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BILINEAR OPERATORS WITH HOMOGENEOUS SYMBOLS,

SMOOTH MOLECULES, AND KATO-PONCE INEQUALITIES

JOSHUA BRUMMER AND VIRGINIA NAIBO

(Communicated by Svitlana Mayboroda)

Abstract. We present a unifying approach to establish mapping properties
for bilinear pseudodifferential operators with homogeneous symbols in the set-
tings of function spaces that admit a discrete transform and molecular decom-

positions in the sense of Frazier and Jawerth. As an application, we obtain
related Kato-Ponce inequalities.

1. Introduction and main results

As the main purpose of this note we present a unifying approach towards estab-
lishing mapping properties of the form

(1.1) ‖Tσ(f, g)‖Y � ‖f‖X ‖g‖L∞ + ‖f‖L∞ ‖g‖X ,

where X and Y are function spaces admitting a molecular decomposition and a
ϕ-transform in the sense of Frazier-Jawerth as introduced in [10, 11], and Tσ is a
bilinear pseudodifferential operator given by

Tσ(f, g)(x) :=

∫
R2n

σ(x, ξ, η)f̂(ξ)ĝ(η)e2πix·(ξ+η) dξ dη ∀x ∈ Rn,

with a bilinear symbol σ in the class ḂS
m

1,1 for some m ∈ R, that is, σ is such that
for all multiindices α, β, γ ∈ Nn

0 , it holds

(1.2) ‖σ‖γ,α,β := sup
(x,ξ,η)∈R3n\{0}

|∂γ
x∂

α
ξ ∂

β
η σ(x, ξ, η)|(|ξ|+ |η|)−m−|γ|+|α+β| < ∞.

When m = 0, the x-independent symbols in ḂS
0

1,1 constitute the well-known

class of Coifman-Meyer bilinear multipliers. The bilinear forbidden class BS0
1,1

is defined as the family of symbols satisfying (1.2) with m = 0 and with |ξ| +
|η| replaced by 1 + |ξ| + |η|. Note that if σ belongs to BS0

1,1, then σ = σ1 + σ2

where σ1 is in ḂS
0

1,1 and σ2 is a smoothing symbol supported in {(x, ξ, η) : |ξ| +
|η| ≤ 1}. We refer the reader to the work of Coifman and Meyer in [7] and the
references it contains for pioneering work related to such symbols. As we will
describe next, these two classes of symbols possess distinct essential features, and,
as a noteworthy consequence of our Theorem 1.1 below, it will follow that they
share various mapping properties of the form (1.1).

Received by the editors December 14, 2016 and, in revised form, May 5, 2017.
2010 Mathematics Subject Classification. Primary 47G30, 42B35; Secondary 46E35.
Key words and phrases. Pseudodifferential operators, homogeneous symbols, smooth

molecules, Kato-Ponce inequalities.
The authors were partially supported by the NSF under grant DMS 1500381.

c©2017 American Mathematical Society

1217

http://www.ams.org/proc/
http://www.ams.org/proc/
http://dx.doi.org/10.1090/proc/13841


1218 JOSHUA BRUMMER AND VIRGINIA NAIBO

Coifman-Meyer bilinear multipliers can be realized as bilinear Calderón-Zygmund
operators. As such, they inherit their mapping properties; for instance, Calderón-
Zygmund operators are bounded in the settings of Lebesgue spaces, BMO, the
Hardy space H1 (Grafakos-Torres [15]), and in weighted Lebesgue spaces (Lerner
et al. [21]).

On the other hand, the bilinear forbidden class BS0
1,1 is known to produce bilin-

ear pseudodifferential operators with a bilinear Calderón–Zygmund kernel, but, in
general, they are not bilinear Calderón–Zygmund operators (Bényi-Torres [4]). In
particular, they do not always possess mapping properties of the form Lp1 ×Lp2 →
Lp with 1 < p1, p2 ≤ ∞ and 1/p1 + 1/p2 = 1/p. Mapping properties for bilinear
pseudodifferential operators with symbols in BS0

1,1 have been studied in Bényi [2]
in the setting of Besov spaces, in Bényi-Torres [4] and Bényi-Nahmod-Torres [3] in
the scale of Lebesgue-Sobolev spaces, and in Naibo [23] and Koezuka-Tomita [20]
in the context of Besov and Triebel-Lizorkin spaces.

In our main result, Theorem 1.1 below, we prove molecular estimates on Tσ, with

σ ∈ ḂS
m

1,1, when one of its arguments is a fixed function and its other argument is
a smooth molecule.

Theorem 1.1. Given m ∈ R and σ ∈ ḂS
m

1,1, there exist σ1, σ2 ∈ ḂS
m

1,1 with

Tσ = Tσ1 + Tσ2 and such that if 1 ≤ r ≤ ∞, 0 < M < ∞, ψ ∈ S(Rn), with ψ̂
supported in {ξ ∈ Rn : 1

2 < |ξ| < 2}, and γ ∈ Nn
0 , it holds that

|∂γTσ1(ψν,k, g)(x)| �
2

νn
2 2ν(m+|γ|)2

νn
r

(1 + |2νx− k|)M ‖g‖Lr ∀x ∈ Rn

and

|∂γTσ2(f, ψν,k)(x)| �
2

νn
2 2ν(m+|γ|)2

νn
r

(1 + |2νx− k|)M ‖f‖Lr ∀x ∈ Rn,

for every ν ∈ Z, k ∈ Zn and f, g ∈ S(Rn), and where

ψν,k(x) = 2
νn
2 ψ(2νx− k).

Here S(Rn) denotes the Schwartz class of smooth rapidly decreasing functions
defined on Rn; the notation � means ≤ C, where C is a constant that may depend
on some of the parameters used but not on the functions or variables involved.

1.1. A sample of applications of Theorem 1.1. In the case r = ∞, Theorem 1.1
implies that, up to uniform multiplicative constants, the functions

2−νmTσ1(ψν,k, g)/ ‖g‖L∞ and 2−νmTσ2(f, ψν,k)/ ‖f‖L∞

can be regarded as smooth molecules, as introduced in [10, 11] in the settings of
Besov and Triebel-Lizorkin spaces. Since smooth molecules also serve as building
blocks for a variety of other function spaces, Theorem 1.1 will apply to such spaces
as well.

As a concrete application, we will implement Theorem 1.1 in the scales of ho-
mogeneous Besov-type and Triebel-Lizorkin-type spaces. These spaces were in-
troduced and studied in Sawano-Yang-Yuan [25] and Yang-Yuan [28,29] as natural
spaces that extend and unify the scales of homogeneous Besov spaces, homogeneous
Triebel-Lizorkin spaces, and Q-spaces. The latter were introduced in Essén et al. [9]
as a refinement of BMO functions. In addition, as proved in [25], the Besov-type
and Triebel-Lizorkin-type spaces also contain or coincide with Besov-Morrey and
Triebel-Lizorkin-Morrey spaces.
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We refer the reader to Section 3 for detailed notation and precise definitions. In
the following, S0(R

n) denotes the closed subspace of functions in S(Rn) that have
vanishing moments of all orders; that is, f ∈ S0(R

n) if and only if f ∈ S(Rn) and∫
Rn xαf(x) dx = 0 for all α ∈ Nn

0 . For 0 < p, q ≤ ∞, set

(1.3) sp,q := n
(

1
min{1,p,q} − 1

)
and sp := n

(
1

min{1,p} − 1
)
.

By means of Theorem 1.1 and molecular techniques, we obtain the following map-
ping properties in the scales of homogeneous Besov-type and Triebel-Lizorkin-type
spaces.

Theorem 1.2. Let m ∈ R and σ ∈ ḂS
m

1,1. If 0 < p, q ≤ ∞, sp < s < ∞ and

0 ≤ τ < 1
p +

s−sp
n , it holds that

‖Tσ(f, g)‖Ḃs,τ
p,q

� ‖f‖Ḃs+m,τ
p,q

‖g‖L∞ + ‖f‖L∞ ‖g‖Ḃs+m,τ
p,q

∀f, g ∈ S0(R
n).

If 0 < p < ∞, 0 < q ≤ ∞, sp,q < s < ∞ and 0 ≤ τ < 1
p +

s−sp,q
n , it holds that

‖Tσ(f, g)‖Ḟ s,τ
p,q

� ‖f‖Ḟ s+m,τ
p,q

‖g‖L∞ + ‖f‖L∞ ‖g‖Ḟ s+m,τ
p,q

∀f, g ∈ S0(R
n).

Theorem 1.2 can be considered as a bilinear counterpart to Grafakos-Torres [14,
Theorems 1.1 and 1.2] (see also Torres [27]), where boundedness properties in ho-
mogeneous Besov and Triebel-Lizorkin spaces were addressed for linear pseudodif-

ferential operators with symbols in the class Ṡm
1,1, the linear analog to ḂS

m

1,1. In
turn, the (linear) results in [14] were extended to the setting of Besov-type and
Triebel-Lizorkin-type spaces in [25, Theorem 1.5]. We refer the reader to Hart-
Torres-Wu [17] where very different techniques are used to obtain estimates in the
spirit of those in Theorem 1.2 in the setting of Sobolev spaces for operators with
x-independent symbols and a limited amount of regularity.

In Remark 4.1 we address Theorem 1.2 in the cases corresponding to s ≤ sp and
s ≤ sp,q and show that analogous estimates are obtained, with a slightly different
range for the parameter τ, if a number of cancellation conditions are imposed on
the first adjoint of Tσ1 and on the second adjoint of Tσ2 , where σ1 and σ2 are as
in Theorem 1.1. In Remark 4.2 we give a version of Theorem 1.2 involving the Lr

norms of f and g instead of their L∞ norms.
The next corollary of Theorem 1.2 follows from the realization of Q-spaces as

special cases of Triebel-Lizorkin-type spaces (see Section 3.1.1).

Corollary 1.3. Let s, s+m ∈ (0, 1) and σ ∈ ḂS
m

1,1. If 1 ≤ q ≤ p ≤ ∞ and q �= ∞,
it holds that

‖Tσ(f, g)‖Qs,q
p

� ‖f‖Qs+m,q
p

‖g‖L∞ + ‖f‖L∞ ‖g‖Qs+m,q
p

∀f, g ∈ S0(R
n).

1.2. Applications to Kato-Ponce inequalities. As a consequence of Theorem
1.1 in the case σ ≡ 1, given a function space X that admits a molecular rep-
resentation and a ϕ-transform, we obtain the following fractional Leibniz rule or
Kato-Ponce inequality:

(1.4) ‖fg‖X � ‖f‖X ‖g‖L∞ + ‖f‖L∞ ‖g‖X .

Inequalities of the form (1.4) were proved by Kato-Ponce [18] in the case where
X is the Sobolev space W s,p(Rn), with 1 < p < ∞ and 0 < s < ∞, in relation
to Cauchy problems for the Euler and Navier-Stokes equations; prior work due
to Strichartz [26] treats the range n/p < s < 1, while the case of s ∈ N can be



1220 JOSHUA BRUMMER AND VIRGINIA NAIBO

obtained from the Leibniz rule and the Gagliardo-Nirenberg inequality. Later on,
Gulisashvili-Kon [16] showed (1.4) for the homogeneous space X = Ẇ s,p(Rn), for
the same range of parameters, in connection with the study of smoothing proper-
ties of Schrödinger semigroups. The estimates (1.4) also hold true in the settings of
Besov and Triebel-Lizorkin spaces and have applications to partial differential equa-
tions (see, for instance, Bahouri-Chemin-Danchin [1], Chae [5], Runst-Sickel [24]
and the references they contain). In particular, all such estimates imply that
X ∩ L∞(Rn) is an algebra under pointwise multiplication. Closely related ver-
sions to (1.4) were given by Christ-Weinstein [6] and Kenig-Ponce-Vega [19], in the
contexts of Korteweg-de Vries equations, and by Gulisashvili-Kon [16]. Extensions
to the cases of indices below 1 appear in Grafakos-Oh [13] and Muscalu-Schlag [22],
and versions in weighted and variable exponent space settings were proved in Cruz-
Uribe-Naibo [8].

In particular, in the scales of Besov-type and Triebel-Lizorkin-type spaces, The-
orem 1.2 yields the following new Kato-Ponce inequalities.

Corollary 1.4. If 0 < p, q ≤ ∞, sp < s < ∞ and 0 ≤ τ < 1
p +

s−sp
n , it holds that

‖fg‖Ḃs,τ
p,q

� ‖f‖Ḃs,τ
p,q

‖g‖L∞ + ‖f‖L∞ ‖g‖Ḃs,τ
p,q

∀f, g ∈ S0(R
n).

If 0 < p < ∞, 0 < q ≤ ∞, sp,q < s < ∞ and 0 ≤ τ < 1
p +

s−sp,q
n , it holds that

‖fg‖Ḟ s,τ
p,q

� ‖f‖Ḟ s,τ
p,q

‖g‖L∞ + ‖f‖L∞ ‖g‖Ḟ s,τ
p,q

∀f, g ∈ S0(R
n).

If 0 < s < 1, 1 ≤ q ≤ p ≤ ∞ and q �= ∞, it holds that

‖fg‖Qs,q
p

� ‖f‖Qs,q
p

‖g‖L∞ + ‖f‖L∞ ‖g‖Qs,q
p

∀f, g ∈ S0(R
n).

The article is organized as follows. In Section 2 we prove Theorem 1.1. Section 3
contains the definitions of Besov-type and Triebel-Lizorkin-type spaces, smooth
molecules, and the ϕ-transform. The proof of Theorem 1.2 and several closing
remarks are given in Section 4.

2. Proof of Theorem 1.1

Our first step towards the proof of Theorem 1.1 will be obtaining a representation

of a bilinear pseudodifferential operator with a symbol in ḂS
m

1,1 as a superposition
of paraproduct-like operators. Such representations can be traced back to the pio-
neering work of Coifman and Meyer; Lemma 2.1 gives a version of a decomposition
suited for our purposes, and its proof follows ideas inspired from [7, pp. 154-155].
We then state and prove Lemma 2.2, which procures a formula for the derivatives
of the building blocks, appropriately evaluated, given by Lemma 2.1. We close this
section with the proof of Theorem 1.1.

The Fourier transform of a tempered distribution f ∈ S ′(Rn) will be denoted by

f̂ ; in particular, we use the formula f̂(ξ) =
∫
Rn f(x)e−2πix·ξdx for f ∈ S(Rn).

Let θ be a real-valued infinitely differentiable function supported on (−2, 2) and

such that θ(t) + θ(1/t) = 1 for every t > 0. For σ ∈ ḂS
m

1,1, m ∈ R, define

σ1(x, ξ, η) := σ(x, ξ, η)θ
(

|η|
|ξ|

)
and σ2(x, ξ, η) := σ(x, ξ, η)θ

(
|ξ|
|η|

)
∀x, ξ, η∈Rn.

Simple computations show that σ1, σ2 ∈ ḂS
m

1,1 with∥∥σd
∥∥
γ,α,β

� sup
ᾱ≤α,β̄≤β

‖σ‖γ,ᾱ,β̄ for γ, α, β ∈ Nn
0 and d = 1, 2,
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where the implicit constant depends only on γ, α, β and θ, and we have

Tσ(f, g) = Tσ1(f, g) + Tσ2(f, g), ∀f, g ∈ S0(R
n).

Endowing S0(R
n) with the topology inherited from S(Rn), a standard argument

using integration by parts allows one to conclude that Tσ1 is continuous from
S0(R

n)×S(Rn) to S(Rn) and Tσ2 is continuous from S(Rn)×S0(R
n) to S(Rn). Let

Ψ,Φ ∈ S(Rn) be such that Ψ̂ and Φ̂ are real-valued, supp(Ψ̂) ⊂ {ξ : 1
2 < |ξ| < 2},∑

j∈Z
|Ψ̂(2−jξ)|2 = 1 for every ξ �= 0, Φ̂ ≡ 1 for |ξ| ≤ 4 and Φ̂ ≡ 0 for |ξ| > 10.

Lemma 2.1. Let σ ∈ ḂS
m

1,1. With the notation introduced above and given N > n,

there exist sequences of functions {m1
j(x, u, v)}j∈Z and {m2

j(x, u, v)}j∈Z defined for
x, u, v ∈ Rn such that if γ ∈ Nn

0 , then

(2.5) sup
x,u,v∈Rn

|∂γ
xm

d
j (x, u, v)| � 2j(m+|γ|), ∀j ∈ Z, d = 1, 2,

and, if f ∈ S0(R
n), g ∈ S(Rn) and x ∈ Rn, it holds that

(2.6) Tσ1(f, g)(x) =

∫
R2n

∑
j∈Z

m1
j (x, u, v)Δ

u
j f(x)S

v
j g(x)

dudv

(1 + |u|2 + |v|2)N

and

(2.7) Tσ2(g, f)(x) =

∫
R2n

∑
j∈Z

m2
j(x, u, v)S

u
j g(x)Δ

v
jf(x)

dudv

(1 + |u|2 + |v|2)N ,

where Δ̂u
j f(ξ) = Ψ̂u(2−jξ)f̂(ξ) with Ψu(x) := Ψ(x+u) and Ŝv

j g(ξ) = Φ̂v(2−jξ)ĝ(ξ)

with Φv(x) := Φ(x+ v).

Proof. We will prove (2.6), with the proof of (2.7) following analogously. Since the

support of |Ψ̂(2−jξ)|2σ1(x, ξ, η) is contained in {(x, ξ, η) : |η| ≤ 2|ξ| and 2j−1 <

|ξ| < 2j+1} ⊂ {(x, ξ, η) : |η| ≤ 2j+2} and Φ̂(2−jη) ≡ 1 for |η| ≤ 2j+2, we have

|Ψ̂(2−jξ)|2σ1(x, ξ, η) = |Φ̂(2−jη)|2|Ψ̂(2−jξ)|2σ1(x, ξ, η) ∀x, ξ, η ∈ Rn, j ∈ Z.

From this, the fact that
∑

j∈Z
|Ψ̂(2−jξ)|2 = 1 for ξ �= 0 and Fubini’s theorem, it

follows that if f ∈ S0(R
n) and g ∈ S(Rn), then

(2.8)

Tσ1(f, g)(x) =
∑
j∈Z

∫
R2n

σ1
j (x, 2

−jξ, 2−jη)Ψ̂(2−jξ)Φ̂(2−jη)f̂(ξ)ĝ(η) e2πix·(ξ+η) dξdη,

where σ1
j (x, ξ, η) := Ψ̂(ξ)Φ̂(η)σ1(x, 2jξ, 2jη).

Given multiindices γ, α, β ∈ Nn
0 , the Leibniz rule implies that ∂γ

x∂
α
ξ ∂

β
η σ

1
j can be

written as a linear combination of terms of the form
(2.9)

∂α1Ψ̂(ξ)∂β1Φ̂(η)(∂γ
x∂

α2

ξ ∂β2
η σ1)(x, 2jξ, 2jη)2j|α2+β2|, α1 + α2 = α, β1 + β2 = β.

Since σ1 ∈ ḂS
m

1,1, the absolute value of each term (2.9) can be bounded by a
multiple of

|∂α1Ψ̂(ξ)∂β1Φ̂(η)|2j|α2+β2|(|2jξ|+ |2jη|)m+|γ|−|α2+β2| � 2j(m+|γ|) ∀x, ξ, η ∈ Rn,

where we have used that ∂α1Ψ̂(ξ)∂β1Φ̂(η) is supported in {(ξ, η) : 1
2 < |ξ|+|η| < 12},

and the implicit constant is independent of j.
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Define m1
j(x, u, v) := (1 + |u|2 + |v|2)N ̂σ1

j (x, ·, ·)(u, v); by the above we have

|∂γ
xm

1
j (x, u, v)|

= (1 + |u|2 + |v|2)N
∣∣∣∣
∫
R2n

∂γ
xσ

1
j (x, ξ, η)

(1−Δξ,η)
Ne−2πi(u·ξ+v·η)

(1 + 4π2|u|2 + 4π2|v|2)N dξdη

∣∣∣∣
∼
∣∣∣∣∣
∫

1
2<|ξ|+|η|<12

(1−Δξ,η)
N (∂γ

xσ
1
j )(x, ξ, η)e

−2πi(u·ξ+v·η) dξdη

∣∣∣∣∣ � 2j(m+|γ|).

Finally, using that

σ1
j (x, 2

−jξ, 2−jη) =

∫
R2n

m1
j(x, u, v)e

2πi(u·2−jξ+v·2−jη) dudv

(1 + |u|2 + |v|2)N

in (2.8), after interchanging summation and integral signs justified by Fubini’s
theorem, we get (2.6). �

For each u, v ∈ Rn, set

σ1
u,v(x, ξ, η) :=

∑
j∈Z

m1
j (x, u, v)Ψ̂

u(2−jξ)Φ̂v(2−jη);

then Tσ1
u,v

(f, g)(x) =
∑

j∈Z
m1

j(x, u, v)Δ
u
j f(x)S

v
j g(x). Similarly define σ2

u,v. In our

next lemma we look at derivatives of Tσ1
u,v

(ψν,k, g) and Tσ2
u,v

(f, ψν,k).

Lemma 2.2. If γ ∈ Nn
0 , ν ∈ Z, k ∈ Zn, u, v ∈ Rn, g ∈ S(Rn) and ψ ∈ S(Rn) is

such that supp(ψ̂) ⊂ {ξ ∈ Rn : 1
2 < |ξ| < 2}, then

∂γTσ1
u,v

(ψν,k, g)(x)

= 2
νn
2

ν+1∑
j=ν−1

γ1+γ2+γ3=γ

Cγ1,γ2,γ3
2ν|γ−γ1| ∂γ1

x m1
j(x, u, v)

× (Φγ2

ν−j ∗ g(2−ν ·))(2νx+ 2ν−jv)Ψγ3

ν−j(2
νx− k + 2ν−ju),

where Φγ2

ν−j ,Ψ
γ3

ν−j ∈ S(Rn) are independent of g and ψν,k(x) = 2
νn
2 ψ(2νx− k). An

analogous formula holds for ∂γTσ2
u,v

(f, ψν,k) with f ∈ S(Rn).
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Proof. In view of the supports of ψ̂ and Ψ̂, the supports of ψ̂(2−ν ·) and Ψ̂(2−j ·)
only intersect if ν − 1 ≤ j ≤ ν + 1. We then have

Tσ1
u,v

(ψν,k, g)(x)

=

ν+1∑
j=ν−1

m1
j(x, u, v)

∫
R2n

Ψ̂u(2−jξ)Φ̂v(2−jη)ψ̂ν,k(ξ)ĝ(η)e
2πix·(ξ+η) dξ dη

=
ν+1∑

j=ν−1

m1
j(x, u, v)2

− νn
2

×
∫
R2n

Ψ̂u(2−jξ)Φ̂v(2−jη)e−2πi2−νk·ξψ̂(2−νξ)ĝ(η)e2πix·(ξ+η) dξ dη

=

ν+1∑
j=ν−1

2
νn
2 m1

j (x, u, v)

×
(∫

Rn

2νnĝ(2νη)Φ̂v(2ν−jη)e2πi2
νx·η dη

)(∫
Rn

Ψ̂u(2ν−jξ)ψ̂(ξ)e2πi(2
νx−k)·ξ dξ

)
.

Denoting

Fj(x)

:=m1
j (x, u, v)

(∫
Rn

2νnĝ(2νη)Φ̂v(2ν−jη)e2πi2
νx·η dη

)(∫
Rn̂

Ψu(2ν−jξ)ψ̂(ξ)e2πi(2
νx−k)·ξ dξ

)
and given a multiindex γ ∈ Nn

0 , we have

∂γFj(x) =
∑

γ1+γ2+γ3=γ

Cγ1,γ2,γ3
∂γ1
x m1

j(x, u, v)

×
(∫

Rn

2νnĝ(2νη)2ν|γ2|ηγ2Φ̂v(2ν−jη)e2πi2
νx·η dη

)

×
(∫

Rn

2ν|γ3|ξγ3Ψ̂u(2ν−jξ)ψ̂(ξ)e2πi(2
νx−k)·ξ dξ

)
=

∑
γ1+γ2+γ3=γ

Cγ1,γ2,γ3
2ν|γ−γ1| ∂γ1

x m1
j(x, u, v)

×
(∫

Rn

2νnĝ(2νη)ηγ2Φ̂(2ν−jη)e2πi(2
νx+2ν−jv)·η dη

)

×
(∫

Rn

ξγ3Ψ̂(2ν−jξ)ψ̂(ξ)e2πi(2
νx−k+2ν−ju)·ξ dξ

)
=

∑
γ1+γ2+γ3=γ

Cγ1,γ2,γ3
2ν|γ−γ1| ∂γ1

x m1
j(x, u, v)(Φ

γ2

ν−j ∗ g(2−ν ·))(2νx+ 2ν−jv)

×Ψγ3

ν−j(2
νx− k + 2ν−ju),

where Φ̂γ2

ν−j(η) := ηγ2Φ̂(2ν−jη) and Ψ̂γ3

ν−j(ξ) := ξγ3Ψ̂(2ν−jξ)ψ̂(ξ). Since

∂γ
xTσ1

u,v
(ψν,k, g)(x) =

ν+1∑
j=ν−1

2
νn
2 ∂γFj(x),

we get the desired result. �
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Proof of Theorem 1.1. Let σ ∈ ḂS
m

1,1, 1 ≤ r ≤ ∞, 0 < M < ∞, ψ ∈ S(Rn) such

that ψ̂ is supported in {ξ ∈ Rn : 1
2 < |ξ| < 2} and g ∈ S(Rn). With the notation

used above, Lemma 2.2 and (2.5) imply∣∣∣∂γTσ1
u,v

(ψν,k, g)(x)
∣∣∣

� 2
νn
2 2ν(m+|γ|)

ν+1∑
j=ν−1

γ1+γ2+γ3=γ

∥∥Φγ2

ν−j ∗ g(2−ν ·)
∥∥
L∞

∣∣Ψγ3

ν−j(2
νx− k + 2ν−ju)

∣∣

� 2
νn
2 2ν(m+|γ|)

ν+1∑
j=ν−1

γ1+γ2+γ3=γ

∥∥Φγ2

ν−j

∥∥
Lr′

∥∥g(2−ν ·)
∥∥
Lr

(1 +
∣∣2ν−ju

∣∣)M
(1 + |2νx− k|)M

� 2
νn
2 2ν(m+|γ|)2

νn
r

(1 + |u|)M
(1 + |2νx− k|)M ‖g‖Lr ,

where in the second inequality we have used that Ψγ3

ν−j ∈ S(Rn). Since

Tσ1(f, g)(x) =

∫
R2n

Tσ1
u,v

(f, g)(x)
dudv

(1 + |u|2 + |v|2)N ,

by choosing N sufficiently large so that
∫
R2n

(1+|u|)M
(1+|u|2+|v|2)N dudv < ∞, we obtain the

desired estimate for ∂γTσ1(ψν,k, g)(x). Analogous reasoning leads to the estimate
for ∂γTσ2(f, ψν,k)(x). �

3. Function spaces

We recall that S0(R
n) denotes the closed subspace of functions in S(Rn) that

have vanishing moments of all orders and we endow S0(R
n) with the topology

inherited from S(Rn). The dual space of S0(R
n), S ′

0(R
n), can be identified with the

space of tempered distributions modulo polynomials, S ′(Rn)/P(Rn).
Let D be the collection of dyadic cubes in Rn. That is, D := {Qν,k}ν∈Z,k∈Zn

where

Qν,k := {x ∈ Rn : kj ≤ 2νxj < kj + 1, j = 1, . . . , n}.
We denote the edge length of Qν,k by l(Qν,k) and set xQ = xν,k := 2−νk where
Q = Qν,k.

We will consider functions ϕ, ψ ∈ S(Rn) such that

supp(ϕ̂), supp(ψ̂) ⊂ {ξ ∈ Rn : 1
2 < |ξ| < 2},(3.10)

|ϕ̂(ξ)|, |ψ̂(ξ)| > c for all ξ such that 3
5 < |ξ| < 5

3 and some c > 0,(3.11) ∑
j∈Z

ϕ̂(2−jξ)ψ̂(2−jξ) = 1 for ξ �= 0.(3.12)

See [12, Lemma 6.9] for a construction of ψ given that ϕ satisfies (3.10) and (3.11).
If ϕ ∈ S(Rn) satisfies (3.10) and (3.11), ν ∈ Z and k ∈ Zn, we recall that ϕν,k

denotes the L2-normalized function ϕν,k(x) = 2
νn
2 ϕ(2νx−k) = 2

νn
2 ϕ(2ν(x−xν,k)).

If ψ ∈ S(Rn) verifies (3.10), (3.11) and (3.12), then it follows that

f =
∑

ν∈Z,k∈Zn

〈f, ϕν,k〉ψν,k,
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where the series converges for f ∈ L2(Rn) in the topology of L2(Rn), for f ∈ S0(R
n)

in the topology of S(Rn) and for f ∈ S ′(Rn) in S ′(Rn) modulo polynomials (see
[10, 11] for details).

3.1. Homogeneous Besov-type and Triebel-Lizorkin-type spaces. Let ϕ ∈
S(Rn) satisfy conditions (3.10) and (3.11), and set ϕj(x) := 2jnϕ(2jx) for x ∈ Rn

and j ∈ Z. Fix s, τ ∈ R and 0 < q ≤ ∞. For 0 < p ≤ ∞, the Besov-type space
Ḃs,τ

p,q (R
n) is defined as the set of all f ∈ S ′

0(R
n) such that

‖f‖Ḃs,τ
p,q

:= sup
P∈D

1

|P |τ

⎧⎨
⎩

∞∑
j=− log2(�(P ))

[∫
P

(2js|ϕj ∗ f(x)|)p dx
]q/p⎫⎬

⎭
1/q

< ∞.

For 0 < p < ∞, the Triebel-Lizorkin-type space Ḟ s,τ
p,q (R

n) is defined as the set of
all f ∈ S ′

0(R
n) such that

‖f‖Ḟ s,τ
p,q

:= sup
P∈D

1

|P |τ

⎧⎪⎨
⎪⎩
∫
P

⎡
⎣ ∞∑
j=− log2(�(P ))

(2js|ϕj ∗ f(x)|)q
⎤
⎦
p/q

dx

⎫⎪⎬
⎪⎭

1/p

< ∞.

These spaces are independent of the choice of ϕ (see [29, Corollary 3.1]). As in [29],

we will use Ȧs,τ
p,q(R

n) to denote either Ḃs,τ
p,q (R

n) or Ḟ s,τ
p,q (R

n), excluding p = ∞ in
the latter case.

3.1.1. Special cases of Ȧs,τ
p,q(R

n). We refer the reader to [28, Section 3] and [29,
Proposition 3.1] regarding the following statements:

(i) If 0 < p, q ≤ ∞, s ∈ R and −∞ < τ < 0, then Ȧs,τ
p,q(R

n) equals the equivalence
class of all polynomials on Rn; if 0 ≤ τ < ∞, they are quasi-Banach spaces
and contain S0(R

n).

(ii) If 0 < p, q ≤ ∞, s ∈ R and τ = 0, then Ḃs,0
p,q(R

n) coincides with the homoge-

neous Besov space Ḃs
p,q(R

n), with equivalent norms.

(iii) If 0 < p < ∞, 0 < q ≤ ∞, s ∈ R and τ = 0, then Ḟ s,0
p,q (R

n) coincides with

the homogeneous Triebel-Lizorkin space Ḟ s
p,q(R

n), with equivalent norms. In

turn, Ḟ s
p,2(R

n) coincides with the Sobolev space Ẇ s,p(Rn) for 1 < p < ∞ and
0 < s < ∞, with equivalent norms.

(iv) If 0 < p < ∞, 0 < q ≤ ∞ and s ∈ R, then Ḟ
s, 1p
p,q (Rn) coincides with the

homogeneous Triebel-Lizorkin space Ḟ s
∞,q(R

n), with equivalent norms. In

particular, Ḟ
0, 1p
p,2 (Rn) = BMO(Rn), with equivalent norms.

(v) If 0 < p ≤ ∞, 1 ≤ q < ∞ and 0 < s < 1, then Ḟ
s, 1q−

1
p

q,q (Rn) coincides with the
Q-space Qs,q

p (Rn), with equivalent norms. Here f ∈ Qs,q
p (Rn) if and only if

f ∈ S ′
0(R

n) with f(x)− f(y) measurable on Rn × Rn and

‖f‖Qs,q
p (Rn) := sup

I
|I|1/p−1/q

{∫
I

∫
I

|f(x)− f(y)|q
|x− y|n+qs

dy dx

}1/q

< ∞,

where I ranges over all cubes of Rn with dyadic edge lengths. In particular,

Qs(R
n) := Qs,2

n/s(R
n) = Ḟ

s, 12−
s
n

2,2 (Rn). For 0 < s < 1 if n ≥ 2, or for 0 <

s ≤ 1
2 if n = 1, the spaces Qs(R

n) constitute a decreasing family of nontrivial
subspaces of BMO; see [9].



1226 JOSHUA BRUMMER AND VIRGINIA NAIBO

(vi) Further special cases of the spaces Ȧs,τ
p,q(R

n) involving homogeneous Besov-
Morrey and Triebel-Lizorkin-Morrey spaces can be found in [25, Theorem
1.1].

3.1.2. Molecules. Based on the pioneering work from [10,11], it was proved in [29,

Theorem 3.1] that the spaces Ȧs,τ
p,q(R

n) can be characterized in terms of the so-called
ϕ-transform defined by Sϕ(f) = {〈f, ϕν,k〉}ν,k for f ∈ S ′

0(R
n), where ϕ ∈ S(Rn)

satisfies (3.10) and (3.11). More precisely, if 0 < p, q ≤ ∞, s ∈ R and 0 ≤ τ < ∞,
then

(3.13) ‖f‖Ḃs,τ
p,q

∼ ‖{〈f, ϕν,k〉}ν,k‖ḃs,τp,q
and ‖f‖Ḟ s,τ

p,q
∼ ‖{〈f, ϕν,k〉}ν,k‖ḟs,τ

p,q
,

where ḃs,τp,q and ḟs,τ
p,q refer to the following spaces of sequences: For 0 < p ≤ ∞,

the space ḃs,τp,q(R
n) is defined as the collection of all sequences t = {tQ}Q∈D ⊂ C,

indexed by the dyadic cubes, such that

‖t‖ḃs,τp,q

:= sup
P∈D

1

|P |τ

⎧⎪⎨
⎪⎩

∞∑
j=− log2(�(P ))

⎡
⎣∫

P

⎛
⎝ ∑

l(Q)=2−j

|Q|−s/n−1/2|tQ|χQ(x)

⎞
⎠

p

dx

⎤
⎦
q/p
⎫⎪⎬
⎪⎭

1/q

< ∞.

For 0 < p < ∞, the space ḟs,τ
p,q (R

n) is defined as the collection of all sequences
t = {tQ}Q∈D ⊂ C, indexed by the dyadic cubes, such that

‖t‖ḟs,τ
p,q

:= sup
P∈D

1

|P |τ

⎧⎪⎨
⎪⎩
∫
P

⎡
⎣∑
Q⊂P

(|Q|−s/n−1/2|tQ|χQ(x))
q

⎤
⎦
p/q

dx

⎫⎪⎬
⎪⎭

1/p

< ∞.

As before, we will use ȧs,τp,q(R
n) to denote either ḃs,τp,q(R

n) or ḟs,τ
p,q (R

n), excluding the
case p = ∞ in the latter case.

Let 0 < p, q ≤ ∞, s ∈ R, 0 ≤ τ < ∞ and s∗ := s − [s], where [s] denotes the
largest integer smaller than or equal to s. Set

J :=

{
sp + n if Ȧs,τ

p,q(R
n) = Ḃs,τ

p,q (R
n),

sp,q + n if Ȧs,τ
p,q(R

n) = Ḟ s,τ
p,q (R

n),

where sp and sp,q are as in (1.3). We say that {mQ}Q∈D, where mQ : Rn → C,

is a family of smooth synthesis molecules for Ȧs,τ
p,q(R

n) if there exist δ and M with
max{s∗, (s+ nτ )∗} < δ ≤ 1 and J < M < ∞ such that∫

Rn

mQ(x)x
γ dx = 0 if |γ| ≤ max{[J − n− s],−1},

|mQ(x)| ≤
|Q|−1/2

(1 + l(Q)−1 |x− xQ|)max{M,M−s} ∀x ∈ Rn,

|∂γmQ(x)| ≤
|Q|−1/2−|γ|/n

(1 + l(Q)−1 |x− xQ|)M
∀x ∈ Rn and |γ| ≤ [s+ nτ ],
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|∂γmQ(x)− ∂γmQ(y)|

≤ |Q|−1/2−|γ|/n−δ/n |x− y|δ

× sup
|z|≤|x−y|

1

(1 + l(Q)−1 |x− z − xQ|)M
∀x, y ∈ Rn and |γ| = [s+ nτ ].

It easily follows that {ϕν,k}ν∈Z,k∈Zn and {ψν,k}ν∈Z,k∈Zn are families of smooth

synthesis molecules for any Ȧs,τ
p,q(R

n) with parameters δ = 1 and any M > J.
Through analogous ideas on almost-diagonal operators used to prove [11, The-

orem 3.5] it follows that if 0 < p, q ≤ ∞, s ∈ R, max{s∗, (s + nτ )∗} < δ ≤ 1,

J < M < ∞, 0 ≤ τ < min{ 1
p + M−J

2n , 1
p + 1−(J−s)∗

n } if max{[J − n − s],−1} ≥ 0,

0 ≤ τ < min{ 1
p + M−J

2n , 1
p + s+n−J

n } if max{[J − n− s],−1} < 0, and {mQ}Q∈D is

a family of synthesis molecules for Ȧs,τ
p,q(R

n) with parameters δ and M, then

(3.14)

∥∥∥∥∥∥
∑
Q∈D

tQmQ

∥∥∥∥∥∥
Ȧs,τ

p,q

� ‖t‖ȧs,τ
p,q

∀t = {tQ}Q∈D ∈ ȧs,τp,q ,

where the implicit constant does not depend on the family of molecules ([29, The-
orem 4.2]).

4. Proof of Theorem 1.2 and closing remarks

Proof of Theorem 1.2. Let ϕ, ψ ∈ S(Rn) satisfy (3.10), (3.11) and (3.12). Since
Tσ1 and Tσ2 , as given by Theorem 1.1, are continuous from S0(R

n) × S0(R
n) to

S(Rn) and h =
∑

ν∈Z,k∈Zn〈h, ϕν,k〉ψν,k for h ∈ S0(R
n) with convergence in S0(R

n)

(see Section 3), we have

Tσ1(f, g) =
∑

ν∈Z,k∈Zn

〈f, ϕν,k〉Tσ1(ψν,k, g) ∀f, g ∈ S0(R
n),

Tσ2(f, g) =
∑

ν∈Z,k∈Zn

〈g, ϕν,k〉Tσ2(f, ψν,k) ∀f, g ∈ S0(R
n),

where the convergence is in S(Rn).
Theorem 1.1 implies that there are constants c1 and c2 such that if f, g ∈ S0(R

n),
then{

c12
−νmTσ1(ψν,k, g)

‖g‖L∞

}
ν∈Z,k∈Zn

and

{
c22

−νmTσ2(f, ψν,k)

‖f‖L∞

}
ν∈Z,k∈Zn

are families of smooth synthesis molecules for any Ȧs,τ
p,q(R

n) if 0 < p, q ≤ ∞, s >
J − n and 0 ≤ τ < ∞ (with δ = 1 and any M > J ; note that the zero moment
condition is void since J − n− s < 0). If, in addition, 0 ≤ τ < 1

p + s+n−J
n , we can

apply (3.14) and (3.13) to get

‖Tσ1(f, g)‖Ȧs,τ
p,q

� ‖{2νm〈f, ϕν,k〉}‖ȧs,τ
p,q

‖g‖L∞

= ‖{〈f, ϕν,k〉}‖ȧs+m,τ
p,q

‖g‖L∞ � ‖f‖Ȧs+m,τ
p,q

‖g‖L∞ ,

‖Tσ2(f, g)‖Ȧs,τ
p,q

� ‖{2νm〈g, ϕν,k〉}‖ȧs,τ
p,q

‖f‖L∞

= ‖{〈g, ϕν,k〉}‖ȧs+m,τ
p,q

‖f‖L∞ � ‖g‖Ȧs+m,τ
p,q

‖f‖L∞ ,

from which the desired estimates follow. �



1228 JOSHUA BRUMMER AND VIRGINIA NAIBO

Remark 4.1. Let m ∈ R and σ ∈ ḂS
m

1,1. The estimates in Theorem 1.2 hold true

in Ȧs,τ
p,q for 0 < p, q ≤ ∞, s ≤ J − n and 0 ≤ τ < 1

p + 1−(J−s)∗

n if the following

cancellation conditions are satisfied:

T ∗1
σ1 (xγ , g) = T ∗1

σ2 (f, xγ) = 0 ∀f, g ∈ S0(R
n), |γ| ≤ [J − n− s].

We recall that if T is a bilinear operator continuous from S0(R
n) × S0(R

n) to
S(Rn), T ∗1 and T ∗2 denote the adjoint operators of T defined from S ′(Rn)×S0(R

n)
to S ′

0(R
n) and from S0(R

n) × S ′(Rn) to S ′
0(R

n), respectively, as 〈h, T (f, g)〉 =
〈T ∗1(h, g), f〉 = 〈T ∗2(f, h), g〉.

The proof of the estimates in this case is the same as above, with the only thing
left to check being the zero moment conditions for Tσ1(ψν,k, g) and Tσ2(f, ψν,k)
(note that the range assumed for τ comes from the assumptions for the validity of
(3.14)). We have, for |γ| ≤ [J − n− s],∫

Rn

xγTσ1(ψν,k, g) dx = 〈xγ , Tσ1(ψν,k, g)〉 = 〈T ∗1
σ1 (xγ , g), ψν,k〉 = 0 ∀g ∈ S0(R

n),

and similarly for Tσ2(f, ψν,k).

Remark 4.2. Let 1 ≤ r ≤ ∞ and m, σ, p, q, s and τ be as in the hypothesis of
Theorem 1.2 or Remark 4.1. By the same reasoning as in the proof of Theorem 1.2
and Remark 4.1, we also obtain

‖Tσ(f, g)‖Ȧs,τ
p,q

� ‖f‖
Ȧ

s+m+n
r

,τ
p,q

‖g‖Lr + ‖g‖
Ȧ

s+m+n
r

,τ
p,q

‖f‖Lr .

Remark 4.3. The implicit constants in the inequalities of Theorem 1.1 and Theo-
rem 1.2 depend linearly on ‖σ‖K,L for some K,L ∈ N, where

‖σ‖K,L := sup
|γ|≤K,|α+β|≤L

‖σ‖γ,α,β .

From the proofs, it follows that the implicit constants in the inequalities of The-
orem 1.1 are multiples of ‖σ‖|γ|,2N , with N ∈ N, N > M + n and where γ and

M are as in the statement of the theorem. In turn, this implies that the im-
plicit constants in Theorem 1.2 can be taken to be multiples of ‖σ‖[s+nτ ]+1,2N with

N > max{J + n, 2(s+ n)− J + n}. The latter is also true for the inequalities from
Remark 4.1 with N > J + n+ 2(1− (J − s)∗).
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[3] Árpád Bényi, Andrea R. Nahmod, and Rodolfo H. Torres, Sobolev space estimates and sym-
bolic calculus for bilinear pseudodifferential operators, J. Geom. Anal. 16 (2006), no. 3, 431–
453, DOI 10.1007/BF02922061. MR2250054
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