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MONOTONICITY OF EXPECTED f-VECTORS
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(Communicated by David Levin)

Abstract. Let Pn be an n-dimensional regular polytope from one of the three
infinite series (regular simplices, regular crosspolytopes, and cubes). Project
Pn onto a random, uniformly distributed linear subspace of dimension d ≥ 2.
We prove that the expected number of k-dimensional faces of the resulting
random polytope is an increasing function of n. As a corollary, we show
that the expected number of k-faces of the Gaussian polytope is an increasing
function of the number of points used to generate the polytope. Similar results
are obtained for the symmetric Gaussian polytope and the Gaussian zonotope.

1. Introduction

Sample n independent random points X1, . . . , Xn from the standard Gaussian
distribution on the d-dimensional Euclidean space R

d. Their convex hull

Pn,d := conv(X1, . . . , Xn) =

{
n∑

i=1

λiXi : λ1, . . . , λn ≥ 0,

n∑
i=1

λi = 1

}

is called the Gaussian polytope.
Given a deterministic or random polytope P of dimension dim(P ) we write Fk(P )

for the collection of its faces of dimension k ∈ {0, . . . , dim(P )} (k-faces). The num-
ber of k-faces, i.e. the cardinality of the set Fk(P ), is denoted by fk(P ). In partic-
ular, f0(P ) is the number of vertices, f1(P ) is the number of edges, fdim(P )−1(P )
is the number of facets of P , and fdim(P )(P ) = 1. We also put fk(P ) = 0 for
k > dim(P ) and k < 0.

In the present note we study what happens to fk(Pn,d) if one further independent
random point Xn+1 is added to the sample, i.e., if we pass from Pn,d to Pn+1,d.
If Xn+1 is contained in Pn,d, then Pn,d = Pn+1,d. However, if Xn+1 falls outside
Pn,d, then Pn+1,d is strictly larger than Pn,d and the number of k-faces changes in
a way which is difficult to control. For example, in general it is not true that

fk(Pn,d) ≤ fk(Pn+1,d) a.s.

Still, it is natural to conjecture that the expectation behaves in a monotone way,
namely

(1) Efk(Pn,d) ≤ Efk(Pn+1,d).
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It should be pointed out that the expectations Efk(Pn,d) cannot be accessed di-
rectly, since the probabilities that the random variables fk(Pn,d) take some partic-
ular value are not known.

In her Ph.D. thesis, Beermann [3, Theorem 5.3.1] proved (1) for k = d− 1 by an
approach based on the Blaschke–Petkantschin formula [18, Chapter 7.2]; see also
the paper by Beerman and Reitzner [4]. Very recently, Bonnet, Grote, Temesvari,
Thäle, Turchi, Wespi [8] extended Beermann’s method to convex hulls of i.i.d.
vectors with certain non-Gaussian distributions. We refer to [8] for more on the
history of the problem which started with the work of Devillers, Glisse, Goaoc,
Moroz and Reitzner [10] inspired by a question of V. H. Vu [20].

The aim of the present note is to prove (1) for all k ∈ {0, . . . , d − 1} (even
in the stronger form of a strict inequality). From the work of Baryshnikov and
Vitale [2] it is known that, up to an affine transformation, the distribution of the
Gaussian polytope Pn,d coincides with that of the projection of a regular simplex
with n vertices onto a uniformly distributed d-dimensional linear subspace. As
a consequence, the expected number of k-faces for Pn,d is the same as for the
projection of a regular simplex with n vertices onto a random, uniformly distributed
linear subspace of dimension d. The latter random projection is usually referred to
as the Goodman–Pollack model [1]. Thus, our question on the Gaussian polytope
can be reduced to the corresponding question on the projection of the regular
simplex. Similarly, projections of other two regular polytopes from the infinite
series (the crosspolytope and the cube) correspond to the symmetric Gaussian
polytope and the Gaussian zonotope. Explicit and asymptotic formulae for the
expected number of k-faces in the models mentioned above were provided in [1, 2,
9, 11, 12, 14, 19].

To state our main result, let Pn ⊂ R
N be the n-dimensional regular polytope

from one of the three infinite series, that is, Pn is a regular simplex, a regular
crosspolytope or a cube. The dimension N of the Euclidean space containing Pn

may be any number not less than n and plays only a minor role in the following.
Let ΠdPn denote the projection of Pn onto a random d-dimensional linear subspace
chosen according to the uniform distribution on the Grassmannian manifold. The
next theorem states that the expected number of k-faces of ΠdPn strictly increases
with n.

Theorem 1.1. For any of the three infinite series of regular polytopes we have

Efk(ΠdPn) < Efk(ΠdPn+1)

for all n ≥ 1, d ≥ 2, and 0 ≤ k < min(n, d).

Remark 1.2. Restrictions on n, d, k are needed to make sure that the inequality is
strict. The non-strict inequality holds for all n ≥ 1, d ≥ 1, k ≥ 0. Indeed, for
d = 1 we trivially have Ef0(Π1Pn) = 2 = Ef0(Π1Pn+1) and Ef1(Π1Pn) = 1 =
Ef1(Π1Pn+1), while for k > min(n, d) we have Efk(ΠdPn) = 0 ≤ Efk(ΠdPn+1).
Finally, for k = min(n, d) we have Efk(ΠdPn) = 1 ≤ Efk(ΠdPn+1).

The rest of the paper is organized as follows. In Section 2 we introduce our
notation and recall some facts about regular polytopes, internal and external angles
as well as Grassmannians and intrinsic volumes. In Section 3 we prove Theorem 1.1.
Various corollaries and extensions (including the proof of (1)) will be presented in
Section 4.
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2. Some preliminaries

2.1. Regular polytopes. We recall that a flag of an n-dimensional polytope P
is a chain F0 ⊂ F1 ⊂ . . . ⊂ Fn−1, where Fk ∈ Fk(P ) for all k ∈ {0, . . . , n − 1}.
A polytope whose group of isometries acts transitively on the set of all its flags
is usually called a regular polytope; see [5, Chapter 12.5]. It is a well-known fact
that there are precisely three infinite series of n-dimensional regular polytopes, the
regular simplices, the regular crosspolytopes and the cubes. In the present paper
we denote by Pn the n-dimensional regular polytope from one of these three infinite
series. Equivalently, we can define Pn as an isometric copy of the following polytope:

(2)

⎧⎪⎨
⎪⎩
conv(e1, . . . , en+1) (regular simplex),

conv(e1, . . . , en,−e1, . . . ,−en) (regular crosspolytope),

[0, 1]n (cube),

where conv( · ) denotes the convex hull and e1, e2, . . . are the vectors of the standard
orthonormal basis.

2.2. Internal and external angles. The linear hull lin(A), the affine hull aff(A)
and the positive hull pos(A) of a set A are defined as the minimal linear subspace,
affine subspace, or convex cone containing the set A. Roughly speaking, the angle
of a convex cone C in a Euclidean space is the fraction of the linear subspace lin(C)
occupied by C. More formally, the angle of C is defined as P[Xlin(C) ∈ C], where
Xlin(C) is a random vector with standard normal distribution on the linear hull
lin(C).

We shall next recall the concepts of external and internal angles of convex poly-
topes. Let P ⊂ R

N be an n-dimensional polytope and let G ∈ Fk(P ) be a face of
dimension k ∈ {0, . . . , n} of P . The relative interior of G is the interior of G taken
with respect to the affine hull aff(G) as the ambient space. For a point x in the
relative interior of G write Nor(P, x) for the convex cone of normal vectors of P at
x, that is,

Nor(P, x) = {u ∈ R
N : 〈u, p− x〉 ≤ 0 for all p ∈ P}.

Since Nor(P, x) is independent of the choice of x, we shall use the notation Nor(P,G)
for this cone. The angle of this cone is called the external angle γ(G,P ) of P at its
face G.

Next, we let F be another face of P such that F ⊂ G, that is, F is a face of
G. For a point x in the relative interior of F we define the convex cone A(x,G) :=
pos(G − x). Again, this definition is independent of x and we shall write A(F,G)
for this cone. Then, the internal angle β(F,G) of F relative to G is just the angle
of this cone. It is convenient to extend the definition to all pairs (F,G) of faces of
P by putting β(F,G) := 0 if F is not a face of G. We refer to [13, Chapter 14] for
further details related to these concepts.

The internal and external angles are very difficult to compute in concrete situ-
ations. A rare exception is the case where P = [0, 1]n is the n-dimensional cube.
In this case, if F ∈ Fk([0, 1]

n), G ∈ F�([0, 1]
n) and F ⊂ G with k ∈ {0, . . . , n},

� ∈ {k, . . . , n}, then
γ(G,P ) = 2−(n−�) and β(F,G) = 2−(�−k).

An exact integral formula for the external angles of a regular simplex can be deduced
from a volume formula for the regular spherical simplex found in [16] (see also
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[7, Satz 6.5.3] for a more accessible account). The asymptotic behaviour of the
internal angles, as n → ∞, is discussed in [9]. For the regular crosspolytope we
refer to [2, 6, 9] for exact and asymptotic formulae for the external and internal
angles, respectively.

2.3. Grassmannians and intrinsic volumes. We let G(n, k) be the Grassman-
nian of all k-dimensional linear subspaces of Rn, k ∈ {0, . . . , n}. It is well known
that G(n, k) carries a natural structure of a smooth and compact k(n− k)-dimen-
sional Riemannian manifold. The normalized k(n − k)-dimensional volume mea-
sure on G(n, k) is denoted by νk and called the uniform distribution on G(n, k);
see [18, Chapter 5].

For an integer � ≥ 0 denote the �-volume of the �-dimensional unit ball by

κ� :=
π�/2

Γ
(
1 + �

2

) .
The k-th intrinsic volume Vk(K) of a compact convex set K ⊂ R

n is defined as

Vk(K) :=

(
n

k

)
κn

κkκn−k

∫
G(n,k)

Volk(K|L) νk(dL), k ∈ {0, . . . , n},

where Volk(K|L) is the k-volume of the orthogonal projection K|L of K onto the
linear subspace L. We emphasize that the intrinsic volumes are of outstanding
importance in convex geometry since they form a basis of the vector space of all
continuous (with respect to the usual Hausdorff distance), motion invariant val-
uations on the space of compact convex subsets of Rn; see [17, Theorem 6.4.14].
In particular, V0(K) = �{K �=∅}, V1(K) is a constant multiple of the mean width
of K, 2Vn−1(K) is the same as the (n − 1)-dimensional Hausdorff measure of the
boundary of K and Vn(K) = Voln(K) is the volume of K.

The k-th intrinsic volume of a polytope P ⊂ R
n admits the following neat

interpretation in terms of the external angles introduced in Section 2.2 at the k-
dimensional faces of P and their k-volumes:

(3) Vk(P ) =
∑

F∈Fk(P )

γ(F, P ) Volk(F );

see [17, Eq. (4.23)].
The intrinsic volumes are monotone under set inclusion. That is, if K and K ′

are compact convex subsets of Rn with K ′ ⊆ K, then Vk(K
′) ≤ Vk(K) for all k ∈

{0, . . . , n}. Moreover, the following strict form of monotonicity is known; see [15,
Satz 16.7 on p. 185] (where the result is stated for the so-called quermassintegrals
Wk which are constant multiples of the intrinsic volumes Vn−k, k ∈ {0, . . . , n}).
We say that a set K ⊂ R

n has dimension d ∈ {0, . . . , n} and write dim(K) = d if
d is the dimension of the affine hull of K.

Lemma 2.1. Let K and K ′ be compact convex subsets of Rn with K ′ ⊆ K and
K �= K ′. Then Vk(K

′) = Vk(K) for some k ∈ {1, . . . , n} if and only if dim(K) < k.

3. Projections of regular polytopes

Proof of Theorem 1.1. We restrict ourselves to the case d ≤ n since otherwise
fk(ΠdPn) = fk(Pn), fk(ΠdPn+1) = fk(Pn+1), and the required inequality becomes
trivial. So, let d ≥ 2 and 0 ≤ k < d ≤ n.



PROJECTIONS OF REGULAR POLYTOPES 1299

Affentranger and Schneider [1, Eqn. (4) on p. 222], see also [18, Theorem 8.3.1],
proved the following formula for the expected number of k-faces of a random pro-
jection of an arbitrary polytope P :

(4) Efk(ΠdP ) = 2

∞∑
s=0

∑
F∈Fk(P )

∑
G∈Fd−2s−1(P )

β(F,G)γ(G,P ).

We recall from Section 2.2 that γ(G,P ) stands for the external angle of G, while
β(F,G) is the internal angle of F relative to G. By definition, the terms for which
F is not a face of G, vanish, as do the terms for which d− 2s− 1 < 0.

We use formula (4) for P = Pn, one of the regular n-dimensional polytopes
defined in Section 2.1. To prove Theorem 1.1, it suffices to show that the quantity

(5) sn(j) :=
∑

F∈Fk(Pn)

∑
G∈Fj−1(Pn)

β(F,G)γ(G,Pn)

is non-decreasing in n for every j := d− 2s ∈ {1, . . . , d} and strictly increasing for
j = d.

We notice that any k-face of a regular simplex (respectively, cube) is isometric
to a k-dimensional regular simplex (respectively, cube). On the other hand, the
k-faces of the n-dimensional regular crosspolytope are isometric copies of regular
simplices, for 0 ≤ k ≤ n−1. Let cm,� be the number of �-faces of any m-dimensional
face of Pn. In particular, cn,� is the number of �-faces of Pn itself. It is easy to
provide an explicit formula for cm,�, but we shall not need it.

The number of pairs F ⊂ G such that F ∈ Fk(Pn) and G ∈ Fj−1(Pn) is given
by cn,j−1cj−1,k. Indeed, first choosing G as a face of Pn contributes cn,j−1, while
choosing F as a face of G in a second step results in the factor cj−1,k. Since the
polytope Pn is regular, every pair F ⊂ G as above can be transformed into any
other such pair by an isometry of Pn. In particular, every pair can be transformed
into the “canonical” pair Qk,n ⊂ Qj−1,n, where

Qi,n =

{
conv(e1, . . . , ei+1) ⊂ Pn, for simplices and crosspolytopes,

{(x1, . . . , xi, 0, . . . , 0) : x1, . . . , xi ∈ [0, 1]} ⊂ [0, 1]n, for cubes.

Since isometries leave both internal and external angles invariant, it follows that

sn(j) = cn,j−1cj−1,kβ(Qk,n, Qj−1,n)γ(Qj−1,n, Pn).

Observe that j−1 < d ≤ n and the quantity cj−1,kβ(Qk,n, Qj−1,n) does not depend
on n. Also, it is non-zero for j = d. To prove the theorem, it therefore suffices to
show that

(6) cn,j−1γ(Qj−1,n, Pn) ≤ cn+1,j−1γ(Qj−1,n+1, Pn+1)

for all j ∈ {1, . . . , d} with a strict inequality for j �= 1.
Now, we multiply both sides of (6) by the (j − 1)-dimensional volume of Qj−1,n

(which is isometric to Qj−1,n+1). Note that Volj−1(Qj−1,n) �= 0 because j − 1 <
d ≤ n. We arrive at

cn,j−1Volj−1(Qj−1,n)γ(Qj−1,n, Pn) ≤ cn+1,j−1Volj−1(Qj−1,n+1)γ(Qj−1,n+1, Pn+1).

Recall that γ(Qj−1,n, Pn) is the external angle of Pn at any (j−1)-dimensional face,
and that cn,j−1 is the number of such faces. Therefore, using the representation
(3) of intrinsic volumes, the above inequality can be re-written as

Vj−1(Pn) ≤ Vj−1(Pn+1)
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for all j ∈ {1, . . . , d} with a strict inequality for j �= 1, where Vj−1 is the (j − 1)-st
intrinsic volume. But we have Pn ⊂ Pn+1 and, as discussed in Section 2.3, the
intrinsic volumes are monotone with respect to set inclusion. In fact, since the
inclusion Pn ⊂ Pn+1 is strict and since dim(Pn) = n and dim(Pn+1) = n+1 > d >
j − 1, we even have Vj−1(Pn) < Vj−1(Pn+1) for all j ∈ {2, . . . , d} by Lemma 2.1.
This completes the argument. �

4. Corollaries and extensions

4.1. Gaussian versions. Let X1, . . . , Xn be independent random vectors with
standard Gaussian distribution on R

d. Recall that the Gaussian polytope Pn,d is
defined as the convex hull of X1, . . . , Xn. As discussed in the introduction, from
the work of Baryshnikov and Vitale [2] it is known that Pn,d has, up to an affine
transformation, the same distribution as the Goodman–Pollack polytope ΠdPn−1,
where Pn−1 is a regular simplex with n vertices. As a consequence,

Efk(Pn,d) = Efk(ΠdPn−1) for all k ∈ {0, . . . , d− 1},

which leads to the following corollary of Theorem 1.1:

Theorem 4.1. We have Efk(Pn,d) < Efk(Pn+1,d) for all n ≥ 1, d ≥ 2, and
0 ≤ k < min(n− 1, d).

We emphasize that Theorem 4.1 generalizes Beermann’s result [3, Theorem 5.3.1]
and its strengthened form [8, Theorem 1] for the case k = d−1 to faces of arbitrary
dimension.

Similarly, if Pn is the n-dimensional regular crosspolytope, then the expected
number of k-dimensional faces of ΠdPn coincides with the expected number of k-
faces of the symmetric Gaussian polytope Psym

n,d defined by

Psym
n,d = conv(X1, . . . , Xn,−X1, . . . ,−Xn).

Although this fact is not explicitly stated in [2], it can be proved just by repeating
the argument of [2] (also compare with the remark after Corollary 1.1 in [9]). We
can thus draw from Theorem 1.1 the following conclusion:

Theorem 4.2. We have Efk(Psym
n,d ) < Efk(Psym

n+1,d) for all n ≥ 1, d ≥ 2, and

0 ≤ k < min(n, d).

Finally, we consider the Gaussian zonotope Zn,d, which is defined to be the
Minkowski sum of the segments [0, X1], . . . , [0, Xn], that is,

Zn,d =

{
n∑

i=1

λiXi : λ1, . . . , λn ∈ [0, 1]

}
.

The expected number of k-faces of Zn,d is the same as the expected number of
k-faces of ΠdPn, where Pn is an n-dimensional cube, a fact mentioned in [2, p. 146].
As above, Theorem 1.1 yields the following result:

Theorem 4.3. We have Efk(Zn,d) < Efk(Zn+1,d) for all n ≥ 1, d ≥ 2, and
0 ≤ k < min(n, d).
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4.2. Poissonized versions. Let us replace the fixed number n of points by a
Poisson random variable N(t) with parameter t > 0, that is,

P[N(t) = �] = e−t t
�

�!
, � = 0, 1, . . . .

We assume that N(t) is independent of X1, X2, . . .. Then, it is natural to conjec-
ture that the expected number of k-faces is monotone in t for all three models,
the Gaussian polytopes, the symmetric Gaussian polytopes and the Gaussian zono-
topes. For faces of maximal dimension of Gaussian polytopes, the next theorem
was proved by Beermann [3, Theorem 5.4.1].

Theorem 4.4. For all d ∈ N and 0 ≤ k ≤ d the functions t �→ Efk(PN(t),d),
t �→ Efk(Psym

N(t),d) and t �→ Efk(ZN(t),d) are non-decreasing in t > 0.

Proof. We only prove the result for the Gaussian polytopes, since for the other two
models the arguments are similar.

The proof is based on a coupling argument. To start with, we let {N(t) : t ≥ 0} be
a homogeneous Poisson process with intensity 1 which is independent of everything
else. In particular, for each t > 0, N(t) is a Poisson random variable with parameter
t. Take some 0 < t1 < t2. Then, N(t1) ≤ N(t2) a.s. For integers 0 ≤ n1 ≤ n2

consider the event A(n1, n2) := {N(t1) = n1, N(t2) = n2}. Since the Poisson
process is independent of everything else, we have

E[fk(PN(ti),d)�A(n1,n2)] = E[fk(Pni,d)�A(n1,n2)] = E[fk(Pni,d)]P[A(n1, n2)]

for i = 1, 2. We already know from Theorem 4.1 (see also Remark 1.2) that
E[fk(Pn1,d)] ≤ E[fk(Pn2,d)], whence

E[fk(PN(t1),d)�A(n1,n2)] ≤ E[fk(PN(t2),d)�A(n1,n2)]

for all 0 ≤ n1 ≤ n2. Taking the sum over all such n1, n2 yields

Efk(PN(t1),d) =
∑

(n1,n2)∈N
2
0

n1≤n2

E[fk(PN(t1),d)�A(n1,n2)]

≤
∑

(n1,n2)∈N
2
0

n1≤n2

E[fk(PN(t2),d)�A(n1,n2)] = Efk(PN(t2),d),

and the result is proved. �
4.3. Other functionals of faces. Let P be a polytope. For the Gaussian polytope
in R

d Hug, Munsonius and Reitzner [14, Section 3.2] considered the functional

T d,k
0,b (P ) =

∑
F∈Fk(P )

(Volk(F ))b, b ≥ 0, 0 ≤ k ≤ dimP,

which reduces to fk(P ) for b = 0 and to the total k-dimensional volume of all k-faces

of P for b = 1. In particular, T d,d−1
0,1 (P ) = 2Vd−1(P ) is the total surface area of

P and T d,d
0,b = Volbd(P ), but the other functionals of this form cannot be expressed

in terms of intrinsic volumes of P . With the aim of the Blaschke–Petkantschin
formula, they proved that

ET d,k
0,b (Pn,d) = Efk(Pn,d) ·

(√
k + 1

k!

)b k∏
j=1

Γ
(

d+b+1−j
2

)
Γ
(

d+1−j
2

) .
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While the (almost sure) monotonicity of T d,d−1
0,1 (Pn,d) in n is a direct consequence

of the monotonicity of the intrinsic volumes under set inclusion, the following non-

trivial monotonicity result for the mean values of T d,k
0,b (Pn,d) is a consequence of

Theorem 4.1:

Theorem 4.5. Let b ≥ 0. We have ET d,k
0,b (Pn,d) < ET d,k

0,b (Pn+1,d) for all n ≥ 1,

d ≥ 2, and 0 ≤ k < min(n− 1, d).

A similar result can be obtained for the symmetric Gaussian polytope as well.
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[9] Károly Böröczky Jr. and Martin Henk, Random projections of regular polytopes, Arch. Math.

(Basel) 73 (1999), no. 6, 465–473, DOI 10.1007/s000130050424. MR1725183
[10] Olivier Devillers, Marc Glisse, Xavier Goaoc, Guillaume Moroz, and Matthias Reitzner, The

monotonicity of f-vectors of random polytopes, Electron. Commun. Probab. 18 (2013), no.
23, 8, DOI 10.1214/ECP.v18-2469. MR3044471

[11] David L. Donoho and Jared Tanner, Counting faces of randomly projected polytopes when
the projection radically lowers dimension, J. Amer. Math. Soc. 22 (2009), no. 1, 1–53, DOI
10.1090/S0894-0347-08-00600-0. MR2449053

[12] David L. Donoho and Jared Tanner, Counting the faces of randomly-projected hypercubes
and orthants, with applications, Discrete Comput. Geom. 43 (2010), no. 3, 522–541, DOI
10.1007/s00454-009-9221-z. MR2587835
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