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Abstract

In now classic work, David Kendall (1966) recognized that the Yule process and Pois-
son process could be related by a (random) time change. Furthermore, he showed that the
Yule population size rescaled by its mean has an almost sure exponentially distributed limit as
t → ∞. In this note we introduce a class of coupled delayed continuous time Yule processes
parameterized by 0 < α ≤ 1 and find a representation of the Poisson process as a delayed Yule
process at delay rate α = 1/2. Moreover we extend Kendall’s limit theorem to include a larger
class of positive martingales derived from functionals that gauge the population genealogy.
Specifically, the latter is exploited to uniquely characterize the moment generating functions
of distributions of the limit martingales, generalizing Kendall’s mean one exponential limit. A
connection with fixed points of the Holley-Liggett smoothing transformation also emerges in
this context, about which much is known from general theory in terms of moments, tail decay,
and so on.

1 Introduction
The basic Yule process Y = {Yt : t ≥ 0} is a continuous time branching process starting from a
single progenitor in which a particle survives for a mean one, exponentially distributed time before
being replaced by two offspring independently evolving in the same manner. Yt represents the size
of the population of particles at time t ≥ 0, starting from Y0 = 1. The basic Poisson process
N = {Nt : t ≥ 0} is another continuous time Markov process in which a particle survives for a
mean one, exponentially distributed time before being replaced by a single particle that evolves in
the same manner. The shift Nt + 1 represents the number of replacements that have occurred by
time t ≥ 0, N0 = 0. The multiplicative (geometric) growth of the process Y is in stark contrast to
the additive growth of N .

Considerations of evolutionary processes, to be referred to as delayed Yule processes, arise
somewhat naturally in the probabilistic analysis of quasi-linear evolution equations such as in-
compressible Navier-Stokes equations, and complex Burgers equation by probabilistic methods
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originating with Le Jan and Sznitman [10]. In particular, considerations of non-uniqueness and/or
explosion problems in [4] for this framework prompted the present considerations. However this
paper has a purely probabilistic focus and does not depend on such motivations. In fact, the prob-
abilistic framework may also be of interest in the context of evolutionary biological processes.

The principal results are extensions of the aforementioned theorems of Kendall (see [9]). In
particular, a key result is the representation of the Poisson process as a delayed Yule process at
delay rate α = 1/2 provides an exact coupling of the two processes through a binary tree-indexed
family of i.i.d. exponential random variables defined on a probability space (Ω,F , P ). Secondly,
complete criteria for the uniform integrability of positive martingales derived from a family of
gauges of the genealogy of the Yule process, including cardinality, is also given. Once this is
established the exact limit distribution is identified for these uniformly integrable martingales as
unique (mean one) fixed points of the Holley-Liggett smoothing operator [7]. This characteriza-
tion generalizes Kendall’s mean one exponential limit in the case the gauge is cardinality of the
population; the latter limit distribution is the Gamma distributed fixed point solution correspond-
ing to the uniform (Beta) smoothing factor in [7]. The characterization of the uniformly integrable
martingale limits as fixed points to a smoothing transformations has numerous implications on the
more detailed structure of the limit; e.g., see [6], [11] for further general theory and results on the
nature of fixed points of smoothing recursions. As an illustration, simple conditions are noted for
the existence of finite moments of the limit martingale. From the perspective of delayed Yule pro-
cesses as continuous time Markov processes it is shown that α = 1/2 is a critical transition value
between bounded and unbounded infinitesimal generators defining the α-delayed Yule processes
for 0 < α ≤ 1.

2 Delayed Yule Process
To begin, consider the modification of the Yule process given by successively halving the previous
generation branching frequencies, i.e., doubling the previous generation mean holding time of
particles of each generation. That is, let {Tv : v ∈ T = ∪∞k=0{1, 2}k}, with {1, 2}0 = {θ}, be a
binary, tree-indexed family of i.i.d. mean one exponentially distributed random variables rooted at
a single progenitor θ, and define

V ( 1
2
)(t) =

{
v ∈ T :

|v|−1∑
j=0

(1/2)−jTv|j ≤ t <

|v|∑
j=0

(1/2)−jTv|j

}
, t ≥ 0,

where |θ| = 0, and |v| = | < v1, . . . , vk > | = k denotes the height of vertex v ∈ T. Also
v|j =< v1, . . . , vj > is the restriction of v to generation j ≤ k. Also, by convention,

∑−1
j=0 = 0.

Observe that

Yt = #V (1)(t) =
{
v ∈ T :

|v|−1∑
j=0

Tv|j ≤ t <

|v|∑
j=0

Tv|j

}
, t ≥ 0,

defines the basic Yule process; throughout #V will denote the cardinality of a set V .
Let τk, k = 1, 2, . . . be the increasing sequence of jump times of the 1

2
-delayed Yule process

defined by
Nt = #V ( 1

2
)(t)− 1, t ≥ 0.
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The following calculations provide a warm-up to our basic coupling of the Poisson and Yule
processes. First observe that τ0 = 0, τ1 = Tθ, so that P (τ1 − τ0 > t) = e−t, t ≥ 0. Next, for
k = 2, one has by definition that τ2 − τ1 = 2T1 ∧ 2T2, and {T1, T2} is independent of Tθ (= τ1).
In particular, therefore, P (τ2 − τ1 > t|σ{τ1 − τ0}) = P (2T1 ∧ 2T2 > t) = e−

t
2 e−

t
2 = e−t. The

independence of inter-arrival times is less obvious in the case k = 3 where one has

τ3 − τ2 =

{
(2T1 − 2T2) ∧ 4T21 ∧ 4T22, if 2T2 < 2T1

(2T2 − 2T1) ∧ 4T11 ∧ 4T12, if 2T1 < 2T2.
(2.1)

However, using symmetry and the two logical operations: (i) a > b & c > b iff a ∧ c > b, and (ii)
a > b& a > c iff a > b∨c, one may easily express the event [τ3−τ2 > t3, τ2−τ1 > t2, τ1−τ0 > t1]
in terms of the underlying i.i.d. Yule times Tv, v ∈ T. From here a direct computation yields

P (τ3 − τ2 > t3, τ2 − τ1 > t2, τ1 − τ0 > t1) = e−t3e−t2e−t1 , t1, t2, t3 > 0. (2.2)

An inductive extension of this calculation is cumbersome, however the following essential prop-
erty that couples the Yule and Poisson processes has a very simple inductive proof based on the
evolutionary structure of the state space E . Namely, V ∈ E if and only if V is a finite subset of
T = ∪∞n=0{1, 2}n, such that

V =

{
{θ} if #V = 1,
W\{w} ∪ {< w1 >,< w2 >} for some W ∈ E , #W = #V − 1, w ∈ W, else.

(2.3)

Lemma 2.1 (Key Coupling Lemma). For any V ∈ E one has∑
v∈V

(1/2)|v| = 1.

Proof. The assertion is clear for V = {θ} since |θ| = 0. The induction follows directly from
(2.3).

Theorem 2.1. The stochastic process Nt = #V ( 1
2
)(t) − 1, t ≥ 0, is a Poisson process with unit

intensity. In particular, τk − τk−1, k = 1, 2, . . . is an i.i.d. sequence of mean one exponentially
distributed random variables.

Proof. By Watanabe’s martingale characterization of the Poisson process, in view of the unit jump
sample path structure of #V ( 1

2
) it is sufficient to check that #V ( 1

2
)(t) − t, t ≥ 0, is a martingale

with respect to the filtration Ft = σ{Tv : v ∈ V ( 1
2
)(s) : s ≤ t}, t ≥ 0. On [Tθ <∞], an event with

probability one, express the process V ( 1
2
)(t), t ≥ 0, as {θ} for t < Tθ, and for t ≥ Tθ as the disjoint

union of two independent sets of vertices V
( 1
2
)

(j) ( t−Tθ
2

) rooted at θ = (1), (2), respectively for j =

1, 2. Then, taking expected values over this representation, one has for µ(t) = E#V ( 1
2
)(t), t ≥ 0,

µ(t) = e−t + 2

∫ t

0

e−sµ(
t− s

2
)ds, t > 0, µ(0) = 1. (2.4)

To see that this equation uniquely determines the non-negative continuous solution µ consider the
difference ν of two solutions, ν(0) = 0. Observe that for any T < log 2, the map ν → Lν(t) =

3

May 9 2017 12:59:32 EDT
Version 3 - Submitted to PROC

Applied+Prob+StatThis is a pre-publication version of this article, which may differ from the final published version. Copyright restrictions may apply.This is a pre-publication version of this article, which may differ from the final published version. Copyright restrictions may apply.



2
∫ t
0
e−sν( t−s

2
)ds, 0 ≤ t ≤ T defines a linear contraction map on C[0, T ]. In particular ν(0) = 0

implies that ν(t) = 0, 0 ≤ t ≤ T . In view of the delay, it now follows from the equation for the
difference ν that ν = 0 on [T, 2T ] and, inductively, ν = 0 on [0,∞) for ν(0) = 0. In particular, it
follows from (2.4) that

E#V ( 1
2
)(t) = µ(t) = t+ 1, t ≥ 0. (2.5)

The calculation of the conditional expectation proceeds similarly while taking advantage (2.5) and
the key coupling lemma 2.1: For 0 ≤ s ≤ t,

E{#V ( 1
2
)(t)|Fs} = E{

∑
v∈V ( 12 )(s)

#V ( 1
2
)(2−|v|(t− s))|Fs}

=
∑

v∈V ( 12 )(s)

{2−|v|(t− s) + 1}

= t− s+ #V ( 1
2
)(s). (2.6)

Replacing 1
2

by a parameter α ∈ (0, 1] in successive generations of the basic Yule process
defines the α-delayed Yule process. Namely,

V (α)(t) =
{
v ∈ T :

|v|−1∑
j=0

α−jTv|j ≤ t <

|v|∑
j=0

α−jTv|j

}
, t ≥ 0.

Accordingly, V (α) is a continuous time jump Markov process taking value in the (countable)
space E of evolutionary sets defined inductively by (2.3).

Although one may check that V (α) is a Markov process on E , the functional #V (α) is not
generally Markov; exceptions being α = 1

2
, 1. When α = 1, #V (α) is the classical Yule process,

and so it is obviously Markov. Similarly in the case α = 1
2
, the Markov property is a direct

consequence of Theorem 2.1.
In addition to cardinality, letting β > 0, the following functionals serve to gauge the genealogy

of the evolution:
aβ(V ) =

∑
v∈V

β|v|, V ∈ E . (2.7)

By the key coupling lemma 2.1, one has that a1/2(V ) = 1 for all V ∈ E . The cardinality #V is
obtained by taking β = 1, and the following provides a generalization of Kendall’s classic limit
theorem to other gauges of the genealogical structure of the Yule process.

Theorem 2.2. For each β ∈ (0, 1], Aβ(t) = e−(2β−1)taβ(V (1)(t)), t ≥ 0, is a positive martingale.
Moreover, Aβ is uniformly integrable if and only if β ∈ (βc, 1] where βc ≈ 0.1866823 is the unique
solution in (0, 1] to

βc ln βc = βc −
1

2
. (2.8)

Proof. Let mβ(t) = Eaβ(V (1)(t)), t ≥ 0. First, let us check that

mβ(t) = e(2β−1)t, t ≥ 0. (2.9)

4
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For this write

aβ(V (1)(t)) = 1[Tθ > t] + 1[Tθ ≤ t]β{aβ(V (1)+(t− Tθ)) + aβ(V (1)−(t− Tθ))}, (2.10)

where V (1)±(·) are independent copies of V (1)(·). Taking expected values one has

mβ(t) = e−t + 2β

∫ t

0

e−smβ(t− s)ds, mβ(0) = 1.

The expression (2.9) now follows.
To establish the martingale property, let 0 ≤ s < t and write

aβ(V (1)(t)) =
∑

w∈V (1)(s)

∑
v∈V (1),w(t−s)

β|w|β|v|,

where V (1),w are the delayed Yule processes rooted at w ∈ V (1)(s). Note that the respective
processes V (1),w, w ∈ V (1)(s), are conditionally independent given V (1)(s), and therefore

E[e−(2β−1)taβ(V (1)(t))|Fs] = e−(2β−1)tmβ(t− s)aβ(V (1)(s)) = e−(2β−1)saβ(V (1)(s)).

Thus Aβ is a positive martingale. So, by the martingale convergence theorem, it follows that

Aβ(∞) = lim
t→∞

e−(2β−a)taβ(V (1)(t)),

exists almost surely. Moreover, from (2.10) one has the distributional recursion

Aβ(∞) = βe−(2β−1)Tθ(A+
β (∞) + A−β (∞)), (2.11)

where A+
β (∞) and A−β (∞) are independent copies of Aβ(∞).

Let us first investigate parameters β ∈ (0, 1] such that Aβ(∞) = 0 almost surely. For this let
h ∈ (0, 1) and observe that, since (x+ y)h ≤ xh + yh and E(e−δTθ) = 1/(1 + δ), (2.11) yields

EAhβ(∞) ≤ 2βh
1

1 + (2β − 1)h
EAhβ(∞), 0 < h < 1.

Thus, if Aβ(∞) > 0 with positive probability, then

2βh

1 + (2β − 1)h
≥ 1, 0 < h < 1. (2.12)

By comparing the functions φ(h) = 2βh and ψ(h) = 1 + (2β − 1)h on h ∈ [0, 1], it follows that
(2.12) holds if and only if

βc ≤ β ≤ 1,

where βc ≈ 0.1866823 is the unique solution in (0, 1] to the equation 2βc ln βc = (2βc− 1). To see
this equivalence, note that for β > 0, φ(0) = 2 > ψ(0) = 1, and φ(1) = ψ(1) = 2β. Now, if (i)
β > 1 then, since ψ is increasing, convex, φ must be a secant line for ψ on [0, 1] and, therefore,
(2.12) fails. On the other hand, if (ii) 1

2
≤ β ≤ 1, then φ is decreasing, ψ is increasing, and

φ(1) = ψ(1), so that (2.12) holds. Finally, if (iii) β < 1
2
, then φ is decreasing, convex, and ψ
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decreases linearly to meet φ at h = 1. That is, ψ is a secant line to φ on [0, 1] and, therefore, (2.12)
fails unless φ′(1) ≥ ψ′(1), i.e., unless 2β ln β ≥ 2β− 1. This makes β > βc necessary in order for
(2.12) to hold. Conversely, if βc ≤ β < 1/2 then φ′(1) ≥ ψ′(1), so that (2.12) holds.

Now, β < βc implies Aβ(∞) = 0 almost surely. For the converse, i.e., uniform integrability
of the positive martingale {Aβ(t) : t ≥ 0}, we will use an inequality from [12], attributed there to
B. Chauvin and J. Neveu, especially suited for such problems. For present purposes, if 1 < p ≤ 2,
and X1, X2 ∈ Lp(Ω,F , P ) are independent, positive random variables, then

vp(X1 +X2) ≤ vp(X1) + vp(X2), (2.13)

where vp(Xj) = EXp
j − (EXj)

p, j = 1, 2.
By the basic recursion (2.10), one has

EApβ(t) = e−[(2β−1)p+1]t + βp
∫ t

0

e−[(2β−1)p+1]sE(A+
β (t− s) + EA−β (t− s))pds. (2.14)

Applying (2.13) and using the submartingale property EApβ(t − s) ≤ EApβ(t), 0 ≤ s ≤ t together
with the fact that EAβ(t− s) = 1, we estimate

E(A+
β (t− s) + A−β (t− s))p = vp(A

+
β (t− s) + A−β (t− s)) + (EA+

β (t− s) + EA−β (t− s))p

≤ vp(A
+
β (t− s)) + vp(A

−
β (t− s)) + 2p(E(Aβ(t− s)))p

≤ 2EApβ(t− s) + 2p ≤ 2EApβ(t) + 2p.

Thus, (2.14) yields

EApβ(t) ≤ e−[(2β−1)p+1]t +
(2EApβ(t) + 2p)βp

(2β − 1)p+ 1
,

which implies

(2β − 1)p+ 1− 2βp

(2β − 1)p+ 1
EApβ(t) ≤ e−[(2β−1)p+1]t +

(2β)p

(2β − 1)p+ 1
, t ≥ 0.

In particular, uniform integrability follows under the condition that for some p ∈ (1, 2],

(2β − 1)p+ 1− 2βp > 0.

Equivalently, β > βc where, as before, βc denotes the solution of (2.8).
To complete the proof requires consideration of the case β = βc. If, for sake of contradiction,

one assumes uniform integrability then, as is elaborated in the proof of the Proposition 2.1 below,
the distribution of Aβc(∞) provides a mean one fixed point to the Holley-Liggett smoothing map,
see [7], where it is shown that there is not a mean one fixed point at βc.

For β ∈ [0, 1], define the moment generating function

ϕβ(r) = Ee−rAβ(∞), r ≥ 0,

where Aβ(∞) = limt→∞Aβ(t). Note that by Theorem 2.2 and its proof,

ϕ′β(0) = 0 if β < βc and ϕ′β(0) = −1 if β > βc.
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Also define a probability measure νβ on Sβ where Sβ = [0, β] for β > 1/2, and Sβ = [β,∞) for
0 < β < 1/2, and

ν 1
2
(ds) = δ 1

2
(ds), νβ(ds) =

(s/β)
1

2β−1

|2β − 1|
ds

s
, β 6= 1

2
. (2.15)

Proposition 2.1. For β > βc, ϕβ is uniquely determined within the class of probability distribu-
tions on [0,∞) whose moment generating function satisfies

ϕβ(r) =

∫
Sβ

ϕ2
β(rs)νβ(ds), r ≥ 0, (2.16)

such that ϕβ(0) = 1, ϕ′β(0) = −EAβ(∞). Equivalently, ϕβ is uniquely determined by the delayed
differential equation

ϕ′β(r) =
1

r

1

2β − 1
ϕ2
β(βr)− 1

r

1

2β − 1
ϕβ(r), β ∈ [0, 1] \

{1

2

}
, (2.17)

and the given initial conditions.

Proof. First we will show that (2.16) holds for β ∈ [0, 1]. When β = 1/2, by (2.11),

ϕ 1
2
(r) = ϕ2

1
2
(r/2), (2.18)

and thus (2.16) holds with ν1/2 – the Dirac measure as in (2.15). For β 6= 1/2, using the stochastic
recursion (2.11), we obtain:

ϕβ(r) = E
(
e−rAβ(∞)

)
= E

(
exp

[
−rβe−(2β−1)Tθ

(
A+
β (∞)) + A−β (∞)

)])
=

∞∫
0

e−t E exp
[
−rβe−(2β−1)t

(
A+
β (∞)) + A−β (∞)

)]
dt

=

∞∫
0

e−tϕ2
β

(
rβe−(2β−1)t

)
dt.

Now (2.16) follows by the change of variables s = βe−(2β−1)t.
For β > βc, in view of the uniform integrality (see Theorem 2.2) one has EAβ(∞) = 1, and

we may use early results of [7] on smoothing transformations. Specifically, it is simple to check
that for βc < β ≤ 1, the random variable Wβ = 2βe−(2β−1)Tθ has mean one (in fact, 1

2
Wβ is a

re-scaling of the distribution νβ), while the recursion (2.11) takes form

Aβ(∞) = Wβ

(1

2
A+
β (∞) +

1

2
A−β (∞)

)
,

of a Holley-Liggett smoothing transformation within the framework of Theorem 7.1 in [7]. Ac-
cordingly, the distribution of Aβ(∞) is the unique positive mean one solution to the stochastic
recursion provided

E(Wβ lnWβ) < ln 2.

7
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A direct calculation shows that E(Wβ lnWβ) = ln(2β) − 2β−1
2β

, and thus the inequality above is
satisfied if and only if β > βc.

To establish (2.17) we may use (2.16), as follows (noting that the implied differentiability is a
property of a moment generating function of a probability distribution on [0,∞)):

ϕ′β(r) =

∫
Sβ

d

dr
ϕ2
β(rs)νβ(ds) =

1

r

∫
Sβ

d

ds
ϕ2
β(rs) s νβ(ds).

Now use (2.15) and integrate by parts. In the case β < 1/2 we get:

ϕ′β(r) =
1

r

∞∫
β

d

ds
ϕ2
β(rs)

(s/β)
1

2β−1

1− 2β
ds =

1

r
ϕ2
β(rs)

(s/β)
1

2β−1

1− 2β

∣∣∣∣∣
∞

s=β

+
1

r

∞∫
β

ϕ2
β(rs)

(s/β)
1

2β−1

(1− 2β)2
ds

s

= −1

r

1

1− 2β
ϕ2
β(βr) +

1

r

1

1− 2β
ϕβ(r),

which implies (2.17) for β ∈ [0, 1/2). The case β ∈ (1/2, 1] is treated analogously.

Remark 2.1. While the martingale limit is clearly a fixed point of the Holley-Liggett smoothing
transformation for any β ∈ (0, 1], the proof of uniform integrability is essential to the identification
of the critical parameter βc for a positive martingale limit since fixed point uniqueness theorem is
within the class of mean one probability distributions on [0,∞). Once this is achieved then the
existing theory of fixed points of smoothing transformations as given in [7], [11], among others,
can be applied to discern more about the non-exponential cases of the limit distributions. As noted
in [7] for particular Beta distributions of W , the fixed point distribution is a Gamma distribution.
This includes the case of Kendall’s theorem, [9], for β = 1 in which W is uniform on (0, 1) and
the martingale limit has a mean-one exponential distribution as given below.

Corollary 2.1 (Kendall’s theorem). A1(t) = e−t Yt, t ≥ 0, is a uniformly integrable martingale,
and A1(∞) = limt→∞A1(t) is exponentially distributed with mean one.

Proof. It is easy to see that the mean one exponential moment generating function 1/(1 + r)
satisfies (2.16) in case β = 1. Now the fact that the exponential is indeed the distribution of
A1(∞) follows from the uniqueness statement of Proposition 2.1.

Remark 2.2. One can also obtain Kendall’s result directly from (2.17). Indeed, when β = 1 we
have

(rϕ1(r))
′ = ϕ2

1(r), ϕ1(0) = 1, ϕ′1(0) = −1.

The non-zero solutions of the equation above can be obtained explicitly as

ϕ1(r) =
1

1 + c0r
,

while by the initial data, c0 = 1, proving that the mean one exponential moment generating func-
tion is the only solution, and thus implying Kendall’s theorem stated in Corollary 2.1.
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The following result shows that for βc < β < 1/2, Aβ(∞) has heavy tails. As remarked
earlier, this and more on the nature of the martingale limit distribution are also available from
general theory, e.g., see [11]. However one may also give the following self-contained argument
based on (2.17).

Proposition 2.2. For any β ∈ (βc, 1/2), there exists pβ ≥ 2 such that E(Apβ(∞)) = ∞ for all
p ≥ pβ .

Proof. Note that the finite moments of order k ∈ N satisfy:

mk = (−1)kϕ
(k)
β (0),

and consequently, using (2.17) and the fact that m0 = m1 = 1 we obtain

(
(2β − 1)k − 2βk + 1

) mk

k!
= βk

k−1∑
j=1

mj

j!

mk−j

(k − j)!
, k ≥ 2.

Since Yβ(∞) ≥ 0, we have mk > 0 for all k, and thus

(2β − 1)k − 2βk + 1 > 0 for all k ≥ 2.

Note that the above condition fails for big enough k if β < 1/2, implying that the higher-order
moments of Yβ must be infinite.

3 Infinitesimal Generator and another Critical Value for the
Delayed Yule Process

Give E the discrete topology and let C0(E) denote the space of (continuous) real-valued functions
f : E → R that vanish at infinity; i.e., given ε > 0, one has |f(V )| < ε for all but finitely many
V ∈ E . The subspace C00(E) ⊂ C0(E) ⊂ L

∞
(E) of functions with compact (finite) support is

clearly dense in C0(E) for the uniform norm.
The construction at the outset of the coupled stochastic processes V (α), 0 < α ≤ 1, provides

corresponding semigroups of positive linear contractions {T (α)
t : t ≥ 0} defined by

Ttf(V ) = EV f(V (α)(t)), t ≥ 0, f ∈ C0(E),

with the usual branching process convention that given V (α)(0) = V ∈ E , V (α)(t) is the total
progeny independently produced by single progenitors at each v ∈ V . In fact, one may consider
the semigroup as defined on L∞(E) ⊃ C0(E).

The usual considerations imply that the infinitesimal generator (L(α),Dα) of V (α) is given on
C00(E) via

L(α)f(V ) =
∑
v∈V

α|v|{f(V v)− f(V )}, f ∈ C00(E),

where
V v = V \{v} ∪ {< v1, v2 >}, v ∈ V.

One may naturally pursue the computation of a core for L(α), however for the present purposes the
above is sufficient to establish the following distinct role of α = 1

2
as a critical parameter.
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Proposition 3.1. (L(α),Dα), Dα ⊂ L
∞

(E) – the domain of L(α), is a bounded linear operator if
and only if α ≤ 1

2
.

Proof. The sufficiency follows from the key coupling lemma 2.1, since for α ≤ 1
2

one has the
bound

∑
v∈V α

|v| ≤
∑

v∈V 2−|v| = 1, V ∈ E . In particular, for f ∈ C0(E),

|L(α)f(V )| ≤ 2 sup
W∈E
|f(W )|, V ∈ E .

On the other hand, for α > 1
2
, define a sequence of functions fn ∈ C00(E) by

fn(V ) = h(V )1[h(V )≤n], n = 1, 2, . . . ,

where h(V ) = max{|v| : v ∈ V }, V ∈ E . Then for full binary branching h(V ) = n, |V | = 2n.
Thus ‖fn‖∞ = n, and for such V ,

|L(α)fn(V )| =
∑
v∈V

αn = (2α)n.

In particular
|L(α)fn(V )|
‖fn‖∞

=
(2α)n

n
→∞ as n→∞ for α >

1

2
.

Remark 3.1. Although aβ /∈ C0(E) for any β ∈ (0, 1], the following formal calculation for
α ∈ (0, 1],

L(α)aβ(V ) = (2β − 1)aαβ(V ), V ∈ E ,
is intriguing from the perspective of precise identification of the generator. In particular, aβ is
formally a positive eigenfunction of L(1) with non-positive eigenvalue 2β − 1 < 0 for β < 1

2
as

required for a contraction semigroup of positive linear operators. To make this formal calculation
rigorous obviously requires a modification of the function space beyond the standard choiceC0(E).

Finally let us conclude by noting a closely related evolution that takes place in sequence space
that may be of interest in other contexts. For V ∈ E , let

gk(V ) = #{v ∈ V : |v| = k}, k = 0, 1, 2, . . . .

Also define an equivalence relation on E by V ∼ W , V,W ∈ E , if and only if gk(V ) = gk(W ) for
all k. Then the space of equivalence classes E/ ∼ is in one-to-one correspondence with a subset of
the sequence space c00(Z+) ⊂ `1(Z+) defined inductively as follows: n = (n0, n1, . . . ) ∈ c00(Z+)
belongs to the space E0 of evolutionary sequences if either n = (1, 0, . . . ) or, otherwise, there is
an m ∈ E0 ⊂ c00(Z+) such that m = n(k) := (n0, n1, . . . , nk − 1, nk+1 + 2, nk+2, . . . ) for some
k ≥ 0 such that nk ≥ 1. Note that

∑∞
j=0 nj =

∑∞
j=0mj − 1. For 0 < α ≤ 1, the equivalence

relation induces N (α) = {N (α)(t) : t ≥ 0} as the continuous time jump Markov process on E0
with generator given for f ∈ C00(E0) by

L̃(α)f(n) =
∞∑
k=0

nkα
k(f(n(k))− f(n)), n ∈ E0.
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4 Connections with Other Work
(a) After this article was recommended for publication the authors learned from David Aldous
about [1], and related references, [2], [3], that analyze processes of the same type as here, but from
different perspectives and objectives. That model is one of a large class of random tree-growth
models studied within the probabilistic analysis of algorithms, see [8]. In [1] the primary focus
is on limiting properties of a class of trees that grow randomly, one node at a time [in discrete
time], in connection with Ziv’s entropy estimation algorithm and various models from physics and
computer science. As a “standard trick in probability”, the authors also consider the continuous
time model that would correspond to an 1

c
-delayed Yule process (c > 1) in sequence space. The

main results are a strong law of large numbers and a central limit theorem. The authors note in
passing (Section 7, page 539) that the case c = 2 corresponds to a Poisson process, and they
remark that the relative slowing (c > 2), and speeding (c < 2) of the process are artifacts of the
continuous-time formulation and have no direct interpretations for their problem. As shown in
the present paper, α−1 = c = 2 is a critical parameter with respect to the boundedness of the
infinitesimal generator. In [5], where the continuous parameter models are the essential structures,
this criticality together with certain monotonicities with respect to α play an essential role in the
analysis of complex Burgers equation.

(b) In [1] the authors single out a special value of the parameter of the form α−1 = c = 2
1
2 for

its (conjectured) role in a Gaussian central limit theorem. A non-Gaussian limit is conjectured for
c < 2

1
2 , and is partially confirmed to them through privately communicated results of H. Kesten.

In [5], special roles for this and other parameters in the general form c−1 = α = 2−
k
2 , k = 1, 2, . . .

are shown to correspond to polynomial mean numbers of offspring at (continuous) time t.
(c) In [2] the focus is on a process that is termed a “discounted branching random walk”for

which α > 1. The question concerns the unique determination of the distribution of the position of
the rightmost particle via an ordinary differential equation. Although mentioned as a possibility,
the author remarks that this case α < 1 is not dealt with in [2].

(d) In [3] the authors refer to the model in the case α = 1
2

as “directed diffusion-limited
aggregation.”The authors obtain some limit results on the tree height of the type in [1], but weaker.
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