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AN APPLICATION OF POSITIVE DEFINITE FUNCTIONS
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MIHAIL N. KOLOUNTZAKIS, MÁTÉ MATOLCSI, AND MIHÁLY WEINER

(Communicated by Alexander Iosevich)

Abstract. We present a new approach to the problem of mutually unbiased
bases (MUBs), based on positive definite functions on the unitary group. The
method provides a new proof of the fact that there are at most d + 1 MUBs
in Cd, and it may also lead to a proof of non-existence of complete systems of
MUBs in dimension 6 via a conjectured algebraic identity.

1. Introduction

In this paper we present a new approach to the problem of mutually unbiased
bases (MUBs) in Cd. Our approach has been motivated by two recent results in
the literature. First, in [22] one of the present authors described how the Fourier
analytic formulation of Delsarte’s LP bound can be applied to the problem of
MUBs. Second, in [25, Theorem 2] F. M. Oliveira de Filho and F. Vallentin proved
a general optimization bound which can be viewed as a generalization of Delsarte’s
LP bound to non-commutative settings (and they applied the theorem to packing
problems in Euclidean spaces). As the MUB-problem is essentially a problem over
the unitary group, it is natural to combine the two ideas above. Here we present
another version of the non-commutative Delsarte scheme in the spirit of [22, Lemma
2.1]. Our formulation in Theorem 2.3 below describes a less general setting than
[25, Theorem 2], but it makes use of the underlying group structure and is very
convenient for applications. It fits the MUB-problem naturally, and leads us to
consider positive definite functions on the unitary group.

The paper is organized as follows. In the Introduction we recall some basic
notions and results concerning mutually unbiased bases (MUBs). In Section 2
we describe a non-commutative version of Delsarte’s scheme in Theorem 2.3. We
believe that this general scheme will be useful for several other applications, too.
We then apply the method in Theorem 2.4 to give a new proof of the fact that there
are at most d + 1 MUBs in C

d. While the result itself has been proved by other
methods, we believe that this approach is particularly suited for the MUB-problem
and may lead to non-existence proofs in the future. In particular, in Section 3 we
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speculate on how the non-existence of complete systems of MUBs could be proved
in dimension 6 via an algebraic identity conjectured in [23].

Throughout the paper we follow the convention that inner products are linear
in the first variable and conjugate linear in the second.

Recall that two orthonormal bases in Cd, A = {e1, . . . , ed} and B = {f1, . . . , fd}
are called unbiased if for every 1 ≤ j, k ≤ d, |〈ej , fk〉| =

1√
d
. A collection B1, . . .Bm

of orthonormal bases is said to be (pairwise) mutually unbiased if any two of them
are unbiased. What is the maximal number of mutually unbiased bases (MUBs) in
C

d? This problem has its origins in quantum information theory, and has received
considerable attention over the past decades (see e.g. [14] for a recent comprehensive
survey on MUBs). The following upper bound is well known (see e.g. [1, 3, 31]):

Theorem 1.1. The number of mutually unbiased bases in Cd is less than or equal
to d+ 1.

We will give a new proof of this fact in Theorem 2.4 below. Another impor-
tant result concerns the existence of complete systems of MUBs in prime-power
dimensions (see e.g. [1, 11, 12, 18, 21, 31]).

Theorem 1.2. A collection of d + 1 mutually unbiased bases (called a complete
system of MUBs) exists (and can be constructed explicitly) if the dimension d is a
prime or a prime-power.

However, if the dimension d = pα1
1 . . . pαk

k is not a prime-power, very little is
known about the maximal number of MUBs. By a tensor product construction
it is easy to see that there are at least p

αj

j + 1 MUBs in Cd where p
αj

j is the
smallest of the prime-power divisors of d. One could be tempted to conjecture the
maximal number of MUBs always equals p

αj

j + 1, but this is already known to

be false: for some specific square dimensions d = s2 a construction of [30] yields
more MUBs than p

αj

j + 1 (the construction is based on orthogonal Latin squares).

Another important phenomenon, proved in [29], is that the maximal number of
MUBs cannot be exactly d (it is either d+ 1 or strictly less than d).

The following basic problem remains open for all non-prime-power dimensions:

Problem 1.3. Does a complete system of d+ 1 mutually unbiased bases exist in
Cd if d is not a prime-power?

For d = 6 it is widely believed among researchers that the answer is negative,
and the maximal number of MUBs is 3. The proof still eludes us, however, despite
considerable efforts over the past decade [3–6, 19]. On the one hand, some infinite
families of MUB-triplets in C6 have been constructed [19, 32]. On the other hand,
numerical evidence strongly suggests that there exist no MUB-quartets [5, 6, 8, 16,
32]. For non-prime-power dimensions other than 6 we are not aware of any well-
founded conjectures as to the exact maximal number of MUBs.

It will also be important to recall the relationship between mutually unbiased
bases and complex Hadamard matrices. A d × d matrix H is called a complex
Hadamard matrix if all its entries have modulus 1 and 1√

d
H is unitary. Given

a collection of MUBs B1, . . . ,Bm we may regard the bases as unitary matrices
U1, . . . , Um (with respect to some fixed orthonormal basis), and the condition of
the bases being pairwise unbiased amounts to U∗

i Uj being a complex Hadamard
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matrix scaled by a factor of 1√
d
for all i �= j. That is, U∗

i Uj is a unitary matrix

(which is of course automatic) whose entries are all of absolute value 1√
d
.

A complete classification of MUBs up to dimension 5 (see [7]) is based on the
classification of complex Hadamard matrices (see [17]). However, the classification
of complex Hadamard matrices in dimension 6 is still out of reach despite recent
efforts [2, 20, 24, 27, 28].

In this paper we will use the above connection of MUBs to complex Hadamard
matrices. In particular, we will describe a Delsarte scheme for non-commutative
groups in Theorem 2.3, and apply it on the unitary group U(d) to the MUB-problem
in Theorem 2.4.

2. Mutually unbiased bases and a non-commutative Delsarte scheme

In this section we describe a non-commutative version of Delsarte’s scheme,
and show how the problem of mutually unbiased bases fit into this scheme. The
commutative analogue was described in [22].

Let G be a compact group, the group operation being multiplication and the
unit element being denoted by 1. We will denote the normalized Haar measure on
G by μ. Let a symmetric subset A = A−1 ⊂ G, 1 ∈ A, be given. We think of A
as the ’forbidden’ set. We would like to determine the maximal cardinality of a set
B = {b1, . . . bm} ⊂ G such that all the quotients b−1

j bk ∈ Ac ∪ {1} (in other words,

all quotients avoid the forbidden set A). When G is commutative, some well-known
examples of this general scheme are present in coding theory [13], sphere-packings
[9], and sets avoiding square differences in number theory [26]. We will discuss the
non-commutative case here.

Recall that the convolution of f, g ∈ L1(G) is defined by

f ∗ g(x) =
∫

f(y)g(y−1x)dμ(y).

Recall also the notion of positive definite functions on G. A function h : G → C

is called positive definite, if for any m and any collection u1, . . . , um ∈ G, and
c1, . . . , cm ∈ C we have

∑m
i,j=1 h(u

−1
i uj)cicj ≥ 0. When h is continuous, the

following characterization is well known.

Lemma 2.1 (cf. [15, Proposition 3.35]). If G is a compact group, and h : G → C

is a continuous function, the following are equivalent:
(i) h is of positive type, i.e.

(1)

∫
(f̃ ∗ f)h ≥ 0

for all functions f ∈ L2(G) (here f̃(x) = f(x−1)).
(ii) h is positive definite.

This statement is fully contained in the more general Proposition 3.35 in [15]. In
fact, for compact groups Proposition 3.35 in [15] shows that instead of L2(G) the
smaller class of continuous functions C(G) or the wider class of absolute integrable
functions L1(G) could also be taken in (i). All these cases are equivalent, but for us
it will be convenient to use L2(G) in the sequel. (It is also worth mentioning here
that if h is of positive type, then it is automatically equal to a continuous function
almost everywhere – but we will not need this fact in this paper.)

We formulate another important property of positive definite functions.
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Lemma 2.2. Let G be a compact group and μ the normalized Haar measure on G.
If h : G → C is a continuous positive definite function, then α =

∫
G
hdμ ≥ 0, and

for any α0 ≤ α the function h−α0 is also positive definite. In other words, for any
m and any collection u1, . . . , um ∈ G and c1, . . . , cm ∈ C we have

(2)
m∑

i,j=1

h(u−1
i uj)cicj ≥ α|

m∑
i=1

ci|2.

Proof. Let f ∈ L2(G) and define a linear operator H : L2(G) → L2(G) by

(Hf)(x) =

∫
h(x−1y)f(y) dμ(y).

As h is assumed to be positive definite, H is positive self-adjoint. Also, writing 1
for the constant one function on G we have

H1 = α1, 〈H1,1〉 = α ≥ 0.

Let us use the notation β =
∫
f(y)dμ(y). We have the orthogonal decomposition

f = β1+ f0, where f0 ⊥ 1.

Using the invariance of the Haar measure and exchanging the order of integration
we have

〈Hf,1〉 =
∫
(Hf)(x),1(x)dμ(x) =

∫
h(x)dμ(x)

∫
f(y)dμ(y) = αβ.

Therefore,

αβ = 〈Hf,1〉 = 〈H(β1+ f0),1〉 = αβ + 〈Hf0,1〉,
and hence 〈Hf0,1〉 = 0.

To show that h− α is positive definite we need to check that

〈Hf, f〉 − |β|2α ≥ 0,

for all f ∈ L2(G). We have

〈Hf, f〉 = 〈βα1+Hf0, β1+ f0〉 = |β|2α+ 〈Hf0, f0〉

since f0 ⊥ 1 and Hf0 ⊥ 1. Hence 〈Hf, f〉 − |β|2α = 〈Hf0, f0〉 ≥ 0. �

After these preliminaries we can describe the non-commutative analogue of Del-
sarte’s LP bound. (To the best of our knowledge the commutative version was first
introduced by Delsarte in connection with binary codes with prescribed Hamming
distance [13]. Another formulation of the non-commutative version is given in [25].)

Theorem 2.3 (Non-commutative Delsarte scheme for compact groups). Let G be
a compact group, μ the normalized Haar measure, and let A = A−1 ⊂ G, 1 ∈ A,
be given. Assume that there exists a positive definite function h : G → R such that
h(x) ≤ 0 for all x ∈ Ac, and

∫
hdμ > 0. Then for any B = {b1, . . . , bm} ⊂ G such

that b−1
j bk ∈ Ac ∪ {1} the cardinality of B is bounded by |B| ≤ h(1)∫

hdμ
.

Proof. Consider

(3) S =
∑

u,v∈B

h(u−1v).
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On the one hand,

(4) S ≤ h(1)|B|,
since all the terms u �= v are non-positive by assumption.

On the other hand, applying (2) with α =
∫
hdμ, u, v ∈ B and cu = cv = 1, we

get

(5) S ≥ α|B|2.

Comparing the two estimates (5), (4) we obtain |B| ≤ h(1)∫
hdμ

. �

The function h in the theorem above is usually called a witness function.
We will now describe how the problem of mutually unbiased bases fits into

this scheme. Consider the group U(d) of unitary matrices, being given with re-
spect to some fixed orthonormal basis of Cd. Consider the set CH of complex
Hadamard matrices. Following the notation of the Delsarte scheme above define
Ac = 1√

d
CH ⊂ U(d), i.e. let the complement of the forbidden set be the set of

scaled complex Hadamard matrices. Then the maximal number of MUBs in C
d is

exactly the maximal cardinality of a set B = {b1, . . . , bm} ⊂ U(d) such that all the
quotients b−1

j bk ∈ Ac ∪ {1}. After finding an appropriate witness function we can

now give a new proof of the fact the number of MUBs in Cd cannot exceed d+ 1.

Theorem 2.4. The function h(Z) = −1 +
∑d

i,j=1 |zi,j |4 (where Z = (zi,j)
d
i,j=1 ∈

U(d)) is positive definite on U(d), with h(1) = d− 1 and
∫
h = d−1

d+1 . Consequently,
the number of MUBs in dimension d cannot exceed d+ 1.

Proof. Consider the function h0(Z) =
∑d

i,j=1 |zi,j |4. First we prove that h0 is
positive definite. For this, recall that the Hilbert-Schmidt inner product of matrices
is defined as 〈X,Y 〉HS = Tr (XY ∗), and for any vector v in a finite dimensional
Hilbert space H the (scaled) projection operator Pv is defined as Pvu = 〈u, v〉v.
For any two vectors u, v ∈ H we have |〈u, v〉|2 = Tr PuPv. Also, recall that the
inner product on H ⊗H is given by 〈u1 ⊗ u2, v1 ⊗ v2〉 = 〈u1, v1〉〈u2, v2〉.

Let U1, . . . , Um be unitary matrices, c1, . . . , cm ∈ C, and let {e1, . . . , ed} be the
orthonormal basis with respect to which the matrices in U(d) are given. Then

(6) |〈U∗
rUtej , ek〉|4 = |〈Utej , Urek〉|4 = |〈Utej ⊗ Utej , Urek ⊗ Urek〉|2

= Tr PUtej⊗UtejPUrek⊗Urek .

Therefore, with the notation Qt =
∑m

j=1 PUtej⊗Utej we have

(7) h(U∗
rUt) =

∑
j,k

|〈U∗
rUtej , ek〉|4 = TrQtQr.

Finally,

(8)

m∑
r,t=1

h(U∗
rUt)crct = ‖

m∑
t=1

ctQt‖2HS ≥ 0,

as desired.
It is known [10] that the integral of h0 on U(d) is 2d

d+1 . By applying Lemma 2.2

to h0 with α0 = 1 <
∫
h0 we get that h is also positive definite. Note also that h
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vanishes on the set 1√
d
CH of scaled complex Hadamard matrices, h(1) = d−1, and∫

h = 2d
d+1 − 1 = d−1

d+1 . Therefore, Theorem 2.3 implies that the number of MUBs

in C
d is less than or equal to h(1)∫

h
= d+ 1. �

We remark here that one could consider the witness functions hβ = h0−β for any

1 ≤ β ≤ 2d
d+1 . All these functions satisfy the conditions of Theorem 2.3. However,

an easy calculation shows that the best bound is achieved for β = 1.

3. Dimension 6

The function h(Z) = −1 +
∑d

i,j=1 |zi,j |4 in Theorem 2.4 was a fairly natural

candidate, as it vanishes on the set of (scaled) complex Hadamard matrices 1√
d
CH,

for any d. Other such candidates are hk(Z) = − 1
nk−2 +

∑d
i,j=1 |zi,j |2k for any k ≥ 2,

but they give worse upper bounds than h. Furthermore, Theorem 1.2 implies that
the result of Theorem 2.4 is sharp whenever d is a prime-power, and hence we
cannot hope to construct better witness functions than h, in general. However,
let us examine the situation more closely in dimension d = 6, and discuss why we
hope that the non-existence of a complete system of MUBs could be proved by this
method.

For d = 6 we have other functions which are conjectured to vanish on 1√
d
CH.

Namely, Conjecture 2.3 in [23] provides a selection of such functions. Let

(9) m1(Z) =
∑
π∈S6

6∑
j=1

zπ(1),jzπ(2),jzπ(3),jzπ(4),jzπ(5),jzπ(6),j ,

where S6 denotes the permutation group on 6 elements. Also, let m2(Z) = m1(Z
∗).

Then m1 and m2 are real-valued (because each term appears with its conjugate),
and they are conjectured to vanish on 1√

d
CH. Furthermore, as the inner sum in

(9) is conjectured to be zero for all π ∈ S6, we may even multiply each term with
(−1)sgn π, if we wish. This leads to other possible choices of m1 and m2.

We remark here that in higher even dimensions d = 8, 10, . . . the corresponding
expressions do not vanish on the set of complex Hadamard matrices. Therefore,
the algebraic expression (9) is special to dimension 6, and provides some further
natural candidates of witness functions for the MUB-problem. Namely, let

m(Z) = F (m1(Z),m2(Z)),

where F (a, b) is a symmetric non-negative polynomial such that F (0, 0) = 0 (e.g.
F (a, b) = (a + b)2, a2b2, etc.). In such a case m(I) = 0, and

∫
Z∈U(d)

m(Z)dμ > 0.

Therefore, if for any ε > 0 the function h(Z) + εm(Z) is positive definite, we get
a better bound than in Theorem 2.4, and obtain that the number of MUBs in
dimension 6 is strictly less than 7, i.e. a complete system of MUBs does not exist.
The question is whether a suitable choice of F and ε exist. This leads us to the
following general problem.

Problem 3.1. Given a polynomial function f(Z) of the matrix elements zi,j and
their conjugates zi,j , what is a necessary and sufficient condition for f to be positive
definite on the unitary group U(d)?
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Finally, it would also be interesting to find any analogue of Conjecture 2.3 in
[23] for any dimensions other than d = 6.
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alized Pauli problem and an infinite family of MUB-triplets in dimension 6, J. Phys. A 42
(2009), no. 24, 245305, 25, DOI 10.1088/1751-8113/42/24/245305. MR2515542

[20] Bengt R. Karlsson, Three-parameter complex Hadamard matrices of order 6, Linear Algebra
Appl. 434 (2011), no. 1, 247–258, DOI 10.1016/j.laa.2010.08.020. MR2737247

[21] Andreas Klappenecker and Martin Rötteler, Constructions of mutually unbiased bases, Finite
fields and applications, Lecture Notes in Comput. Sci., vol. 2948, Springer, Berlin, 2004,

pp. 137–144, DOI 10.1007/978-3-540-24633-6 10. MR2092627
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