideal; see Theorem 3.2. This
combinatorial object also characterizes the associated algebra presented by quadrics
(see Theorem 3.5, which summarizes the main results of the work). Inspired by the
famous Turan’s graph theorem (see [Tu]) that characterizes maximal graphs not
containing a complete subgraph Kl, we introduce a simplicial complex, here called
the Turan complex, whose associated algebra is always presented by quadrics and
such that, in very large codimension with respect to the socle degree, the Hilbert
vector of A is totally non-unimodal, that is, dimA1 > dimA2 > . . . > dimA� d

2 �
.

We now describe the contents of the paper in more detail. In the first section we
recall the basic definitions and constructions of standard graded Artinian Goren-
stein algebras. We deal also with the bigraded case which is of particular interest.
We recall the Lefschetz properties and Macaulay-Matlis duality.

The second section is devoted to the main results and constructions. Theorem
3.2 describes the annihilator of a standard bigraded form of bidegree (1, d − 1) of
monomial square free type, showing that it is a binomial ideal whose generators
are determined by the combinatoric of the associated simplicial complex. Theorem
3.2, Theorem 3.5 and Corollary 3.8 are the main results. Theorem 3.5 characterizes
when such algebras are presented by quadrics. We introduce the Turan complex and
in Corollary 3.8, we produce counterexamples to both Migliore-Nagel conjectures
in any socle degree d ≥ 4 and sufficient large codimension. It is surprising that if
the codimension is very large with respect to the socle degree, the Hilbert vector of
Turan algebras, that are quadratic and binomial, is totally non-unimodal. In fact
monomial and closely related ideals, in characteristic zero, are expected to have the
Weak Lefschetz Property (see [MMN]).

2. Combinatorics, Lefschetz properties

and Macaulay-Matlis duality

2.1. Combinatorics.

Definition 2.1. Let V = {u1, . . . , um} be a finite set. A simplicial complex Δ
with vertex set V is a collection of subsets of V , i.e. a subset of the power set 2V ,
such that for all A ∈ Δ and for all subset B ⊆ A we have B ∈ Δ. The members
of Δ referred to as faces and maximal faces (with respect to the inclusion) are the
facets. If A ∈ Δ and |A| = k, it is called a (k−1)-face, or a face of dimension k−1.
If all the facets have the same dimension d the complex is said to be homogeneous
of (pure) dimension d. We say that Δ is a simplex if Δ = 2V .

In our context we identify the faces of a simplicial complex with monomials in
the variables {u1, . . . , um}. Let K be any field and let R = K[u1, . . . , um] be the
polynomial ring. To any finite subset F ⊂ {u1, . . . , um} we associate the monomial

mF =
∏
ui∈F

ui. In this way there is a natural bijection between the simplicial

complex Δ and the set of the monomials mF , where F a facet of Δ.

2.2. The Lefschetz properties. Let K be an infinite field and R = K[x1, . . . , xn]
be the polynomial ring in n indeterminates.



996 R. GONDIM AND G. ZAPPALÀ

Definition 2.2. Let A be a standard graded K-algebra. We say that A is presented
by quadrics if A � R/I, where R = K[x1, . . . , xn] and the homogeneous ideal I has
a set of generators consisting of quadratic forms.

Let A = R/I be an Artinian standard graded R-algebra; then A has a decom-

position A =

d⊕
i=0

Ai, as a sum of finite dimensional K-vector spaces with Ad 	= 0.

Let A = R/I be an Artinian standard graded R-algebra. A form F ∈ Rd

induces a K-vector spaces map ϕi,F : Ai → Ai+d, defined by ϕi,F (α) = Fα, for
every α ∈ Ai.

Definition 2.3. We say that A has the Strong Lefschetz Property (SLP) if there
exists a linear form L ∈ R1 such that rkϕi,Lk = min{dimK Ai, dimK Ai+k}, for
every i, k.

Definition 2.4. We say that A has the Weak Lefschetz Property (WLP) if there
exists a linear form L ∈ R1 such that rkϕi,L = min{dimK Ai, dimK Ai+1}, for every
i.

Definition 2.5. Let R = K[x1, . . . , xn] and A = R/I be an Artinian standard
graded R-algebra, with I1 = 0. The integer n is said to be the codimension of A. If
Ad 	= 0 and Ai = 0 for all i > d, then d is called the socle degree of A. The Hilbert
vector of A is hA = Hilb(A) = (1, h1, h2, . . . , hd), where hk = dimAk. We say that
hA is unimodal if there exists k such that 1 ≤ h1 ≤ . . . ≤ hk ≥ hk+1 ≥ hd.

Remark 2.6. We recall that an Artinian algebra A =
d⊕

i=0

Ai, Ad 	= 0, is a Gorenstein

algebra if and only if dimK Ad = 1 and the bilinear pairing

Ai ×Ad−i → Ad

inducted by the multiplication is non-degenerated for 0 ≤ i ≤ d. So we have an
isomorphism Ai � HomK(Ad−i, Ad) for i = 0, . . . , d. In particular, dimK Ai =
dimK Ad−i, for i = 0, . . . , d. Moreover, for every L ∈ R1, rkϕi,L = rkϕd−i−1,L, for
0 ≤ i ≤ d.

Since A is generated in degree 0 as an R-module, if ϕi,L is surjective, then ϕj,L is
surjective for every j ≥ i. Therefore, if A is a Gorenstein Artinian algebra, if ϕi,L is
injective, then ϕj,L is injective for every j ≤ i. Of course SLP implies WLP. Notice
also that the WLP implies the unimodality of the Hilbert vector of A. Unimodality
in the Gorenstein case implies that dimAk−1 ≤ dimAk for all k ≤ d

2 . The converse
of these implications are not true (see [Go]).

2.3. Macaulay-Matlis duality. Now we assume that charK = 0. Let us regard
the polynomial algebra R as a module over the algebra Q = K[X1, . . . , Xn] via the
identification Xi = ∂/∂xi. If f ∈ R we set

AnnQ(f) = {p(X1, . . . , Xn) ∈ Q | p(∂/∂x1, . . . , ∂/∂xn)f = 0}.
By Macaulay-Matlis duality we have a bijection:

{Homogeneous ideals of R} ↔ {Graded R− submodules of Q}
AnnQ(M) ← M

I → I−1.
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Let I ⊂ Q be a homogeneous ideal. It is well known that A = Q/I is a Gorenstein
standard graded Artinian algebra if and only if there exists a form f ∈ R such that
I = AnnQ(f) (for more details see, for instance, [MW]).

In the sequel we always assume that char(K) = 0, A = Q/I, I = AnnQ(f) and
I1 = 0. When we need to assume that K is algebraically closed it will be explicit.
All arguments work over C.

We deal with standard bigraded Artinian Gorenstein algebras A =
d⊕

i=0

Ai, Ad 	=

0, with Ak =
k⊕

i=0

A(i,k−1), A(d1,d2) 	= 0 for some d1, d2 such that d1 + d2 = d.

We call (d1, d2) the socle bidegree of A. Since A∗
k � Ad−k and since duality is

compatible with direct sum, we get A∗
(i,j) � A(d1−i,d2−j).

Let R = K[x1, . . . , xn, u1, . . . , um] be the polynomial ring viewed as a standard
bigraded ring in the sets of variables {x1, . . . , xn} and {u1, . . . , um} and let Q =
K[X1, . . . , Xn, U1, . . . , Um] be the associated ring of differential operators.

We want to stress that the bijection given by Macaulay-Matlis duality preserves
bigrading, that is, there is a bijection:

{Bihomogeneous ideals of R} ↔ {Bigraded R− submodules of Q}
AnnQ(M) ← M

I → I−1.

If f ∈ R(d1,d2) is a bihomogeneous polynomial of total degree d = d1 + d2, then
I = AnnQ(f) ⊂ Q is a bihomogeneous ideal and A = Q/I is a standard bigraded
Artinian Gorenstein algebra of socle bidegree (d1, d2) and codimension r = m + n
if we assume, without lost of generality, that I1 = 0.

Remark 2.7. If f ∈ R(d1,d2) is a bihomogeneous polynomial of bidegree (d1, d2),
consider the associated bigraded algebra A of socle bidegree (d1, d2). Notice that
for all α ∈ Q(i,j) with i > d1 or j > d2 we get α(f) = 0; therefore, under these
conditions I(i,j) = Q(i,j). As a consequence, we have the following decomposition
for all Ak:

Ak =
⊕

i+j=k,i≤d1,j≤d2

A(i,j).

Furthermore, for i < d1 and j < d1, the evaluation map Q(i,j) → A(d1−i,d2−j) given
by α �→ α(f) provides the following short exact sequence:

0 → I(i,j) → Q(i,j) → A(d1−i,d2−j) → 0.

One of our goals is to produce bigraded algebras of socle bidegree (1, d − 1)
presented by quadrics. In order to achieve this objective we study the ideal of a
particular family.

Definition 2.8. With the previous notation, all bihomogeneous polynomials of
bidegree (1, d− 1) can be written in the form

f = x1g1 + . . .+ xngn,

where gi ∈ K[u1, . . . , um]d−1. We say that f is of monomial square free type if all gi
are square free monomials. The associated algebra, A = Q/AnnQ(f), is bigraded,
has socle bidegree (1, d− 1) and we assume that I1 = 0, so codimA = m+ n.
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The combinatoric structure inward bihomogeneous polynomials of monomial
square free type allows us to give necessary and sufficient conditions in order for the
associated algebra to be presented by quadrics. On the other hand we construct, in
sufficiently large codimension, Artinian Gorenstein algebras presented by quadrics
failing the WLP.

3. The main results

Let Δ be a homogeneous simplicial complex of dimension d − 2 whose facets
are given by the monomials gi ∈ K[u1, . . . , um]d−1 (see Section 2.1). Let f ∈
K[x1, . . . , xn,
u1, . . . , um](1,d−1) be the bihomogeneous form of monomial square free type as-

sociated to Δ, that is, f = fΔ =
n∑

i=1

xigi (see Difinition 2.8). The vertex set of Δ

is also called 0-skeleton and we write V = {u1, . . . , um}. We identify the 1-skeleton
with a simple graph Δ1 = (V,E), hence the 1-faces are called edges. Since, by dif-
ferentiation, Xi(f) = gi, we can identify each facet gi with the differential operator
Xi. We denote by ek the number of (k − 1)-faces, hence e1 = m and ed−1 = n and
we put e0 := 1 and ej := 0 for j ≥ d − 1. Let A = Q/AnnQ(f) be the associated
algebra, and we suppose that I1 = 0. We identify the faces of Δ with the dual
differential operators by ui ↔ Ui. If p ∈ K[u1, . . . , um] is a square free monomial,
we denote by P ∈ K[U1, . . . , Um] the dual differential operator P = p(U1, . . . , Um).
Notice that P (p) = 1.

Definition 3.1. Let Δ be a homogeneous simplicial complex of dimension d − 2.
The associated algebra is AΔ = Q/Ann(fΔ).

Theorem 3.2. Let Δ be a homogeneous simplicial complex of dimension d−2 and
let AΔ be the associated algebra. Then

(1) A =
d⊕

k=0

Ak where Ak = A(0,k) ⊕A(1,k−1).

(2) A(0,k) has a basis identified with the (k− 1)-faces of Δ, hence dimA(0,k) =
ek.

(3) By duality, A∗
(1,k−1) � A(0,d−k), and a basis for A(1,k−1) can be chosen by

taking, for each (d−k− 1)-face of Δ, a monomial XiG̃i such that XiG̃i(f)
represents it.

(4) The Hilbert vector of A is given by hk = dimAk = ek + ed−k.
(5) Furthermore, I = AnnQ(f) is generated by

(a) (X1, . . . , Xn)
2; U2

1 , . . . , U
2
m.

(b) The monomials in I representing minimal non-faces of Δ;
(c) The monomials XiFi where fi does not represent a subface of gi;

(d) The binomials XiG̃i −XjG̃j where gi = g̃igij and gj = g̃jgij and gij
represents a common subface of gi, gj.

Proof. It is easy to see that A(0,k) is generated by the monomials of degree k
that represent (k − 1)-faces, since they are the only ones that do not annihilate
f . Now we show that they are linearly independent over K. For any (k − 1)-face
ω, let Ω be the associated monomial of Q(0,k), and let Ω1, . . . ,Ωs be all of them.
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Since Ω(f) =
n∑

i=1

xiΩ(gi), if we take any linear combination

0 =
s∑

j=1

cjΩj(f) =
s∑

j=1

cj

n∑
i=1

xiΩj(gi) =
n∑

i=1

xi

s∑
j=1

cjΩj(gi).

We get
s∑

j=1

cjΩj(gi) = 0 for all i = 1, . . . , n. For a fixed i, Ωj(gi) are distinct

monomials or zero, but for each j there is an i such that Ωj(gi) 	= 0; therefore
cj = 0 for all j = 1, . . . , s. The other assertions about A are now clear.

Notice that I(i,j)=Q(i,j) for all i ≥ 2 and it is generated by I(2.0)=(X1, . . . , Xn)
2.

Now we describe I(0,k) and I(1,k−1). Consider the exact sequence given by evalua-
tion:

0 → I(0,k) → Q(0,k) → A(1,d−1−k) → 0.

Since dimA(1,d−1−k) = dimA∗
(1,d−1−k) = dimA(0,k) = ek, we get dim I(0,k) =

dimQ(0,k) − ek. Since dimA(0,k) = ek and it has a basis given by the (k − 1)-faces
of Δ and since all the other dimQ(0,k)−ek monomials are linearly independent ele-
ments of I(0,k), they form a basis for it. Consider the sequence given by evaluation:

0 → I(1,k−1) → Q(1,k−1) → A(0,d−k) → 0.

We have dim I(1,k−1) = dimQ(1,k−1) − ed−k. Let us write Q(1,k−1) = Ī(1,k−1) ⊕
Q̃(1,k−1) where Ī(1,k−1) is the K-vector space spanned by the monomials XiFi where

Fi does not represent a subface of Gi. Of course Ī(1,k−1) ⊂ I(1,k−1) and Q̃(1,k−1)

is spanned by all the monomials XiG̃i where G̃i is a subface of Gi. The exact
sequence given by evaluation restricted to Q̃(1,k−1) becomes

0 → Ĩ(1,k−1) → Q̃(1,k−1) → A(0,d−k) → 0.

Hence, I(1,k−1) = Ĩ(1,k−1) ⊕ Ī(1,k−1), since XiG̃i(f) is a face of Δ, Ĩ(1,k−1) is gener-

ated by the binomials XiG̃i −XjG̃j such that XiG̃i(f) = gij = XjG̃j(f) where gij
is a common subface of gi, gj , gi = g̃igij and gj = g̃jgij . The result follows. �
Definition 3.3. Let Δ be a homogeneous simplicial complex of dimension d − 2.
We say that Δ is facet connected if for any pair of facets F, F ′ of Δ there exists a
sequence of facets, F0 = F, F1, . . . , Fs = F ′ such that Fi∩Fi+1 is a (d−3)-face. We
say that Δ is a flag complex if every collection of pairwise adjacent vertices spans
a simplex.

Remark 3.4. The difinition of a flag complex Δ is equivalent to saying that for all
complete subgraphs H = Kl ⊂ Δ1 for l ≥ 3, there exists an (l − 1)-face F ∈ Δl

such that H is the first skeleton of F . In particular, if Δ is a flag complex, then
Δ1 does not contain any Kd−1.

Theorem 3.5. Let Δ be a homogeneous simplicial complex of dimension d− 2 ≥ 1
and let AΔ be the associated algebra. A is presented by quadrics if and only if Δ is
a facet connected flag complex.

Proof. Suppose that Δ is a facet connected flag complex and let I = AnnQ(fΔ).
By applying Theorem 3.2 to I, it is enough to consider the monomials in the Ui

that does not represent a face of Δ, monomials XiFi where Fi is a monomial in the
Uj that does not represent a subface of Gi and the binomials XiG̃i −XjG̃j where
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XiG̃i(f) = gij = XjG̃j(f) is a common subface of gi, gj . Let M = Ue1
1 . . . Uem

m be
a monomial such that M(f) = 0, since U2

i ∈ I we can consider M square free and
suppose that it does not represent a face of Δ. In this case, the first skeleton of M
represents a complete graph Kl with the same vertex set of G, since, by hypothesis,
for 3 ≤ l ≤ d − 2 all Kl ⊂ G comes from an l-face of Δ and since G does not
contain a Kd−1 as subgraph, there exists UiUj in M such that UiUj(f) = 0 and

M = UiUjM̃ ∈ I2Q.
Let Ω = XiM with M = Ue1

1 . . . Uem
m being a monomial such that Ω(f) =

M(gi) = 0. We can suppose that M is square free and it does not represent
a subface of gi, hence there is a Uj in M that does not belong to Gi, yielding

Ω = XiUjM̃ ∈ I2Q.

To finish the proof, consider the binomials XiG̃i−XjG̃j where XiG̃i(f) = gij =

XjG̃j(f) and gij is a common subface of gi, gj . If G̃i and G̃j are subfaces of the
facets Gi, Gj respectively and if gij ⊂ Gi ∩ Gj and the intersection is a (d − 3)-

face, then there are only two vertexes they do not share, say ui, uj , G̃i = UiGij

and G̃j = UjGij and finally XiG̃i − XjG̃j = (XiUi − XjUj)Gij ∈ I2Q. In the
general case, by the facet connection of Δ, there exists a sequence of facets Gi0 =
Gi, Gi1 , . . . , Gis = Gj such that the intersection of two consecutive facets is a (d−3)-

face, hence XiG̃i −Xi1G̃i1 , Xi1G̃i1 −Xi2G̃i2 , . . . , XisG̃is −XjG̃j ∈ I2Q. Summing
up we get the desired result.

Conversely, if Δ is not facet connected, let gj , gj be two facets that cannot be
facet connected and let gij = gcd(gigj). By Theorem 3.2 it is easy to see that

XiG̃i −XjG̃j is a minimal generator of I where gi = g̃igij and gj = g̃jgij . If Δ is
not a flag complex, then there is a complete subgraph Ks ⊂ G that does not come
from an s-face of Δ. In this case, if we choose s to be minimal, then by Theorem

3.2 the monomial M =
∏

v∈V (Ks)

v is a minimal generator of I. �

We introduce the following complexes inspired by the famous Turan’s Graph
Theorem characterizing maximal graphs not containing a complete subgraph Kd−1

as the (d− 2)-partite complete graph K(a1, . . . , ad−1) with |ai − aj | ≤ 1 (cf. [Tu]).

Definition 3.6. Let 2 ≤ a1 ≤ . . . ≤ ad−1 be integers. The Turan complex of order
a1, . . . , ad−1, K = T K(a1, . . . , ad−1), is the homogeneous simplicial complex whose

facets set is the cartesian product π =

d−1∏
i=1

{1, 2, . . . , ai}. The associated algebra is

called the Turan algebra of order (a1, . . . , ad−1) and denoted by TA(a1, . . . , ad−1).

Theorem 3.7. Every Turan algebra TA(a1, . . . , ad−1) is presented by quadrics. Its
Hilbert vector is given by hk = sk−1 + sd−k−1 where sk = sk(a1, . . . , ad−1) is the
elementary symmetric polynomial of order k.

Proof. By Theorem 3.5, the first claim is equivalent to proving that every Turan
complex is a facet connected flag complex. Let 2 ≤ a1 ≤ . . . ≤ ad−1 be integers
and consider the Turan complex K = T K(a1, . . . , ad−1).

To show that K is facet connected, let us consider F, F ′ two of its facets. F =
{x1, . . . , xd−1} and F ′ = {y1, . . . , yd−1} with xi, yi ∈ {1, . . . , ai}. Consider the
following sequence of facets in K: F0 = F , F1 = (F ∪ y1) \ x1. We have that
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F0 ∩ F1 is a (d − 3) face; and we construct inductively, for k ∈ 1, . . . , d− 1, Fk =
(Fk−1∪yk)\xk. It is easy to see that Fk∩Fk−1 is a (d−3)-face and that Fd−1 = F ′,
therefore, K is facet connected as claimed.

To show that K is a flag complex. First notice that K does not contain a
complete graph Kd−1 in its first skeleton, by the d− 1-coloration. Let us consider
any complete subgraph of the first skeleton H = Kl ⊂ K1 with 3 ≤ l ≤ d− 2. We
can suppose without loss of generality that the vertex set of H is V = {x1, . . . , xl}
with xi ≤ ai. By definition of K, there is a a facet of K whose vertex set contains
V . By the definition of simplicial complex, there is a face of K such that the first
skeleton is H and the result follows.

The second claim follows from the fact that the number of (k − 1)-faces of a
Turan complex is ek = sk where sk = sk(a1, . . . , ad−1) is the symmetric function of
order k. By Theorem 3.5, the Hilbert vector of the Turan algebra TA(a1, . . . , ad−1)
is given by hk = sk + sd−k. �

We now present a family of counterexamples to Migliore-Nagel conjectures that
occur in large codimension with respect to the socle degree.

Corollary 3.8. Let A = TA(a1, . . . , ad−1) be the Turan algebra of order (a1, . . . ,
ad−1) with a1 ≈ . . . ≈ ad−1 large enough. Then Hilb(A) is totally non-unimodal,
that is,

dimA1 > dimA2 > . . . > dimA� d
2 �
.

Proof. If a1 ≈ . . . ≈ ad−1 ≈ a are large enough, then, by a trivial Calculus I
argument, we get for 2 ≤ k + 1 ≤ �d

2�, k < d− k and d− k > d− k − 1 ≥ k + 1:

dimAk ≈
(
d− 1

k

)
ak +

(
d− 1

d− k

)
ad−k >

(
d− 1

k + 1

)
ak+1

+

(
d− 1

d− k − 1

)
ad−k−1 ≈ dimAk+1.

In this case, the Hilbert vector Hilb(A) is totally non-unimodal. �
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