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CURVATURE CONTRACTION FLOWS IN THE SPHERE

JAMES A. MCCOY

(Communicated by Lei Ni)

Abstract. We show that convex surfaces in an ambient three-sphere contract
to round points in finite time under fully nonlinear, degree one homogeneous
curvature flows, with no concavity condition on the speed. The result extends
to convex axially symmetric hypersurfaces of Sn+1. Using a different pinch-
ing function we also obtain the analogous results for contraction by Gauss
curvature.

1. Introduction

The contraction of convex hypersurfaces in Euclidean space by their curvature
has been very well studied since Huisken’s seminal work on the mean curvature
flow [24]. For a review of many fully nonlinear contraction flows in Euclidean
space and their action on convex initial hypersurfaces we refer the reader to [13];
contracting axially symmetric hypersurfaces in Euclidean space are treated in [37,
Section 7]. Flows of smooth convex hypersurfaces (those with pointwise strictly
positive definite Weingarten map) in general Riemannian manifolds have been less
thoroughly investigated, but there are fundamental contributions by Huisken [25]
in the case of mean curvature flow and by Andrews [2] for a class of fully nonlinear
flows. Many other results are available for particular flows in particular ambient
spaces. A large amount of work has also been done on curvature expansion flows;
we refer the reader to [32] for a recent result and a survey of previous work.

If we specialise to evolving hypersurfaces in the sphere, there are some interest-
ing results in the literature. Huisken considered the mean curvature flow in this
setting [26], showing that initial hypersurfaces not necessarily convex but satisfy-
ing a pointwise curvature condition either contract in finite time to a single point,
or evolve for all time, smoothly approaching asymptotically a smooth totally geo-
desic hypersurface. Again for mean curvature flow, a different curvature condition
on the initial hypersurface was given recently in [33]. Andrews discussed in [4] a
corresponding optimal result of this kind, requiring the weakest condition on the
curvature of the initial surface in the three-sphere, by optimising the choice of fully
nonlinear speed. More recently, Guan and Li [22] have developed a constrained
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flow by a function of the mean curvature under which star-shaped hypersurfaces
in the sphere evolve asymptotically to a sphere in infinite time. Gerhardt [21] has
demonstrated a correspondence between contracting and expanding curvature flows
of n-dimensional hypersurfaces in the sphere; our results in this article may be con-
sidered a companion of the contraction results of that article, since we replace the
condition that the normal speed be concave and inverse concave with the require-
ment that n = 2 or the initial hypersurface is axially symmetric about some axis.
Some other results related to our setting are as follows. Andrews, Han, Li and
Wei [10] have proved noncollapsing results for classes of flow in the ambient sphere
(and in hyperbolic space) similar to those considered in this article. Nguyen has
obtained convexity and cylindrical estimates for mean curvature flow in the sphere
[38]. Wei and Xiong [41] have used curvature flows to prove Alexandrov-Fenchel
type inequalities for convex hypersurfaces in the sphere (and in hyperbolic space),
building on earlier work of Makowski and Scheuer [36]. Bryan, Ivaki and Scheuer
have classified ancient solutions [17] and obtained Harnack inequalities for a class
of curvature flows of hypersurfaces of the sphere [16], the latter complementing a
similar result for the mean curvature flow [15].

In this article we will use notation similar to that in [26] and [2]. We consider a
smooth immersion ϕ0 : Sn → S

n+1. We seek a solution ϕ : Sn × [0, T ) → S
n+1 to

the following system of partial differential equations:

(1)
∂

∂t
ϕ (x, t) = −F (W (x, t)) ν (x, t) ,

with initial condition ϕ (x, 0) = ϕ0 (x). Here ν (x, t) is a unit normal in TSn+1 to
ϕt (S

n) = ϕ (Sn, t) = Mt at ϕ (x, t), while W (x, t) is the Weingarten map of Mt at
ϕt (x) and F is the normal speed function. F satisfies the following conditions

Conditions 1.1.

a) F (W) = f (κ (W)) where κ (W) gives the eigenvalues of W and f is a
smooth, symmetric function defined on the positive cone

Γ = {κ = (κ1, . . . , κn) ∈ R
n : κi > 0 for all i = 1, 2, . . . , n} .

b) f is strictly increasing in each argument: ∂f
∂κi

> 0 for each i = 1, . . . , n at
every point of Γ.

c) f is degree-one homogeneous: f (kκ) = kf (κ) for any k > 0.
d) f is strictly positive on Γ and f (1, . . . , 1) = 1.

In Sections 5 and 6 we also consider speed F = K = det (W), i.e. the Gauss
curvature flow. To our knowledge Gauss curvature flow of hypersurfaces of the
sphere has not been considered before. The most relevant results for Gauss cur-
vature flow in Euclidean space are Chou’s proof that convex initial hypersurfaces
shrink to points [40], Chow’s similar result for flows by positive powers of the Gauss
curvature [19], with roundness of the point under rescaling in case of power 1

n and
Andrews’ proof of the Firey conjecture [3], that is, roundness of the point under
rescaling of Gauss curvature flow of surfaces. Roundness of the final point was also
recently shown for flows of centrally symmetric hypersurfaces in Euclidean space by
powers larger than 1 of the Gauss curvature [9]. Self-similar axially symmetric sur-
faces contracting in Euclidean space were considered in [29] while axially symmetric
surfaces with boundary conditions were considered in [30].
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The new results in this article are the following

Theorem 1.2. Let M0 be a closed, smooth, strictly convex hypersurface without
boundary smoothly embedded in S

n+1 of sectional curvature σ. If n > 2 suppose M0

is axially symmetric. Let F satisfy Conditions 1.1, or F = K. Then there exists
a unique family of smooth, strictly convex surfaces {Mt = ϕ (Mn)}0≤t<T satisfying

(1), with initial condition ϕ (·, 0) = ϕ0 (S
n) = M0. The solution exists on a finite

maximal time interval [0, T ), is axially symmetric if M0 is axially symmetric and
the images converge uniformly to a point p ∈ S

n as t → T . The rescaled immersions
given by ϕ̃τ (x) =

1
Θ(t)ϕ (x− p, t) converge in C∞ to the unit sphere with centre at

the origin in Euclidean space. The convergence is exponential with respect to the
rescaled time parameter τ = − ln (Θ).

The remainder of this article is structured as follows. In Section 2, we set up
further notation, state some known facts and the necessary evolution equations and
characterise certain terms in these at local extrema. In Section 3, we discuss the
case of surfaces contracting in S

3 by F satisfying Conditions 1.1, while in Section 4
we will consider contracting axially symmetric hypersurfaces contracting by these
F . In Sections 5 and 6 we use a different curvature pinching quantity to obtain
our results for the Gauss curvature flow of surfaces in S

3 and axially symmetric
hypersurfaces in S

n+1 respectively.

2. Preliminaries

As further notation we will use g = {gij}, A = {hij} and W =
{
hi

j

}
to denote

respectively the metric, second fundamental form and Weingarten map of Mt. The
mean curvature of Mt is H = gijhij = hi

i and the norm of the second fundamental

form is |A|2 = gijglmhilhjm = hj
lh

l
j , where gij is the (i, j)-entry of the inverse

of the matrix (gij). Throughout this paper we sum over repeated indices unless
otherwise indicated. Raised indices indicate contraction with the metric of Mt.

We will denote by
(
Ḟ kl

)
the matrix of first partial derivatives of F with respect

to the components of its argument:

∂

∂s
F (A+ sB)

∣∣∣∣
s=0

= Ḟ kl (A)Bkl.

Similarly for the second partial derivatives of F we write

∂2

∂s2
F (A+ sB)

∣∣∣∣
s=0

= F̈ kl,rs (A)BklBrs.

We will also use the notation

ḟi (κ) =
∂f

∂κi
(κ) and f̈ij (κ) =

∂2f

∂κiκj
(κ) .

Relationships between derivatives of F and those of f are well known (see, for exam-
ple, [5]). Unless otherwise indicated, throughout this paper we will always evaluate
partial derivatives of F at W and partial derivatives of f at κ (W). Two important
relationships are the following: in a local orthonormal frame diagonalising W ,

Ḟ kl (W) = ḟk (κ) δkl
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and for any symmetric matrix B we have

(2) F̈ pq,rs (W)BpqBrs = f̈prBppBrr + 2
∑
p<r

ḟp (κ)− ḟr (κ)

κp − κr
(Bpr)

2
.

Formula (2) makes sense as a limit in the case of any repeated eigenvalues of W .
There are several geometric identities we will need for hypersurfaces of general

Riemannian manifolds Nn+1. For details of these we refer the reader to [2, 25].

Lemma 2.1. The following geometric relations hold for hypersurfaces of Sn+1:

(i) The Codazzi equations ∇ihjk = ∇jhik.

(ii) The Gauss equations Rijkl = hikhjl − hilhjk +Rijkl.
(iii) A Simons’ type identity

∇i∇jhkl = ∇k∇lhij + hijh
p

k hpl − hklh
p

i hpj + hilh
p

k hpj − hkjh
p

i hpl + h p
l Rikjp

− h p
j Rkilp + h p

k Riljp − h p
i Rkjlp + hijRk0l0 − hklRi0j0.

We adopt a coordinate system as in [25] for example, where index 0 corresponds to
the normal direction to Mt; other indices run from 1 to n. Above ∇ denotes the
covariant derivative on Mt.

We remark that the Codazzi equations have exactly the same form for hyper-
surfaces of Sn+1 as for those of Rn+1, that is, the tensor ∇A is totally symmetric.
Further, no ∇R terms appear in the Simons’ identity above (unlike the case for
hypersurfaces of general ambient spaces) since S

n+1 has constant curvature. In
addition to the remark in part (iii) above, when dealing with axially symmetric
hypersurfaces we will use a coordinate system where index 1 corresponds to the
direction tangent to the generating curve of Mt.

In view of Conditions 1.1, (b), short-time existence of a smooth, convex solution
to (1) given smooth, convex initial data ϕ0 (M

n) is known. Short-time existence
for the Gauss curvature flow with convex initial data holds similarly. We shall
not concern ourselves with minimal regularity requirements here. We refer the
interested reader to [2] where an appropriate graphical parametrisation is developed
in detail that applies in S

n+1 and in more general ambient spaces. The reader
might also wish to consult [23] where (1) is converted into an appropriate form and
[35, Theorem 8.4.1] is applied. Another general treatment appears in [14]. In the
case of axially symmetric initial data, once a parametrisation is fixed to remove
the degeneracy with respect to tangential diffeomorphisms in (1), it is clear that
evolving hypersurface Mt remains axially symmetric.

We will require the following evolution equations corresponding to geometric
quantities of Mt evolving under (1). Derivations are as in [2] (see also [28] and, for
the Euclidean case, [1], for example). Since we will also be using these for the flow
by Gauss curvature, we write the equations for speed F homogeneous of degree α
in the principal curvatures.

Lemma 2.2. Under the flow (1),

(i) the metric evolves according to

∂

∂t
gij = −2Fhij;
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(ii) the Weingarten map evolves according to

∂

∂t
hi

j = Lhi
j + F̈ kl,rs∇ihkl∇jhrs + Ḟ kl

(
h p
k hpl +Rk0l0

)
hi

j

+ gimḞnl
(
h p
l Rmnjp − h p

j Rnmlp + h p
n Rmljp − h p

mRnjlp

)
,

where L denotes the operator Ḟ kl∇k∇l. It follows from (ii) that

(iii) any degree β homogeneous function G (W) = g (κ (W)) evolves according
to

(3)
∂

∂t
G = LG+

(
ĠijF̈ kl,rs − Ḟ ijG̈kl,rs

)
∇ihkl∇jhrs + βḞ kl

(
h p
k hpl +Rk0l0

)
G

+ 2ḞnlĠjm
(
h p
l Rmnjp − h p

j Rnmlp

)
+ (1− α) Ġij

(
h p
i hpj +Ri0j0

)
F .

In particular,

(iv) the speed function F evolves according to

∂

∂t
F = LF + Ḟ kl

(
h p
k hpl +Rk0l0

)
F .

Remarks. (1) From (iv) above we have, in coordinates that diagonalise W at
a minimum of F ,

d

dt
min
Mt

F ≥ ḟk
(
κ2
k + σ

)
f ,

from which we observe that the minimum of F does not decrease under the
flow.

(2) Under (1), the area of Mt changes according to

d

dt
|Mt| = −2

∫
Mt

HF dμ.

Once we have shown convexity is preserved we can see that the area of Mt

is decreasing under (1).

In this paper we will work in particular with functions G that are homogeneous
of degree zero. We have the following:

Proposition 2.3. Let F be homogeneous of degree one. In the case n = 2, or
if n ≥ 2 and the hypersurface Mt is axially symmetric, then at a local extremum
of a degree zero homogeneous function G of the principal curvatures, where Ġ is
nondegenerate, the terms in the evolution equation of Lemma 2.2, (iii) simplify, in
coordinates that diagonalise the Weingarten map, to

(4)
(
ĠijF̈ kl,rs − Ḟ ijG̈kl,rs

)
∇ihkl∇jhrs =

2fġ1

κ2 (κ2 − κ1)

[
(∇1h12)

2 + (∇2h12)
2
]

and

(5) Ḟ klĠij
(
h p
l Rikjp − h p

j Rkilp

)
=

fġ1

κ2
(κ2 − κ1)R1212.

Proof of Proposition 2.3. First note that in either setting, since f is degree one
homogeneous and g is degree zero homogeneous we have

ḟ1κ1 + (n− 1) ḟ2κ2 = f and ġ1κ1 + (n− 1) ġ2κ2 = 0,
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where the derivatives are evaluated at points of the form (κ1, κ2, . . . , κ2). For (4),
the calculation is the same as in [7, Section 3] using the homogeneity of F and G
and expressions for the first and second derivatives of these functions in terms of
those of f and g. Factors of (n− 1) appear in the axially symmetric case but in
the end these cancel out.

For (5), we have in our choice of coordinates

Ḟ klĠij
(
h p
l Rikjp − h p

j Rkilp

)
= ḟkġi

(
κkRikik − κiRkiki

)
= (n− 1)

(
ḟ1ġ2 − ḟ2ġ1

)
(κ1 − κ2)R1212.

Using now the homogeneity of f and of g, (5) follows. �

3. Contracting convex surfaces

As in [7], we consider the function G (W) = g (κ (W)) where

g (κ1, κ2) =
(κ2 − κ1)

2

(κ1 + κ2)
2 .

This is a degree β = 0 homogeneous function that gives a pointwise measure of the
difference between the principal curvatures. The evolution equation for G under (1)
is given by Lemma 2.2 (iii). Assuming κ2 ≥ κ1, the ratio of the principal curvatures
is related to g via

(6)
κ2

κ1
=

2

1−√
g
− 1.

Theorem 3.1. Under the flow (1), the maximum value of the curvature pinching
ratio does not increase.

Proof. We may assume the maximum of G is nonzero since otherwise G ≡ 0 so
Mt is totally umbilic and therefore a sphere (see, for example, [39]). We have, by
direct calculation, using coordinates that diagonalise the Weingarten map at the
maximum,

ġ1 = −4κ2 (κ2 − κ1)

(κ1 + κ2)
3 .

In view of (4) it follows that at a spatial maximum of G the gradient term in (3) is
nonpositive. Similarly, in view of (5), the zero order term in the evolution equation
is also nonpositive. It follows by the maximum principle that maxMt

G does not
increase. In view of (6), it follows that the maximum of the pinching ratio does not
increase. �

With the pinching ratio of the evolving surface Mt controlled, our evolution
equations are uniformly parabolic and we are in a position to obtain regularity
estimates for the evolving hypersurfaces and complete the proof of Theorem 1.2.
As the argument is relatively standard, we will just provide an outline here. As a
first consequence we have

Corollary 3.2. The maximal existence time T of a solution to (1) is finite. More-
over, we have for all t < T ,

F ≥ Fmin (0)√
1− 2cF 2

min (0) t
,

where Fmin (0) = minM0
F and c > 0 is a constant.
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Proof. As in Remark 1 following Lemma 2.2, we have that under (1) the minimum
of F satisfies for almost every t

d

dt
min
Mt

F ≥ ḟk
(
κ2
k + σ

)
f ≥ ḟkκ2

k ≥ cf3,

where the last step follows for some constant c > 0 in view of Theorem 3.1. This
implies that minMt

F → ∞ in finite time T . Moreover, the explicit lower bound
follows as in [11, Lemma 2.5]. �

Completion of the proof of Theorem 1.2. Contraction of solution surfaces to a point
p in finite time follows exactly as in [21, Section 6]. For regularity, first note we
have a lower speed bound under the evolution from Corollary 3.2, while an upper
bound on time intervals [δ, t] ⊂ [0, T ) follows via an argument related to that of Tso
in Euclidean space [40]; the variant needed here appears in [21, Section 6]. Speed
bounds imply curvature bounds via monotonicity of F and Theorem 3.1. Evolution
equations are thus uniformly parabolic on time intervals [δ, t]. Introducing geodesic
polar coordinates, we may infer that the polar graph function for Mt, denoted u,
is C2,α without needing convexity or concavity of F , using the result of Andrews
[7]. Higher order regularity follows via standard Schauder estimates (see, e.g. [34]).
Estimates may be extended to [0, t] using short-time existence.

Similar arguments as in [21, Section 7] show that under rescaling the solution
surfaces converge to the sphere. Let Θ (t;T ) denote the radius of a geodesic sphere
that shrinks to a point at time T , the precise extinction time for the flow (1) with

given initial data ϕ0. The rescaled speed F̃ := ΘF satisfies a Tso-type estimate
([21, Lemma 7.2]); this provides an upper bound on the rescaled principal curvatures

Θκi. A lower bound on F̃ now follows via the Krylov-Safonov Harnack inequality
[31] thereby providing a lower bound on the rescaled principal curvatures (the
ratio of principal curvatures is unchanged under the rescaling). Given uniform
parabolicity, arguments as in the previous paragraph but for the rescaled polar
graph function ũ (·, τ ) = u

Θ provide regularity for the rescaled equation with rescaled
time parameter τ = − lnΘ. To see finally that the limiting surface (which exists
via arguments as in [24, Section 1]) is a sphere we may use the strong maximum
principle: the pinching ratio of the rescaled principal curvatures must be strictly
decreasing unless it is identically constant. In view of the zero order term in (3),
this constant must be zero and consequently the rescaled surface is a sphere. This
completes the proof of Theorem 1.2. �

4. Contracting convex axially symmetric hypersurfaces

In this section we adapt the previous argument to the case of convex axially
symmetric hypersurfaces contracting in S

n+1, similarly to the adaptation of the
result of [7] for convex surfaces in R

3 to axially symmetric hypersurfaces in R
n+1

in [37].

Theorem 4.1. Under the flow (1), the maximum value of the pinching ratio of the
axially symmetric hypersurface Mt does not deteriorate.

Proof. The proof is similar to that of Theorem 3.1. The function G is now

G (W) =
n

∣∣A0
∣∣2

H2
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corresponding to

g (κ (W)) =
n

(
κ2
1 + . . .+ κ2

n

)
− (κ1 + . . .+ κn)

2

(κ1 + . . .+ κn)
2

and we will be working at points of the form (κ1, κ2, . . . , κ2), that is, (n− 1) of the
principal curvatures are equal. Again G evolves under (1) according to (3) and we
may assume its maximum is positive. We have in coordinates that diagonalise the
Weingarten map at a maximum of G,

ġ1 = −2n (n− 1)κ2 (κ2 − κ1)

H3
.

It follows in view of equation (4) that the ∇A term in (3) is nonpositive. From (5)
we also have

2Ḟ klĠij
(
h p
l Rikjp − h p

j Rkilp

)
= −4n (n− 1)F

H3
(κ2 − κ1)

2 R1212

which is also nonpositive.
Hence the maximum value of G does not increase under the flow (1) and so the

pinching ratio does not deteriorate under the flow. �
The remainder of the proof of Theorem 1.2 in this case is similar to that in the

previous section; the case of axially symmetric hypersurfaces in R
n+1 appears in

[37]. To see that the point to which the solution contracts is asymptotically round
we again have for the rescaled limit flow by the strong maximum principle that G
is identically constant. If this constant is zero, then the rescaled hypersurface is
totally umbilic and therefore a sphere. If this constant is positive, then (3) implies
that ∇1h12 ≡ 0 and ∇2h12 ≡ 0. The Codazzi equations then imply ∇2h11 ≡ 0 and
∇1h22 ≡ 0. Using now that ∇G ≡ 0 we see that ∇1h11 ≡ 0 and ∇2h22 ≡ 0, so
∇A ≡ 0 and the rescaled hypersurface is again a sphere (and therefore G ≡ 0 in
any case). �

5. Surfaces contracting by their Gauss curvature

In this section we obtain a pinching estimate using the degree two homogeneous
function used in the case of surfaces contracting by their Gauss curvature in Eu-
clidean space in [3]. This estimate has also been previously noticed by Andrews
and Chen [8].

Setting Q = 2
∣∣A0

∣∣2 as in [3] we have using Lemma 2.2, (iii),

Lemma 5.1. In the case n = 2, under the flow (1) with F = K, the function Q
evolves according to

(7)
∂

∂t
Q = LQ− 2K̇ij∇iH∇jH + 2HK̈kl,rs∇ihkl∇ihrs − 2σHQ.

Proposition 5.2. Under the flow (1),

sup
Mt

|κ1 (x, t)− κ2 (x, t)| ≤ sup
y∈M0

|κ1 (y, 0)− κ2 (y, 0)| =: cp.

Proof. We apply the maximum principle to equation (7), similarly as in [3, Propo-
sition 3]. As remarked earlier, with the ambient space S

3, the Codazzi equations
have exactly the same form as in Euclidean space, so they may be used exactly the
same way as in [3]. The only additional term in (7) as compared with the Euclidean
case clearly has the right sign for applying the maximum principle. �
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From Remark 1 after Lemma 2.2 we know that the minimum of the Gauss
curvature does not decrease under the flow, that is, K ≥ K := minM0

K. We use
this together with Proposition 5.2 to obtain a bound on the curvature pinching
ratio.

Corollary 5.3. There exist constants 0 < C ≤ C such that, under the Gauss
curvature flow (1),

C ≤ κ1

κ2
≤ C

as long as the solution exists.

Proof. Similarly as in [8, Corollary 4] for example, we write

0 ≤ κ1

κ2
+

κ2

κ1
− 2 =

(κ1 − κ2)
2

κ1κ2
≤ cp

K

and the result follows. �

Remark. In view of Corollary 5.3 and the lower bound on K, we have that each of
the principal curvatures are uniformly bounded below by positive constants under
(1).

That the surfaces Mt shrink to a point in finite time now follows by similar
arguments as Section 3 above. For regularity, it is convenient to work directly with
the rescaled flow, with K̃ = ΘK, where Θ (t;T ) is now the radius of the geodesic
sphere that shrinks to a point at time T under the Gauss curvature flow, where
T is again the extinction time of the flow with given initial data ϕ0. A uniform
upper bound on the rescaled Gauss curvature flow is obtained in a similar way;
together with Corollary 5.3, which is invariant under the rescaling, we obtain an
upper curvature bound.

Arguments similar to those in [18, Section 6] imply a decaying exponential bound
on K, similar bounds on H and on the minimum principal curvature follow via
Corollary 5.3. It follows that the rescaled evolution equations are uniformly par-
abolic on any finite time interval, so standard arguments yield regularity of the
rescaled solution on such time intervals. That the solution approaches a sphere can
now be argued as follows. For the unnormalised flow, the maximum of Q is strictly
decreasing unless Mt is a sphere: if Q attained a later maximum, then Q would be
identically constant, by the strong maximum principle. Calculations as in Section
6 show that in this case the coefficients of the remaining gradient terms in (7) are
nonpositive, as is the zero order term, so, in particular, the zero order term must be
identically equal to zero. Since H has a positive lower bound for the unnormalised
flow (via pinching and the lower bound on K), it must be that Q ≡ 0 and Mt would
be a shrinking sphere. Hence the maximum of Q is strictly decreasing unless Mt is
a shrinking sphere and if a smooth limit for the rescaled flow exists, then it must
be the sphere.

To see now that a smooth limit for the rescaled flow exists, we need to overcome
the fact that the flow is not uniformly parabolic (our lower bound on the rescaled
principal curvatures decays to zero which could cause a degeneracy of operator L).
We may overcome this problem by rewriting the evolution equation for the rescaled
Gauss curvature K̃ as a porous medium equation and then applying the Hölder
estimate of DiBenedetto and Friedman [20, Theorem 1.3]. The details of application
of this estimate including the conditions to check are almost exactly the same as in
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[18, Section 7.2]; we refer the reader to this article for details. The only difference
in our situation is the additional term involving the sectional curvature of S3 in the
evolution equation for K̃, however this leads to no additional complications. (The
lower order term introduced into evolution equations for our rescaled quantities
has a comparable form to the global term in [18].) The resulting uniform Hölder

estimate allows us to conclude that a smooth limit hypersurface M̃∞ exists, at least
for a subsequence of times, by the Arzela-Ascoli theorem and we know this limit
hypersurface is the sphere. Exponential convergence of the rescaled solutions to
the unit sphere may now be obtained using a standard linearisation of the flow and
stability argument. �

6. Contracting axially symmetric hypersurfaces in S
n+1

by their

Gauss curvature

In this section we extend the results of Section 5 to the case of convex, axially
symmetric hypersurfaces of Sn+1 contracting by their Gauss curvature. We use the

same function, Q = n
∣∣A0

∣∣2 to measure the difference between principle curvatures,
however, for n > 2, the evolution equation for Q is more complicated. We begin
with a geometric result for axially symmetric hypersurfaces.

Lemma 6.1. For axially symmetric hypersurfaces,

HQ− (n− 1)
(
nC −H |A|2

)
= − (n− 1) (n− 2)κ1 (κ1 − κ2)

2 .

Proof. For axially symmetric hypersurfaces,

HQ = [κ1 + (n− 1)κ2] (n− 1) (κ1 − κ2)
2

and

nC −H |A|2 =
∑
i<j

(κi + κj) (κi − κj)
2
= (n− 1) (κ1 + κ2) (κ1 − κ2)

2
,

where for the first step we used the calculation as in [27, Lemma 1.4, (iii)]. Com-
bining these gives the result. �

Using Lemma 2.2, (iii) we have the following evolution of Q:

Lemma 6.2. Under the flow (8),

(8)
∂

∂t
Q = LQ+

(
Q̇ijK̈kl,rs − K̇ijQ̈kl,rs

)
∇ihkl∇jhrs

+ 2K
[
HQ− (n− 1)

(
nC −H |A|2

)]
− 2KH−1

−1Qσ,

where H−1
−1 = 1

κ1
+ 1

κ2
+ . . .+ 1

κn
is the reciprocal of the harmonic mean curvature.

Proposition 6.3. Under the flow (1) of an axially symmetric hypersurface Mt,

sup
Mt

|κ1 (x, t)− κ2 (x, t)| ≤ sup
M0

|κ1 (x, t)− κ2 (x, t)| .

Proof. We apply the maximum principle to the evolution equation to (8). First
observe that while Mt is convex the σ term is clearly nonpositive; the other zero
order term is also clearly nonpositive by Lemma 6.1. It remains to check the sign
of the gradient terms at a maximum of Q. We may assume at such a point Q > 0
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since otherwise Q ≡ 0 and Mt is a shrinking sphere. In view of axial symmetry we
have

(
Q̇ijK̈kl,rs − K̇ijQ̈kl,rs

)
∇ihkl∇jhrs

=
(
q̇ik̈11 − k̇iq̈11

)
(∇ih11)

2
+ 2 (n− 1)

(
q̇ik̈12 − k̇iq̈12

)
∇ih11∇ih22(9)

+ (n− 1)2
(
q̇ik̈22 − k̇iq̈22

)
(∇ih22)

2

+
2 (n− 1)

κ1 − κ2

[
q̇i

(
k̇1 − k̇2

)
− k̇i

(
q̇1 − q̇2

)]
(∇ih12)

2 ,

where Q (W) = q (κ) and K (W) = k (κ) = κ1κ2 . . . κn. Since

∇iQ = q̇1∇ih11 + (n− 1) q̇2∇ih22

we have

∇1h11=
1

q̇1
[
∇1Q−(n−1) q̇2∇1h22

]
and ∇2h22=

1

(n−1) q̇2
[
∇2Q−q̇1∇2h11

]
.

Substituting these into (9) we find

(
Q̇ijK̈kl,rs − K̇ijQ̈kl,rs

)
∇ihkl∇jhrs

=
q̇1k̈11 − k̇1q̈11

(q̇1)2
(∇1Q)2

+
2 (n− 1)

(q̇1)2

[
q̇1

(
q̇1k̈12 − k̇1q̈12

)
− q̇2

(
q̇1k̈11 − k̇1q̈11

)]
∇1h22∇1Q

+
(n− 1)

2

(q̇1)
2

[(
q̇2

)2 (
q̇1k̈11 − k̇1q̈11

)
− 2q̇2

(
q̇1k̈12 − k̇1q̈12

)

+
(
q̇1k̈22 − k̇1q̈22

)]
(∇1h22)

2

+
q̇2k̈22 − k̇2q̈22

(q̇2)2
(∇2Q)2

+
2

(q̇2)
2

[
q̇2

(
q̇2k̈12 − k̇2q̈12

)
− q̇1

(
q̇2k̈22 − k̇2q̈22

)]
∇2h11∇2Q

+
1

(q̇2)2

[(
q̇1

)2 (
q̇2k̈22 − k̇2q̈22

)
− 2q̇1

(
q̇2k̈12 − k̇2q̈12

)

+
(
q̇2k̈11 − k̇2q̈11

)]
(∇2h11)

2

+
2 (n− 1)

κ1 − κ2

[(
q̇2k̇1 − q̇1k̇2

)
(∇1h12)

2 + (n− 1)
(
q̇2k̇1 − q̇1k̇2

)
(∇2h12)

2
]
.

At a maximum of Q, all the ∇iQ terms vanish. Using the Codazzi symmetry,

Lemma 2.1, (i), It remains to check the coefficients of (∇1h22)
2
and (∇2h11). Using

q̇i = 2nκi − 2H,q̈ij = 2nδij − 2,k̇i =
K

κi
and k̈ij =

K

κiκj
− K

κiκj
δij ,
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we find that the coefficient of (∇1h22)
2 is equal to −2 (n− 1)

(
n2 + 1

)
κn−1
2 and the

coefficient of (∇2h11)
2 is equal to −2 (n− 1)n2κ1κ

n−2
2 . Each of these are clearly

negative. We may therefore conclude that the maximum of Q does not decrease
under the flow, completing the proof. �

The proof of Theorem 1.2 in this case is now completed using similar arguments
as in the previous sections. Observe that for the analogue of Corollary 5.2 we would
get a factor of κn−2

2 on the right hand side. However, Proposition 6.3 together with
an upper speed bound that may be obtained as in [21, Section 6] but for the
unrescaled flow, allow us to conclude that the curvatures are bounded above, while
Mt encloses a small geodesic ball. Hence we obtain that the curvature pinching ratio
is bounded. We obtain regularity of the unrescaled solution up to any particular
time prior to the maximal time. The curvature pinching ratio bounds also hold for
the rescaled solutions; similar arguments as in Section 5 complete the proof. �

Remark. A similar result to that of Section 6 holds in the case of ambient Eu-
clidean space, generalising Andrews’ proof of the Firey conjecture [3] to the fate
of rolling axially symmetric hyperstones. This setting has also been considered by
Ben Andrews and Haizhong Li [12].
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