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GENERALIZING SERRE’S SPLITTING THEOREM
AND BASS’S CANCELLATION THEOREM

VIA FREE-BASIC ELEMENTS

ALESSANDRO DE STEFANI, THOMAS POLSTRA, AND YONGWEI YAO

(Communicated by Irena Peeva)

Abstract. We give new proofs of two results of Stafford, which generalize
two famous Theorems of Serre and Bass regarding projective modules. Our
techniques are inspired by the theory of basic elements. Using these methods
we further generalize Serre’s Splitting Theorem by imposing a condition to the
splitting maps, which has an application to the case of Cartier algebras.

1. Introduction

Throughout this section, R denotes a commutative Noetherian ring with unity.
The existence of unimodular elements has always played a crucial role in algebraic
K-theory. An element of a projective module is called unimodular if it generates
a free summand. Note that unimodular elements are basic elements, a notion
introduced by Swan [Swa67]: an element of a module is called basic if it remains a
minimal generator after localization at every prime of the ring. In a fundamental
paper from 1973, Eisenbud and Evans make use of basic elements for modules that
are not necessarily projective. Using basic element theory, Eisenbud and Evans
generalize and greatly improve several theorems about projective modules, as well
as about general finitely generated modules [EE73]. Two such theorems are Serre’s
Splitting Theorem and Bass’s Cancellation Theorem on projective modules.

Theorem 1.1 ([Ser58, Theorem 1] and [Bas64, Theorem 8.2]). Let R be a com-
mutative Noetherian ring of Krull dimension d. Let P be a finitely generated
projective R-module whose rank at each localization at a prime ideal is at least
d + 1. Then P contains a free R-summand.

Theorem 1.2 ([Bas64, Theorem 9.1]). Let R be a commutative Noetherian ring of
Krull dimension d, and P be a finitely generated projective R-module whose rank
at each localization at a prime ideal is at least d+1. Let Q be a finitely generated
projective R-module, and assume that Q ⊕ P ∼= Q ⊕ N for some R-module N .
Then P ∼= N .

Given a projective module P , an equivalent way of saying that Pp has rank at
least d+1 for all p ∈ Spec(R) is to say that, locally at each prime, P contains a free
summand of rank at least d+ 1. In this article, we present new methods to extend
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Theorems 1.1 and 1.2 to all finitely generated modules, not necessarily projective,
that contain a free summand of large enough rank at each localization at a prime.

Theorem A. Let R be a commutative Noetherian ring, and M a finitely gen-
erated R-module. Assume that Mp contains a free Rp summand of rank at least
dim(R/p) + 1 for each p ∈ Spec(R). Then M contains a free R-summand.

Theorem B. Let R be a commutative Noetherian ring and M a finitely generated
R-module such that, for each p ∈ Spec(R), Mp contains a free Rp summand of
rank at least dim(R/p)+1. For any finitely generated projective R-module Q and
any finitely generated R-module N , if Q⊕M ∼= Q⊕N , then M ∼= N .

Stafford reached analogous conclusions in [Sta81, Corollaries 5.9 and 5.11], where
he used the notion of r-rank. Stafford’s results are actually very general, in that he
proved analogues of Theorem A and Theorem B for rings that are not necessarily
commutative. In the assumptions of Theorem A and Theorem B, the r-rank of a
module M carries essentially the same information that is recorded by the rank of
a local free summand of M , that we consider instead. However, in Section 3, using
our approach we prove stronger results under more general assumptions.

Let M be a finitely generated R-module. Observe that the conclusion of The-
orem A can be viewed as a statement about the existence of a surjective homo-
morphism inside HomR(M,R). For several applications, it is useful to restrict the
selection of homomorphisms M → R to those belonging to a given R-submodule
E of HomR(M,R). This is the scenario arising, for instance, from the study of
the F-signature of Cartier subalgebras of C R =

⊕
e HomR(F e

∗R,R), where R is an
F-finite local ring of prime characteristic [BST12]. Our main achievement in this
direction is the following generalization of Theorem A.

Theorem C. Let R be a commutative Noetherian ring, M a finitely generated
R-module, and E an R-submodule of HomR(M,R). Assume that, for each p ∈
Spec(R), Mp contains a free Ep-summand of rank at least dim(R/p)+1. Then M
contains a free E -summand.

The terminology “free Ep-summand” of Theorem C will be explained in detail
in Section 3. As the main application of Theorem C, these authors establish in
[DSPY16] the existence of a global F-signature with respect to Cartier subalgebras
of CR, where R is an F-finite ring of prime characteristic, not necessarily local.

The statements of Theorems A, B and C can actually be strengthened by just
requiring that Mp has a free summand (free Ep-summand for Theorem C) of
rank at least 1 + dimj- Spec(R)(p), for each p ∈ j-Spec(R). Here, j-Spec(R) is
the set of all primes that can be written as an intersection of maximal ideals,
while dimj-Spec(R)(p) denotes the supremum over the lengths of increasing chains
of primes in j-Spec(R) that start with p. In addition, we can get even stronger
conclusions, provided some additional assumptions hold. Namely, if there exists
a fixed R-submodule N of M and a positive integer i such that, for all p ∈ j-
Spec(R), Mp has a free Rp-summand (free Ep-summand for Theorem C) of rank at
least dimj-Spec(R)(p) + i that is contained in Np, then the global free R-summand
of M can be realized to be of rank at least i, and inside N .

This article is structured as follows: in Section 2, we present a version of Theo-
rem A via rather direct and elementary techniques. However, the methods we em-
ploy are not effective enough to prove the result in its full generality. In Section 3,



GENERALIZING TWO CLASSICAL THEOREMS 1419

we introduce the notion of free-basic element, which allows us to prove Theorems A,
B and C in their full generality. We believe that free-basic elements are interesting
and worth exploring on their own, as they share many good properties both with
basic elements and unimodular elements.

2. An elementary approach to Theorem A

Throughout this section, R is a commutative Noetherian ring with identity, and
of finite Krull dimension d. Given an ideal I of R, we denote by V (I) the closed set
of Spec(R) consisting of all prime ideals that contain I. Given s ∈ R, we denote by
D(s) the open set consisting of all prime ideals that do not contain s. Recall that
{D(s) | s ∈ R} is a basis for the Zariski topology on Spec(R), and that D(s) can be
identified with Spec(Rs). We present an elementary approach to Theorem A, which
will lead to a proof in the case when R has infinite residue fields. We first need
to recall some facts about the symmetric algebra of a module. If M is a non-zero
finitely generated R-module, we denote by SymR(M) the symmetric algebra of M
over R. Furthermore, we denote by μR(M) the minimal number of generators of
M as an R-module. Given a presentation

Rn2
(aij) �� Rn1 �� M �� 0

then we can describe SymR(M), as an R-algebra, in the following way:

SymR(M) ∼= R[x1, x2, . . . , xn1 ]/J, where J =

(
n1∑
i=1

aijxi | 1 � j � n2

)
.

When M is free of rank n, then SymR(M) is just a polynomial ring over R, in
n indeterminates. Huneke and Rossi give a formula for the Krull dimension of a
symmetric algebra.

Theorem 2.1 ([HR86, Theorem 2.6 (ii)]). Let R be a ring which is the homomor-
phic image of a Noetherian universally catenary domain of finite dimension. Let
M be a finitely generated R-module; then dim(SymR(M)) = max

p∈Spec(R)
{dim(R/p)+

μRp
(Mp)}.

Now, suppose that P is a finitely generated projective R-module, and suppose we
have a surjection Rn → P → 0. Let Q be its kernel. Applying (−)∗ := HomR(−, R)
to the split short exact sequence 0 → Q → Rn → P → 0 gives another short exact
sequence

0 �� P ∗ �� (Rn)∗ ∼= Rn �� Q∗ �� 0.

This provides a natural way to view SymR(Q∗) as the homomorphic image of
R[x1, . . . , xn] ∼= SymR(Rn). Moreover, as Q is projective, if m ∈ Max(R) is a
maximal ideal, then (Q/mQ)∗ ∼= Q∗⊗RR/m, where the first (−)∗ is over R/m while
the second is over R. In addition, we have SymR/m(Q∗ ⊗R R/m) ∼= SymR(Q∗) ⊗R

R/m. In fact, for any finitely generated R-module M , we have

SymR/m(M ⊗R R/m) ∼= SymR(M) ⊗R R/m.

To see this, one only needs to notice that if Rn2 → Rn1 → M → 0 is a presentation
of M as an R-module, then applying −⊗R R/m gives a presentation of M ⊗R R/m
as an R/m-vector space. The following lemma shows how the symmetric algebra
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can detect whether an element of a projective module is locally a minimal generator
or not.

Lemma 2.2. Let R be a commutative Noetherian ring, P be a finitely generated
projective R-module with generators η1, . . . , ηn, and Q be the kernel of the surjec-
tive map Rn → P which sends ei �→ ηi. For any r1, . . . , rn ∈ R and m ∈ Spec(R),
we have r1η1 + · · · + rnηn ∈ mPm if and only if (m, x1 − r1, . . . , xn − rn) is a
maximal ideal of SymR(Q∗).

Proof. Checking that r1η1 + · · ·+rnηn ∈ mPm is equivalent to checking that r1η1 +
· · · + rnηn = 0 in Pm/mPm

∼= P/mP . Let κ := R/m. As P is projective, tensoring
with κ gives a short exact sequence 0 → Q/mQ → κn → P/mP → 0 of κ-vector
spaces. Let t = dimκ(P/mP ), and choose a basis for P/mP ∼= κt. Let (aij)
be the t × n matrix representing the onto map κn → P/mP . After dualizing,
we see that Symκ((Q/mQ)∗) ∼= κ[x1, . . . , xn]/J where J = (

∑n
i=1 ajixi | 1 �

j � t). Furthermore, observe that the maximal ideal (x1 − r1, . . . , xn − rn) ∈
Max(κ[x1, . . . , xn]) contains J if and only if

∑n
i=1 ajiri = 0 for each 1 � j � t.

This happens if and only if (r1, . . . , rn)(aij)T = 0, which in turn is equivalent
to (aij)(r1, . . . , rn)T = 0. Finally, since (aij) is the matrix representing κn →
P/mP , this happens if and only if r1η1 + · · · + rnηn = 0 in P/mP . Therefore,
r1η1+. . .+rnηn ∈ mPm if and only if (x1−r1, . . . , xn−rn) ∈ Max(Symκ(Q/mQ)∗) =
Max(SymR(Q∗)⊗R/m), if and only if (m, x1− r1, . . . , xn− rn) ∈ Max(SymR(Q∗)).

�

Using Lemma 2.2, we can give a proof of Serre’s Splitting Theorem 1.1 [Ser58,
Theorem 1] for algebras of finite type over an algebraically closed field. The main
purpose of showing this argument here is for the reader to get more familiar with
the techniques that will be employed and generalized later in this section. We
thank Mohan Kumar for suggesting this proof to us, and for pointing out how to
generalize it to any finitely generated module in the case when R is an affine algebra
over an algebraically closed field.

Theorem 2.3. Let R be a d-dimensional ring of finite type over an algebraically
closed field k, and P be a finitely generated projective R-module whose rank at
each localization at a prime ideal is at least d + 1. Then P contains a free R-
summand.

Proof. Let η1, . . . , ηn be generators of P and Q be the kernel of the natural surjec-
tion Rn → P . Then dim(SymR(Q∗)) = max

p∈Spec(R)
{dim(R/p)+μRp

((Q∗)p)} by The-

orem 2.1. Observe that Q is a locally free R-module of rank equal to n− rank(P ).
Therefore Q∗ is locally free of the same rank, and thus dim(SymR(Q∗)) � d +
n − d − 1 = n − 1. Let I be the ideal of k[x1, . . . , xn] defining the kernel of the
composition k[x1, . . . , xn] ⊆ R[x1, . . . , xn] → SymR(Q∗). As dim(k[x1, . . . , xn]) =
n > dim(SymR(Q∗)) it must be the case that I 	= 0 and, by the Nullstellensatz,
there must be a maximal ideal (x1− r1, . . . , xn− rn) of k[x1, . . . , xn] not containing
I. In particular, for each m ∈ Max(R), the ideal (m, x1 − r1, . . . , xn − rn) can-
not be a maximal ideal of SymR(Q∗). By Lemma 2.2, r1η1 + . . . + rnηn is then
a minimal generator of Pm for each m ∈ Max(R). Therefore, the map R → P
sending 1 �→ r1η1 + · · ·+rnηn splits locally at each m ∈ Max(R), and hence it splits
globally. �
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We now present a generalization of the techniques just employed. This allows us
to prove Theorem A for rings R of which all the residue fields R/m, for m ∈ Max(R),
are infinite. This includes rings that contain an infinite field. We first prove an
auxiliary lemma.

Lemma 2.4. Let R be a commutative Noetherian ring of finite dimension d such
that all residue fields R/m, for m ∈ Max(R), are infinite. Let R[x1, . . . , xn] be
a polynomial algebra over R, and let J ⊆ R[x1, . . . , xn] be an ideal with ht(J) �
d + 1. For all integers 0 � � � n, there exist r1, . . . , r� ∈ R such that either
J+(x1−r1, . . . , x�−r�) = R[x1, . . . , xn], or ht(J+(x1−r1, . . . , x�−r�)) � d+�+1
(when � = 0, the reader should think of J + (x1 − r1, . . . , x� − r�) as being equal to
J).

Proof. We proceed by induction on �, where the case � = 0 follows from our as-
sumptions. Let 1 � � � n. By inductive hypothesis, we can find r1, . . . , r�−1 such
that either J + (x1 − r1, . . . , x�−1 − r�−1) = R[x1, . . . , xn], or

ht(J + (x1 − r1, . . . , x�−1 − r�−1)) � d + �.

In the first case, any choice of r� will yield J+(x1−r1, . . . , x�−r�) = R[x1, . . . , xn].
In the second case, we have that J + (x1 − r1, . . . , x�−1 − r�−1) is a proper ideal of
height at least d+�. Let p1, . . . , pt be the minimal primes over J+(x1−r1, . . . , x�−1−
r�−1). For each 1 � j � t, let qj = pj ∩R, and let Hj := {r ∈ R | x� − r ∈ pj}. We
want to show that

⋃t
j=1 Hj 	= R. For this matter, from now on we can deal only with

those indices 1 � j � t for which Hj 	= ∅. In this case, we see that Hj = aj +qj , i.e.,
Hj is a coset determined by some aj ∈ R. For each qj , choose a maximal ideal mj of
R such that mj contains qj . We then have a finite set Y = {mj ∈ Max(R) | Hj 	= ∅}
of maximal ideals of R. For each m ∈ Y , since R/m is infinite, there exists bm ∈ R
such that bm + m /∈ {aj + mj | mj = m, 1 � j � t}. By the Chinese Remainder
Theorem, there exists r� ∈ R such that r�+m = bm+m for all m ∈ Y . In particular,
r� avoids all cosets Hj , for 1 � j � t. By definition of Hj , it follows that x� − r� /∈⋃t

j=1 pj , and this implies either that J + (x1 − r1, . . . , x� − r�) = R[x1, . . . , xn], or
that ht(J + (x1 − r1, . . . , x� − r�)) � d + � + 1, as desired. �
Remark 2.5. In Lemma 2.4, if R contains an infinite field k, we can actually choose
r1, . . . , r� to be any generic elements inside k. In fact, given any proper ideal I of
R[x1, . . . , xn] and any fixed f ∈ R[x1, . . . , xn], no two distinct r, s ∈ k ⊆ R can be
such that both f − r ∈ I and f − s ∈ I, otherwise the unit r − s would be inside
I. Therefore, with the same notation as in the inductive step in the proof of the
lemma, a generic choice r� ∈ k ⊆ R is such that x� − r� avoids all the minimal
primes p1, . . . , pt over J + (x1 − r1, . . . , x�−1 − r�−1).

We are now ready to present the main result of this section: Theorem A in the
case when R has infinite residue fields. As already pointed out in the introduction,
we will prove Theorem A in its full generality in Section 3, using different methods.

Theorem 2.6. Let R be a commutative Noetherian ring of dimension d such
that all residue fields R/m, where m ∈ Max(R), are infinite. Let M be a finitely
generated R-module such that Mp has a free summand of rank at least d+1 locally
at every p ∈ Spec(R). Then M has a free summand.

Proof. Suppose that M can be generated by n elements, and fix a surjective map π :
Rn → M . Our assumptions about local number of free summands of M guarantee
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that we can cover Spec(R) with open sets D(s1), . . . , D(st), such that for all 1 �
i � t the module Msi has an Rsi-free summand of rank at least d+1. In particular,
for all i, we can find maps Msi → Rd+1

si such that the compositions Rn
si → Msi →

Rd+1
si are split surjections. Let Qi be the kernel of Rn

si → Rd+1
si → 0, so that we

have a surjection Rsi [x1, . . . , xn] → SymRsi
(Q∗

i ) → 0 at the level of symmetric
algebras. For each i, consider the composition R[x1, . . . , xn] → Rsi [x1, . . . , xn] →
SymRsi

(Q∗
i ), and let ai ⊆ R[x1, . . . , xn] be its kernel. We claim that ai is an ideal of

height at least d+1. In fact, let SymRsi
(Q∗

i ) ∼= Rsi [x1, . . . , xn]/Ji be a presentation
of the symmetric algebra of Q∗

i over Rsi . Then Ji can be generated by d+ 1 linear
forms that, possibly after a change of variables, can be regarded as d + 1 distinct
variables. Therefore Ji has height d + 1 in Rsi [x1, . . . , xn]. Let Ii ⊆ R[x1, . . . , xn]
be any ideal such that (Ii)si = Ji. Note that the ideal ai is just the saturation
Ii : s∞i = {f ∈ R[x1, . . . , xn] | smi f ∈ Ii for some m ∈ N}, and this implies that
ht(ai) � ht(Ji) = d + 1, since no minimal primes of ai contain si.

Now consider the intersection a = a1 ∩ . . . ∩ an, which is then an ideal of height
at least d + 1 inside R[x1, . . . , xn]. Applying Lemma 2.4 to the ideal a with � = n,
we obtain elements r1, . . . , rn ∈ R such that either a + (x1 − r1, . . . , xn − rn) =
R[x1, . . . , xn], or ht(a+(x1−r1, . . . , xn−rn)) � d+n+1. Since dim(R[x1, . . . , xn]) =
d+n, the latter cannot happen. This implies that the ideals ai+(x1−r1, . . . , xn−rn)
cannot be contained in (m, x1 − r1, . . . , xn − rn), for any 1 � i � t and any m ∈
Max(R) ∩ D(si). As a consequence, (m, x1 − r1, . . . , xn − rn) is not a maximal
ideal of SymRsi

(Q∗
i ) for any m ∈ Max(R) ∩D(si), for 1 � i � t. Now, Lemma 2.2

implies that the image of (r1, . . . , rn) under Rn → M generates a non-trivial free
Rsi-summand locally on D(si), for each i. Since the open sets D(si) cover Spec(R),
it generates a global free summand of M . �

We point out, once again, that we cannot deduce Theorem A in its generality
from Theorem 2.6, even after making the residue fields of R infinite under a faith-
fully flat extension R → S. In fact, given an R-module M , detecting the splittings
of M ⊗R S over S does not necessarily allow one to keep track of the splittings of
M over R.

3. Free-basic elements

Throughout this section, R denotes a commutative Noetherian ring with identity.
The purpose of this section is to prove Theorems A, B and C in full generality. We
first recall the notion of a basic set, while the reader is referred to [EG85] for a
more general and detailed treatment of basic sets and basic elements. Also, some
of the arguments that we present have a similar flavor as the treatment given for
basic elements in [Hun11], which is another possible source for references.

Definition 3.1. A subset X ⊆ Spec(R) is said to be basic if it is closed under
intersections. In other words, for any indexing set Λ and any family {pα}α∈Λ ⊆ X,
whenever the intersection I :=

⋂
α∈Λ pα is a prime ideal, then I is still an element

of X.

Examples 3.2. Let R be a commutative Noetherian ring.
(1) Spec(R) is trivially a basic set.
(2) Min(R) is a basic set. More generally, for an integer n ∈ N, the set X(n) =

{p ∈ Spec(R) | ht(p) � n} is basic.
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(3) The set j-Spec(R) = {p ∈ Spec(R) | p is an intersection of maximal ideals
of R} is basic.

Below is a list of properties about basic sets, which we leave as an exercise to
the reader.

Proposition 3.3. Let R be a commutative Noetherian ring, and X be a basic set.
(1) If Y ⊆ X is closed, then Y is a basic set.
(2) Every closed set Y ⊆ X is a finite union of irreducible closed sets in X.
(3) If Y ⊆ X is an irreducible closed set, then Y = V (p)∩X for some p ∈ X,

i.e., Y has a generic point.

Let X be a basic set, and M be a finitely generated R-module. An element
x ∈ M is called X-basic if x /∈ pMp, for all p ∈ X. Equivalently, x is a minimal
generator of Mp, for all p ∈ X. The notion of basic element was introduced by
Swan in [Swa67], and later used by Eisenbud and Evans for proving Theorem 1.1
and Theorem 1.2. In what follows, given an R-module M and an element x ∈ M ,
we will denote 〈x〉 := (R · x). Similarly, given a subset S ⊆ M , we will denote
〈S〉 := (R·S). When P is a projective R-module, an element x ∈ P is X-free-basic if
and only if 〈x〉p is a non-zero free summand of Pp, for all p ∈ X. In particular, when
X = Spec(R), or just X = j-Spec(R), and P is projective, x ∈ P is X-basic if and
only if 〈x〉 is a non-zero free summand of P . When M is not necessarily projective,
an X-basic element x ∈ M may not generate a free summand, in general. We
now introduce an invariant that keeps track of the size of the local free summands
of a module, rather than its local number of generators as in the theory of basic
elements. Before doing so, we impose restrictions on the splitting maps.

Definition 3.4. Let R be a commutative Noetherian ring, M a finitely gener-
ated R-module, and E an R-submodule of HomR(M,R). We say that a free R-
submodule F ∼= Rn of M is a free E -summand of M if there exists a split surjection
M → F ∼= Rn which, when viewed as an element of HomR(M,Rn) ∼= Hom(M,R)n,
is a direct sum of elements belonging to E .

Observe that the choice of an isomorphism F ∼= Rn does not affect whether or
not the projection M → F ∼= Rn is a direct sum of elements of E .

Definition 3.5. Let R be a commutative Noetherian ring, M a finitely generated
R-module, E an R-submodule of HomR(M,R), and S a subset of M . For a prime
p ∈ Spec(R), we denote by δE

p (S,M) the largest integer n satisfying the following
equivalent conditions:

(1) There exists a free Ep-summand F of Mp such that the image of S under
the natural map Mp → F → F/pF generates an Rp/pRp-vector subspace
of rank n.

(2) There exists a free Ep-summand G of Mp of rank n which is contained in
〈S〉p.

Whenever M is clear from the context, we denote δE
p (S,M) simply by δE

p (S).

Let p ∈ Spec(R) be a prime, M a finitely generated R-module, E an R-submodule
of HomR(M,R), and x ∈ M . It follows from our definition that δE

p ({x}) = 1 if and
only if 〈x〉p is a non-zero free Ep-summand of Mp. Also, observe that if q ⊆ p, then
δE
q (S) � δE

p (S). In fact, if Gp ⊆ 〈S〉p is a free Ep-summand of Mp of rank δE
p (S),
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then Gq ⊆ 〈S〉q is a free Eq-summand of Mq of rank δE
p (S). Since δE

q (S) is defined
as the maximum rank of any such modules, we have δE

q (S) � δE
p (S).

Lemma 3.6. Let R be a commutative Noetherian ring, M a finitely generated
R-module, E an R-submodule of HomR(M,R), and X a basic set. For any subset
S of M and any integer t ∈ N, the set Yt := {p ∈ X | δE

p (S) � t} is closed.

Proof. Observe that Yt = {p ∈ Spec(R) | δE
p (S) � t} ∩X, so it is enough to show

that {p ∈ Spec(R) | δE
p (S) � t} is a closed set, i.e., that {p ∈ Spec(R) | δE

p (S) > t}
is open. Let p ∈ Spec(R) be such that δE

p (S) > t. By definition of δE
p (S), the

identity map R
δE
p (S)

p → R
δE
p (S)

p factors as R
δE
p (S)

p ⊆ 〈S〉p ⊆ Mp → R
δE
p (S)

p , with

Mp → R
δE
p (S)

p a direct sum of elements in Ep. The inclusion R
δE
p (S)

p ⊆ 〈S〉p and the

surjection Mp → R
δE
p (S)

p lift to maps RδE
p (S) → 〈S〉 and M → RδE

p (S), respectively.
In addition, M → RδE

p (S) can be chosen such that it is still a direct sum of maps in
E . Let K be the kernel and C be the cokernel of the composition RδE

p (S) → 〈S〉 ⊆
M → RδE

p (S). As Kp = Cp = 0 and both these modules are finitely generated,
there is an element s ∈ R� p such that Kq = Cq for all q ∈ D(s). Thus D(s) is an
open neighborhood of p such that δE

q (S) � δE
p (S) > t for all q ∈ D(s), which shows

that {p ∈ Spec(R) | δE
p (S) > t} is indeed open. �

Lemma 3.7. Let R be a commutative Noetherian ring, M a finitely generated
R-module, E an R-submodule of HomR(M,R), and X a basic set. For any subset
S of M there exists a finite set of primes Λ ⊆ X such that if p ∈ X � Λ, there
exists q ∈ Λ such that q � p, and δE

p (S) = δE
q (S).

Proof. For each t ∈ N the sets Yt := {p ∈ X | δE
p (S) � t} are closed by Lemma 3.6.

Also, observe that Yt = X for all t � 0. The sets Yt are finite unions of irreducible
closed subsets by Proposition 3.3, and irreducible closed sets of X are of the form
V (p) ∩ X for some p ∈ X. Let Λ be the finite collection of generic points of the
finitely many irreducible components of the finite collection of closed sets Yt, as t
varies through N. Let p ∈ X�Λ and let t = δE

p (S), so that p ∈ Yt by definition. Let
q be the generic point of an irreducible component of Yt which contains p. Then
q � p because q ∈ Λ. Also, t � δE

q (S) � δE
p (S) = t, which implies the equality

δE
q (S) = δE

p (S). �

We now make the key definitions of free-basic set and free-basic element.

Definition 3.8. Let R be a commutative Noetherian ring, M a finitely generated
R-module, E an R-submodule of HomR(M,R), and X a basic set. Given a prime
p ∈ X and a finite set S = {x1, . . . , xn} ⊆ M , we say that S is a (p,E )-free-basic set
for M if δE

p (S,M) � min{n, 1 + dimX(p)}. Here, dimX(p) denotes the supremum
over the length of chains p = p0 � p1 � · · · � pn with pi ∈ X for each i. We say
that S is an (X,E )-free-basic set for M if it is a (p,E )-free-basic set for M for all
p ∈ X. When the module M is clear from the context, we just call S a (p,E )-free-
basic set, or an (X,E )-free-basic set. For x ∈ M , if S = {x} is a (p,E )-free-basic set
(respectively, an (X,E )-free-basic set), we simply say that x is a (p,E )-free-basic
element (respectively, an (X,E )-free-basic element).
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Let X be a basic set, M a finitely generated R-module, and E an R-submodule
of HomR(M,R). For p ∈ X, an element x ∈ M is (p,E )-free-basic if and only if
δE
p ({x}) = 1. Therefore, x is (p,E )-free-basic if and only if it generates a non-zero

free Ep-summand of Mp.
Note that, given an R-submodule E of HomR(M,R), we can view R ⊕ E ∼=

HomR(R,R) ⊕ E as an R-submodule of R ⊕ HomR(M,R) ∼= HomR(R ⊕ M,R).
The following lemma will be crucial in what follows.

Lemma 3.9. Let R be a commutative Noetherian ring, M a finitely generated
R-module, E an R-submodule of HomR(M,R), and X a basic set. Let S =
{x1, . . . , xn} ⊆ M be an (X,E )-free-basic set and (a, x1) ∈ R⊕M be an (X,R⊕E )-
free-basic element. Then there exist a1, . . . , an−1 ∈ R such that

S′ = {x′
1, x

′
2, . . . , x

′
n−1} = {x1 + aa1xn, x2 + a2xn, . . . , xn−1 + an−1xn}

is (X,E )-free-basic, and (a, x′
1) ∈ R⊕M is still an (X,R⊕E )-free-basic element.

Proof. We first observe that, since (a, x1) is (X,R ⊕ E )-free-basic by assumption,
any element of the form (a, x1 + az), with z ∈ M , is still (X,R⊕ E )-free-basic. In
fact, let p ∈ X. If a /∈ p, then 〈(a, x1 + az)〉p ∼= Rp, and the map (R ⊕ M)p →
Rp defined as multiplication by a−1 on the first component and as the zero map
on the second belongs to R ⊕ E . This map provides a splitting to the inclusion
〈(a, x1 + az)〉p ⊆ (R ⊕ M)p, showing that (a, x1 + az) is (p, R ⊕ E )-free-basic in
this case. Assume that a ∈ p. Let ϕ ∈ (R ⊕ E )p be a map that provides a
splitting to the inclusion 〈(a, x1)〉p ⊆ (R ⊕ M)p, that is, ϕ(a, x1) = 1. Then
ϕ(a, x1 + az) = 1 + aϕ(0, z) ∈ 1 + pRp. Setting ϕ′ := (1 + aϕ(0, z))−1 · ϕ we see
that ϕ′ is still an element of (R ⊕ E )p, and it provides the desired splitting to the
inclusion 〈(a, x1 + az)〉p ⊆ (R⊕M)p. Either way, (a, x1+az) is (p, R⊕E )-free-basic
for all p ∈ X. This shows that the second claim of the lemma follows from the first,
since we pick x′

1 of the form x1 + aa1xn, for some a1 ∈ R.
We now prove the first claim. Let Λ be as in Lemma 3.7. We claim that

for any choice of a1, a2, . . . , an−1 ∈ R and p ∈ X � Λ the set {x1 + aa1xn, x2 +
a2xn, . . . , xn−1 + an−1xn} is (p,E )-free-basic. Indeed, let a1, . . . , an−1 ∈ R and
S′ = {x1 + aa1xn, . . . , xn−1 + an−1xn}. Let F be a free Ep-summand of Mp such
that the image of the composition 〈S′ ∪ {xn}〉p = 〈S〉p ⊆ Mp → F → F/pF
generates an Rp/pRp-vector space of rank δE

p (S). Then the image of 〈S′〉p under
this composition is an Rp/pRp-vector subspace of dimension at least δE

p (S) − 1.
Therefore δE

p (S′) � δE
p (S) − 1. If p ∈ X � Λ, then by Lemma 3.7 there is a q ∈ Λ

such that q � p and δE
q (S) = δE

p (S). Hence

δE
p (S′) � δE

p (S)−1=δE
q (S)−1 � min{n, 1+dimX(q)}−1 � min{n−1, 1+dimX(p)}.

Suppose that Λ = {q1, . . . , qm}, and arrange the primes qi in such a way that, for
each 1 � � � m, q� is a minimal element of {q1, . . . , ql}. We prove, by induction on
� � 0, that there exist a1, a2, . . . , an−1 such that {x1 +aa1xn, x2 +a2xn, . . . , xn−1 +
an−1xn} is (qi,E )-free-basic for all 1 � i � �. Note that, for � = m, we get the
desired claim for the lemma.

When � = 0 we are done. By induction on �, there exist a1, . . . , an−1 ∈ R such
that the set T := {x1 + aa1xn, x2 + a2xn, . . . , xn−1 + an−1xn} is (q,E )-free-basic
for each q ∈ {q1, . . . , q�−1}. If T happens to be (q�,E )-free-basic as well, we set
S′ = T , and we are done. Else, δE

q�
(T ) < min{n− 1, 1 + dimX(q�)}. Let F ⊆ 〈T 〉q�
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be a free Eq�
-summand of Mq�

of rank δE
q�

(T ). In this way, the Rq�
/q�Rq�

-vector
space spanned by the image of T under the natural map Mq�

→ F → F/q�F
has dimension δE

q�
(T ). For each x ∈ M let x denote the image of x in F/q�F . The

condition that δE
q�

(T ) < min{n−1, 1+dimX(q�)} implies that the Rq�
/q�Rq�

-vector
space spanned by {x1 + aa1xn, . . . , xn−1 + an−1xn} has dimension strictly smaller
than n− 1. Thus for some 1 � i � n− 1, the i-th element in the above set is in the
span of the the previous i− 1 elements. We distinguish two cases.

• Assume i 	= 1. Let r ∈ (q1 ∩ · · · ∩ q�−1) � q� and define

S′ := {x1 + aa1xn, . . . , xi + (ai + r)xn, . . . , xn−1 + an−1xn}.
Since r ∈ R� q�, and because xi + aixn is in the span of the previous i− 1
elements, {x1 + aa1xn, . . . , xi + (ai + r)xn, . . . , xn−1 + an−1xn} spans the
same Rq�

/q�Rq�
-vector space as {x1 + aa1xn, . . . , rxn, . . . , xn−1 + an−1xn}

which, in turn, spans the same Rq�
/q�Rq�

-vector space as {x1, . . . , xn}.
• Now assume i = 1, which means that x1 + aa1xn = 0 in F/q�F . We claim

that the element a is not inside q�. In fact assume, by way of contradiction,
that a ∈ q�. In such case, as we showed at the beginning of this proof, there
is ϕ ∈ Eq�

such that ϕ(a, x1 + aa1xn) = 1. Then, as ϕ(0, x1 + aa1xn) =
1−ϕ(a, 0) is invertible, we see that (ϕ(0, x1+aa1xn))−1·ϕ ∈ Eq�

is a splitting
to the inclusion 〈(0, x1 + aa1x1)〉q�

⊆ (R⊕M)q�
. Therefore, (0, x1 +aa1x1)

is (q�,E )-free-basic. Recall that F ⊆ 〈T 〉q�
is a free Eq�

-summand of Mq�

of rank δE
q�

(T ). Set x′′
1 := x1 + aa1xn ∈ T , and let ι : F → Mq�

and
π : Mq�

→ F denote the natural inclusion and projection, where π is a
direct sum of elements of Eq�

. The fact that x′′
1 = 0 simply means that

π(x′′
1) ∈ q�F . If x′′

1 ∈ F , then x′′
1 = πι(x′′

1) ∈ q�F , so that (0, x′′
1) ∈

q�(R⊕M)q�
, contradicting the fact that (0, x′′

1) generates a free summand
of (R⊕M)q�

. Thus, we necessarily have x′′
1 /∈ F . Let y := x′′

1 − ιπ(x′′
1), and

note that y ∈ ker(π). Since (0, x′′
1) − (0, y) = (0, ιπ(x′′

1)) ∈ q�(R ⊕ M)q�
,

using once again the same argument as above we see that (0, y) is (q�,E )-
free-basic, because (0, x′′

1) is. This means that 〈y〉q�
is a free Eq�

-summand
of Mq�

. Because Mq�
∼= ker(π)⊕F , and because y ∈ ker(π) generates a free

Eq�
-summand of Mq�

, we have that F ′ = 〈y〉q�
⊕F is a free direct summand

of Mq�
. In addition, because x′′

1 ∈ T and ιπ(x′′
1) ∈ F ⊆ 〈T 〉q�

, we conclude
that y ∈ 〈T 〉q�

. Therefore F ′ ⊆ 〈T 〉q�
is a free Eq�

-summand of Mq�
of rank

δE
q�

(T ) + 1, a contradiction. This shows that a /∈ q�.
Let r ∈ (q1 ∩ . . . ∩ q�−1) � q�, and define

S′ := {x1 + a(a1 + r)xn, x2 + a2xn, . . . , xn−1 + an−1xn}.
Since ar /∈ q� and x1 + aa1xn = 0, the set

{x1 + a(a1 + r)xn, . . . , xi + aixn, . . . , xn−1 + an−1xn}
spans the same Rq�

/q�Rq�
-vector space as the set {x1, . . . , xn} inside F/q�F .

Either way, we obtain that δE
q�

(S′) � δE
q�

(S). Since S is (q�,E )-free-basic, we
have that δE

q�
(S) � min{n, 1 + dimX(q�)} � min{n− 1, 1 + dimX(q�)}. Moreover,

r ∈ qi for each 1 � i � � − 1, therefore we also have that δE
qi

(S′) = δE
qi

(T ) �
min{n − 1, 1 + dimX(qi)} for each 1 � i � � − 1. This completes the proof of the
inductive step. As previously mentioned, the lemma now follows from choosing
� = m. �
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Theorem 3.10. Let R be a commutative Noetherian ring, N ⊆ M finitely gener-
ated R-modules, E an R-submodule of HomR(M,R), and X a basic set. Assume
that, for each p ∈ X, Np contains a free Rp-module of rank at least 1 + dimX(p)
that is a free Ep-summand of Mp. Then there exists x ∈ N that is (X,E )-free-
basic for M . Moreover, if an element (a, y) ∈ R ⊕N is (X,R⊕ E )-free-basic for
R⊕M , then x can be chosen to be of the form x = y + az for some z ∈ N .

Proof. Assume that (a, y) ∈ R⊕N is (X,R⊕E )-free-basic for R⊕M . Complete y
to a generating set S = {y, y1, . . . , yn} for N , which is easily verified to be (X,E )-
free-basic for M , given our assumptions. Continued use of Lemma 3.9 implies that
there exist a1, . . . , an ∈ R such that x = y+a(a1y1 + . . .+anyn) is (X,E )-free-basic
for M , proving the last claim. As for the first claim, notice that (1, y) ∈ R ⊕ N
is always (X,R ⊕ E )-free-basic for R ⊕M , for any y ∈ N . Thus existence follows
from the last claim. �
Lemma 3.11. Let (R,m) be a local ring, M a finitely generated R-module, S a
subset of M , and E an R-submodule of HomR(M,R). Consider IE (S,M) := {y ∈
〈S〉 | f(y) ∈ m for all f ∈ E }, which is an R-submodule of 〈S〉. Then

δE
m(S,M) = λR

(
〈S〉

IE (S,M)

)
.

Proof. Let δ := δE
m(S,M), and F ⊆ 〈S〉 be a free E -summand of M such that

F ∼= Rδ. Let ϕ : M → F be a split surjection that is a direct sum of elements in E ,
and let T = ker(ϕ), so that M = F ⊕ T . In addition, T ∩ 〈S〉 contains no free E -
summands of M . By a slight modification of the argument in [Hun13, Discussion
6.7], we see that IE (S,M) = mF ⊕ (T ∩ 〈S〉) ∼= mδ ⊕ (T ∩ 〈S〉). Since 〈S〉 =
(F ⊕ T ) ∩ 〈S〉 = F ⊕ (T ∩ 〈S〉), we finally have

δ = λR

(
Rδ ⊕ (T ∩ 〈S〉)
mδ ⊕ (T ∩ 〈S〉)

)
= λR

(
F ⊕ (T ∩ 〈S〉)
mF ⊕ (T ∩ 〈S〉)

)
= λR

(
〈S〉

IE (S,M)

)
. �

Lemma 3.12. Let R be a commutative Noetherian ring, M a finitely generated
R-module, E an R-submodule of HomR(M,R), and S a subset of M . Suppose that
F ⊆ 〈S〉 is a free E -summand of M of rank i, so that we have a split surjection
ϕ : M → F ∼= Ri which is a direct sum of elements in E . Define M ′ = ker(ϕ),
so that we can write M = F ⊕ M ′. Let S′ be the projection of S to M ′ along
the internal direct sum, and E ′ be the projection of E to HomR(M ′, R). For all
p ∈ Spec(R), we have δE ′

p (S′,M ′) = δE
p (S,M) − i.

Proof. After localizing at p, we can assume that (R,m) is a local ring, with p = m.
Let IE (S,M) be as in Lemma 3.11, and similarly define IE ′(S′,M ′). Given that
〈S〉 = F⊕〈S′〉 ⊆ F⊕M ′ = M , and that F is a free E -summand, it is straightforward
to see that IE (S,M) = mF ⊕ IE ′(S′,M ′). This gives rise to the following (actually
splitting) short exact sequence:

0 �� F

mF
�� 〈S〉
IE (S,M)

�� 〈S′〉
IE ′(S′,M ′)

�� 0.

Lemma 3.11 and the short exact sequence above give

δE ′

m (S′,M ′) = λR

(
〈S′〉

IE ′(S′,M ′)

)
= λR

(
〈S〉

IE (S,M)

)
− λR

(
F

mF

)
= δE

m(S,M) − i.

�
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Theorem C is a consequence of Theorem 3.10 on the existence of free-basic
elements for modules that, locally at every prime, have enough free E -summands.
With Lemma 3.12, we prove here the most general version of this result, dealing
with free E -summands of a given rank that, additionally, are contained in a given
submodule.
Theorem 3.13. Let R be a commutative Noetherian ring, N ⊆ M finitely gen-
erated R-modules, E an R-submodule of HomR(M,R), and X = j-Spec(R). As-
sume that, for each p ∈ X, Mp contains a free Ep-summand F (p) of rank at least
i + dimX(p), for some positive integer i. Then M contains a free E -summand
F of rank at least i. Furthermore, if F (p) ⊆ Np for all p ∈ X, then F can be
realized inside N .
Proof. It suffices to prove the statement involving N , since the first part of the
theorem is nothing but the case N = M . We proceed by induction on i � 1. If
i = 1, then our assumptions guarantee that there exists x ∈ N that is (X,E )-free-
basic for M , by Theorem 3.10. Thus, the inclusion Rm

∼= 〈x〉m ⊆ Mm splits via an
element of Em, for all maximal ideals m ∈ Max(R). In particular, F := 〈x〉 ∼= R
is a free R-submodule of N such that the inclusion F ⊆ M splits. We claim that
the splitting map M → F ∼= R can be chosen to be inside E . In fact, consider the
inclusion R ∼= 〈x〉 ⊆ M and apply the functor HomR(−, R). We get an induced
map h : E ⊆ HomR(M,R) → HomR(R,R) ∼= R, and it suffices to show that
h is surjective. This follows from the fact that, for each m ∈ Max(R), the map
hm : Em → Rm is surjective, because we showed that x is (m,E )-free-basic for M .
Now assume that i > 1. By the base case i = 1, there exists an element x ∈ N
with a splitting map ϕ : M → 〈x〉 ∼= R that belongs to E . Define M ′ = ker(ϕ), so
that M = 〈x〉 ⊕M ′. Let S′ be the projection of S to M ′ along the internal direct
sum, and E ′ be the projection of E to HomR(M ′, R). By Lemma 3.12 we have that
δE ′

p (S′,M ′) = δE
p (S,M) − 1 � i − 1 + dimX(p), and by induction M ′ has a free

E ′-summand F ′ ⊆ 〈S′〉 ⊆ N of rank at least i− 1. It follows that F := 〈x〉 ⊕ F ′ is
a free E -summand of M of rank at least i, which is contained in N . �

The case E = HomR(M,R), N = M and i = 1 of Theorem 3.13 gives The-
orem A, which generalizes the classical version of Serre’s Splitting Theorem 1.1
[Ser58, Theorem 1].

With Theorem 3.10 we are ready to prove Theorem B. That is, a cancellation
result for modules that, locally at each prime, have enough free summands.
Theorem 3.14. Let R be a commutative Noetherian ring, M a finitely generated
R-module, and X = j-Spec(R). Assume that, for each p ∈ X, the module Mp

contains a free Rp-summand of rank at least 1 + dimX(p). Let Q be a finitely
generated projective R-module, and N a finitely generated R-module such that
Q⊕M ∼= Q⊕N . Then M ∼= N .
Proof. Since Q is projective, we can find another projective module Q′ such that
Q⊕Q′ ∼= Ra, for some integer a. We then obtain that Ra ⊕M ∼= Ra ⊕N and, by
induction on a, we may assume that R⊕M ∼= R⊕N . Let α : R⊕N → R⊕M be
an isomorphism, and set α((1, 0)) = (a, x1). We want to show that the composition

R⊕N
α �� R⊕M

β �� R⊕M
γ �� R⊕M

η �� R⊕M

(1, 0) �� (a, x1) �� (1, x) �� (1, 0)
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is an isomorphism, with β, γ and η to be defined later. Let E ′ = HomR(N,R)
and E = HomR(M,R). Note that, since (1, 0) is (X,R⊕ E ′)-free-basic for R ⊕N ,
and α is an isomorphism by assumption, we have that (a, x1) is (X,R ⊕ E )-free-
basic for R ⊕ M . Let {x1, . . . , xn} be a set of generators for M , and recall that
δE
p ({x1, . . . , xn}) � 1 + dimX(p) for all p ∈ X, by assumption. By Theorem 3.10,

there exists an (X,E )-free-basic element x ∈ M of the form x = x1 + az, for some
z ∈ M . Define a map ϕ : R → M , by setting ϕ(1) = z. Define β : R⊕M → R⊕M
via the following matrix: [

1R 0
ϕ 1M

]
.

It is easy to check that β is an isomorphism. Note that β((a, x1)) = (a, ϕ(a)+x1) =
(a, az+x1) = (a, x). Since x ∈ M is (X,E )-free-basic, we have that M ∼= Rx⊕M ′,
for some R-module M ′. Therefore, we may define an R-module map ψ : M → R
as ψ(x) = 1 − a. Define γ : R ⊕M → R ⊕M via the following matrix:[

1R ψ
0 1M

]
.

The map γ is an isomorphism, and it is such that γ((a, x)) = (a+ψ(x), x) = (1, x).
Finally, consider the map θ : R → M , defined as θ(1) = −x. Define η : R ⊕M →
R⊕M via the matrix: [

1R 0
θ 1M

]
.

The map η is an isomorphism, and η(1, x) = (1, x + θ(1)) = (1, 0). Consider the
composition ε = η ◦ γ ◦β ◦α : R⊕N → R⊕M , which is an isomorphism such that
ε((1, 0)) = (1, 0). We then have a commutative diagram

0 �� R �� R⊕N ��

∼= ε

��

N

���
�
�

�� 0

0 �� R �� R⊕M �� M �� 0

that forces the induced map N → M to be an isomorphism. �

Bass’s Cancellation Theorem for projective modules, Theorem 1.2 [Bas64, The-
orem 9.1], now follows immediately from Theorem 3.14.
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