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TRAVELING WAVE FRONT FOR PARTIAL NEUTRAL

DIFFERENTIAL EQUATIONS

EDUARDO HERNÁNDEZ AND JIANHONG WU

(Communicated by Wenxian Shen)

Abstract. By using Schauder’s point fixed theorem we study the existence of
a traveling wave front for reaction-diffusion differential equations of the neutral
type. Some examples arising in populations dynamics are presented.

1. Introduction

Using Schauder’s point fixed theorem and monotonicity, we study the existence
of a traveling wave front for neutral differential equations of the form

d

dt
[u(t, x)−G(ut)(x)] = DΔu(t, x) + F (ut)(x), t ∈ R, x ∈ R,(1.1)

where D = diag(di) is a matrix of order N ×N , di > 0 for every i = 1, . . . , N , and
F ∈ C(C([−τ, 0];RN);RN ), G ∈ C1(C([−τ, 0];RN);RN ) (τ > 0) are functions to
be specified later.

The literature on the existence and qualitative properties of traveling waves for
reaction-diffusion equations is extensive. We cite the early papers by Fisher [4],
Kolmogorov, Petrovskii and Piskunov [10], Britton [1], Fife [3], Murray [17] and
Volpert et al. [20] regarding related differential equations. For the case of delayed
differential equations, we refer the reader to Schaaf [19], Ma [16], Zou and Wu
[21,25] and the references therein.

To the best of our knowledge, the paper [14] is the unique work treating traveling
waves for partial neutral differential equations. Using a variable transform which
allows one to study neutral equations with discrete delay via a differential equation
with an infinite number of constant delays, results on existence and invariance in
reaction diffusion equations and techniques on the construction of upper and lower
solutions, in [14] are proved some results on the existence and qualitative properties
of traveling waves for neutral differential equations of the form

d

dt
(u(t, x)− bu(t− r, x)) = dΔ[u(t, x)− bu(t− r, x)]

+ f(u(t, x)− bu(t− r, x), u(t, x), u(t− r, x)).
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Concerning partial neutral differential equations, we cite the early paper by Hale
[8], where are proved some results on the existence, uniqueness and qualitative
properties of solutions of neutral equations of the form ∂tL(ut)(ξ) = ∂ξξLut(ξ) +
f(ut)(ξ), where L(·) is a bounded linear operator on C([−r, 0];C(S1;R)). In [23],
Wu and Xia derived a neutral difference-differential system with diffusion from a
ring array of coupled lossless transmission lines and investigated the problem of
self-sustained oscillations of the considered transmission lines and the existence
of multiple large amplitude phase-locked periodic solutions in the corresponding
neutral system. In [24], Wu and Xia continued their studies in [23], proved some
general results on the existence and global continuation of rotating waves for neutral
partial differential equations and applied their results to study a concrete neutral
problem of the form

d

dt
(u(t, x)− bu(t− r, x)) = dΔ[u(t, x)− bu(t− r, x)]− au(t, x)

− abu(t− r, x)− g(u(t, x)− bu(t− r, x)).

In the theory developed in [7,18], the internal energy and the heat flux are described
as functionals of the temperature u(·) and their derivative ux(·). The system

d

dt
( u(t, x) +

∫ t

−∞
k1(t− s)u(s, x)ds ) = d�u(t, x) +

∫ t

−∞
k2(t− s)�u(s, x)ds.

has been used to describe this phenomena; see [15]. In this problem, d is a physical
constant and ki : R → R, i = 1, 2, are the internal energy and the heat flux
relaxation respectively. If we assume that the solution u(·) is known on (−∞, 0],
we obtain a neutral equation with unbounded delay. Partial neutral differential
equations can also be derived from the theory of population dynamic (see [2, 5, 6,
11–13]) where diffusion arises from the tendency of biological species to migrate
from high to low population density regions.

In this work, for Banach spaces X,Y we use the symbol L(X;Y ) for the space
of bounded linear operators from X into Y endowed with the usual norm denoted
by ‖ · ‖L(X,Y ), and for z ∈ Z and l > 0, Bl(z, Z) = {x ∈ Z :‖ z − x ‖Z≤
l}. A function H : C([−τ, 0];RN) → RM is described in the form H(ψ) =
(H1(ψ), . . . , HM (ψ)). For c > 0 and ψ ∈ C([−cτ, 0];RN), we denote by Hc(·) and
ψc(·) the functions Hc : C([−cτ ; 0];RN) → RM and ψc ∈ C([−cτ ; 0];RN) given
by Hc(ψ) = H(ψc) and ψc(θ) = ψ(cθ). If H(·) is a C1 function, DH(·) denotes
the differential of H(·) and (DH)c : C([−cτ ; 0];RN) → L(C([−cτ ; 0];RN);RM ) is
given by (DH)c(ψ) = (DH)(ψc). In this case, we note that ((DH)c(ψ))c(φ) =
(DH)(ψc)(φc) and (((DH)c(ψ))c(φ))i = (DHi)(ψ

c)(φc) for all φ ∈ C([−cτ, 0];RN)
and i = 1, . . . ,M .

A traveling wave solution of (1.1) is a solution of the form u(t, x) = φ(x + ct),
where φ ∈ C2(R;RN ) and c ∈ (0,∞). If u(t, x) = φ(x + ct) is a traveling wave of
(1.1), F ∈ C(C([−τ, 0];RN);RN ) and G ∈ C1(C([−τ, 0];RN);RN ), then φ(·) is a
solution of the ordinary problem

(1.2) Dw′′(ξ)− cw′(ξ) + c((DG)c(wξ))
c(w′

ξ) + F c(wξ) = 0, ξ ∈ R.

For u = (u1, . . . , uN ), v = (v1, . . . , vN ) ∈ RN , we write u ≤ v if ui ≤ vi for all
i = 1, . . . , N , and u < v if u ≤ v and u �= v. A function H : C([−τ, 0];RN ) → RN

is described in the form H(ψ) = (H1(ψ), . . . , HN (ψ)).



TRAVELING WAVE FRONT FOR NEUTRAL EQUATIONS 1605

For g ∈ C(R;R+) with lims→±∞ g(s) = 0, we use the notation C1
g (R;R

p) for
the space formed by all the continuously differentiable functions ξ : R → Rp such
that ‖ ξ ‖C1

g (R;R
p)= sups∈R g(s)(‖ ξ(s) ‖ + ‖ ξ′(s) ‖) < ∞, endowed with the norm

‖ · ‖C1
g(R;R

p). The definition of (Cg(R;R
p), ‖ · ‖Cg(R;Rp)) is similar.

This paper has three sections. In the next section we study the existence of a
traveling wave front for (1.1). In the last section some examples are presented.

2. Existence of a traveling wave front

Let η1 < 0 < η2. In the next lemmas, for ξ ∈ C(R;R) we use the nota-
tion Y (ξ) and Z(ξ) for the functions Y (ξ), Z(ξ) : R → R given by Y (ξ)(t) =∫ t

−∞ eη1(t−s)ξ(s)ds and Z(ξ)(t) =
∫ ∞
t

eη2(t−s)ξ(s)ds. The proof of our first lemma
is easy and we omit it.

Lemma 2.1. Let ξ ∈ C(R;R) and assume that limt→±∞ ξ(t) = β±∞. Then

limt→±∞ Y (ξ)(t) = −β±∞
η1

, limt→±∞ Z(ξ)(t) = β±∞
η2

, the functions Y (ξ), Z(ξ) are

differentiable, Y (ξ)′ = η1Y (ξ) + ξ, Z(ξ)′ = η2Z(ξ) − ξ and limt→±∞ Y (ξ)′(t) =
limt→±∞ Z(ξ)′(t) = 0. If, in addition, ξ ∈ C1(R,R) and ξ′ is bounded, then
Y (ξ), Z(ξ) ∈ C1(R,R), Y (ξ)′ = Y (ξ′) and Z(ξ)′ = Z(ξ′).

Lemma 2.2. If 0 < θ < min{−η1, η2}, r > 0 and g(·) = e−θ|·|, then the map
W : Br(0, C(R;R)) ⊂ Cg(R;R) → C1

g (R;R) given by W (ξ) = Y (ξ) + Z(ξ) is
completely continuous.

Proof. Let (ξn)n∈N be a sequence in Br(0, C(R;R)) and ξ ∈ Br(0, C(R;R)) such
that (ξn)n∈N → ξ in Cg(R;R). For ε > 0, there exists Nε ∈ N such that e−θ|s| ‖
ξn(s)− ξ(s) ‖≤ ε for all s ∈ R and n ≥ Nε. For n ≥ Nε and t ∈ R, we get

e−θ|t| | Y (ξn)(t)− Y (ξ)(t) | ≤
∫ t

−∞
eη1(t−s)e−θ|t|+θ|s|e−θ|s| | ξn(s)− ξ(s) | ds

≤ ε

∫ t

−∞
eη1(t−s)e−θ|t|+θ|s|ds

≤ ε[
1

−η1 − θ
+

1

−η1 + θ
],

which proves that Y : Br(0, C(R;R)) ⊂ Cg(R;R) → Cg(R;R) is continuous.
We prove now that Y (·) is a compact map. From Lemma 2.1, it is easy to

see that ‖ Y ′(ξ) ‖C(R;R)≤ 2r and ‖ Y (ξ) ‖C(R;R)≤ r
−η1

for all ξ ∈ Br(0, C(R;R)),

which implies that Y (Br(0, C(R;R)))|[−l,l] = {Y (ξ)|[−l,l] : ξ ∈ Br(0, C(R;R))} is
relatively compact in C([−l, l];R) for all l > 0.

Let (ξn)n∈N be a sequence in Br(0, C(R;R)). From the above remarks, there
exists ξ ∈ Br(0, C(R;R)) and a subsequence of (Y (ξn))n∈N (which we denote in the
same form) such that Y (ξn) → ξ uniformly on compact set. Let ε > 0 be given.
Let K > 0 and Nε ∈ N such that e−θK2 r

−η1
≤ ε

2 and ‖ Y (ξn)− ξ ‖C([−K,K];R)≤ ε
2

for all n ≥ Nε. Under these conditions, for n ≥ Nε we see that

‖ Y (ξn)− ξ ‖Cg(R;R)≤ sup
|s|≤K

| Y (ξn)(s)− ξ(s) | +e−θK 2r

−η1
≤ ε

2
+

ε

2
≤ ε,

which proves that (Y (ξn))n∈N → ξ in Cg(R;R). Since (ξn)n∈N is arbitrary, we infer
that Y (Br(0, C(R;R))) is relatively compact in Cg(R;R) and Y : Br(0, C(R;R)) ⊂
Cg(R;R) → Cg(R;R) is a compact map.
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From the above, Y : Br(0, C(R;R))⊂ Cg(R;R) → Cg(R;R) is completely contin-
uous and a similar procedure proves that Z : Br(0, C(R;R))⊂ Cg(R;R) → Cg(R;R)
is completely continuous. Finally, since W (ξ)′ = η1Y (ξ) + η2Z(ξ) we can conclude
that W : Br(0, C(R;R)) ⊂ Cg(R;R) → C1

g (R;R) is completely continuous. �

From Hirsch et al. [9] and Gopalsamy [6] we note the followings results.

Lemma 2.3 ([9]). If v ∈ C1(R+,R) and v+ = lim supt→∞ v(t) > lim inft→∞ v(t) =
v−, then there exist sequences of real numbers (tn)n∈N, (sn)n∈N such that (tn)n∈N →
∞, (sn)n∈N → ∞, v′(tn) = v′(sn) = 0 for all n ∈ N, v+ = lim supn→∞ v(tn) and
v− = lim infn→∞ v(sn).

Lemma 2.4 ([6]). If v ∈ C1(R+,R), limt→∞ v(t) exists and v′(·) is uniformly
continuous, then limt→∞ v′(t) = 0.

Next, for x ∈ RN we use the symbol x̂ for the function x̂ ∈ C([−cτ, 0];RN) given
by x̂(θ) = x for all θ ∈ [−cτ, 0]. For a function ψ : R → RN , we denote by ψ+ and
ψ− the limits limt→∞ ψ(t) and limt→−∞ ψ(t), when the limit exists.

We include now the following lemma.

Lemma 2.5. Assume that ψ : R → RN is a twice continuously differentiable
solution of (1.2), ψ(·) is bounded, monotone nondecreasing, the functions F, (DG)
takes bounded sets into bounded sets and {((DG)c(ψt))

c(ψ′
t) : t ∈ R} is bounded.

Then limt→±∞ ψ′(t) = 0, F
(
ψ̂±

)
= 0 and limt→±∞((DG)c(ψt))

c(ψ′
t) = 0.

Proof. To begin, we prove that ψ′ is bounded. Assume that ψ′ is unbounded on
[0,∞) and let i ∈ {1, . . . , N} such that lim supt→∞ ψ′

i(t) = ∞. If lim inft→∞ ψ′
i(t) =

∞, then ψi is unbounded, which is absurd. If lim inft→∞ ψ′
i(t) < ∞, from Lemma

2.3 there exists a sequence of real numbers (tn)n∈N such that ψ′′
i (tn) = 0 for all

n ∈ N and limn→∞ ψ′
i(tn) = ∞. Using this fact, we infer that

(2.1) lim
t→∞

c[−ψ′
i(tn) + (((DG)c(ψtn))

c(ψ′
tn))i = −F c

i (ψ̂+),

and limn→∞(((DG)c(ψtn))
c(ψ′

tn))i = ∞, which is contrary to the assumptions.
From the above, we have that ψ′ is bounded on [0,∞). A similar argument proves
that ψ′ is bounded on (−∞, 0], which completes the proof that ψ′ is bounded.

From the above and (1.2) we infer that ψ′′ is bounded which implies that ψ′

is uniformly continuous. Since limt→±∞ ψ(s) exists, from Lemma 2.4 it follows

that limt→±∞ ψ′(t) = 0, limt→±∞ ψ′
t = 0̂ and limt→±∞ ((DG)c(ψt))

c(ψ′
t) = 0.

Moreover, from (1.2) we obtain that limt→±∞ Dψ′′(t) = −F c(ψ̂±), which allows us
to conclude that ψ′′ is uniformly continuous. Finally, from Lemma 2.4 we have

that F c
i (ψ̂±) = limt→±∞ ψ′′(t) = 0. �

To begin our studies on the existence of a traveling wave front for (1.1), we
consider the quasi-monotone case.

2.1. The quasi-monotone case. By considering Lemma 2.5, in the remainder of

this work we assume that there is K ∈ RN such that 0 < K, F (0̂) = F (K̂) =

G(0̂) = G(K̂) = 0 and F (L̂) �= 0 for all 0 < L < K. Next, we always suppose that
F,G, (DG) are Lipschitz with Lipschitz constants LF , LG and LDG respectively.
We introduce now the next condition.
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H1
F,G There are diagonal matrices γ = diag(γ1, . . . , γn) and ζ = diag(ζ1, . . . , ζn)

such that γi > 0, ζi > 0 for all i = . . . , N, and

[F c
i (ψ)− F c

i (φ)] + γi(ψi(0)− φi(0)) ≥0,(2.2)

λ1,ic[G
c
i (ψ)−Gc

i (φ)] + ζi(ψi(0)− φi(0)) ≥0,(2.3)

λ2,ic[G
c
i (ψ)−Gc

i (φ)] + ζi(ψi(0)− φi(0)) ≥0,(2.4)

for all ψ, φ ∈ C([−cτ, 0];RN) with 0≤φ≤ψ≤K, where λ1,i =
c−
√

c2+4βidi

2di
,

λ2,i =
c+
√

c2+4βidi

2di
and βi = γi + ζi for all i ∈ {1, . . . , N}.

From the general theory of traveling waves, we introduce the followings concepts.

Definition 2.1. A function ρ ∈ C2(R;RN ) is called an upper solution of (1.2) if
Dρ′′(t)−cρ′(t)+c d

dtG
c(ρt)+F c(ρt) ≤ 0 for all t ∈ R. The concept of lower solution

of (1.2) is defined reversing the last inequality.

In the remainder of this section we always assume that the condition H1
F,G is

satisfied, θ is a real number such that 0 < θ < min{−λ1,i, λ2,i : i = 1, . . . , N},
g(·) = e−θ|·| and ρ, ρ are an upper and a lower solution of (1.2) such that 0 ≤ ρ ≤
ρ ≤ K̂, ρ �= 0 and limt→−∞ ρ(t) = 0. For M > 0, UM

ρ,ρ is the set defined by

(2.5) UM
ρ,ρ = {ξ ∈ C1(R;RN ) : 0 ≤ ξ′i ≤ M, i = 1, . . . , N, and ρ ≤ ξ ≤ ρ }.

We introduce now the map Γ : UM
ρ,ρ ⊂ C1

g (R;R
N ) → C1

g (R;R
N ) given by

(Γu)i(t) = θi

∫ t

−∞
eλ1,i(t−s)(F c

i (us) + (γi + ζi)ui(s) + c((DGi)
c(us))

c(u′
s)ds

+ θi

∫ ∞

t

eλ2,i(t−s)(F c
i (us) + (γi + ζi)ui(s) + c((DGi)

c(us))
c(u′

s))ds,(2.6)

where θi =
1

di(λ2,i−λ1,i)
. The function Γu(·) is a solution of

Dw′′(ξ)− cw′(ξ)− (γi + ζi)w(ξ)

= −F c(uξ)− (γi + ζi)u(ξ)− c((DG)c(uξ))
c(u′

ξ), ξ ∈ R.

Using that d
dse

λj,i(t−s)Gc
i (us) = −λj,ie

λj,i(t−s)Gc
i (us) + eλj,i(t−s)((DGi)

c(us))
c(u′

s)

we obtain that Γu =
∑4

i=1 Γ
iu where

(Γ1u)i(t) = θi

∫ t

−∞
eλ1,i(t−s)F̃i(u)(s)ds,(2.7)

(Γ2u)i(t) = θi

∫ ∞

t

eλ2,i(t−s)F̃i(u)(s)ds,(2.8)

(Γ3u)i(t) = θi

∫ t

−∞
eλ1,i(t−s)G̃i(u)(s)ds,(2.9)

(Γ4u)i(t) = θi

∫ ∞

t

eλ2,i(t−s)Ĝi(u)(s)ds,(2.10)

and F̃ , G̃, Ĝ : C(R;RN ) → C(R;RN) are given by (F̃ )i(ψ)(s) = F c
i (ψs) + γiψ(s),

(G̃)i(ψ)(s) = λ1,icG
c
i (ψs) + ζiψ(s) and (Ĝ)i(ψ)(s) = λ2,icG

c
i (ψs) + ζiψ(s).

From [21, Lemma 3.1], we have the next result.
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Lemma 2.6 ([21, Lemma 3.1]). Assume that the condition H1
F,G is satisfied, φ, ψ ∈

UM
ρ,ρ and φ ≤ ψ. If H(·) is some of the functions F̃ , G̃, Ĝ, then H(φ)(s) ≥ 0 for all

s ∈ R, H(φ)(·) is nondecreasing and H(φ)(t) ≤ H(ψ)(t) for all t ∈ R.

Lemma 2.7. If the condition H1
F,G is satisfied and u ∈ UM

ρ,ρ, then Γu is nonde-

creasing and ρ ≤ Γρ ≤ Γu ≤ Γρ ≤ ρ.

Proof. Since us+h ≥ us for all s ∈ R, h > 0, from Lemma 2.6 we have that

(G̃)i(u)(s+ h)− (G̃)i(u)(s) ≥ 0 for all s ∈ R. For t ∈ R and h > 0, we get

(Γ3u)i(t+ h)− (Γ3u)i(t) = θi

∫ t

−∞
eλ1,i(t−s)[G̃i(u)(s+ h)− G̃i(u)(s)]ds ≥ 0,

which implies that (Γ3u)i(t+h) ≥ (Γ3u)i(t). The same argument allows us to show
that (Γju)i(t+ h) ≥ (Γju)i(t) for j = 1, 2, 4, i = 1, . . . , N and t ∈ R, which proves
that Γu is nondecreasing on R.

We now prove the second assertion. Let W = ρ− Γρ. Since

D(Γρ)′′(t)− c(Γρ)′(t)− β(Γρ)(t) + F c(ρt) + βρ(t) + c((DG)c(ρt))
c(ρ′t) = 0,

Dρ′′(t)− cρ′(t)− βρ(t) + F c(ρt) + βρ(t) + c((DG)c(ρt))
c(ρ′t) ≤0,

for all t ∈ R, we have that DW ′′ − cW ′ − βW (t) + τ (t) = 0 for some nonnegative
bounded continuous function τ (·). Since W (·) is a C2 bounded function, we get

Wi(t) = θi

∫ t

−∞
eλ1,i(t−s)τi(s)ds+ θi

∫ ∞

t

eλ2,i(t−s)τi(s)ds, ∀ t ∈ R,

which implies that Wi(t) ≥ 0 and Γρ ≤ ρ. A similar argument proves that Γ(ρ) ≥ ρ.
On the other hand, noting ρt ≥ ut for all t ∈ R, from Lemma 2.6 we see that

G̃(ρ)(t)− G̃(u)(t) ≥ 0 for all t ∈ R and

(Γ3ρ)i(t)− (Γ3u)i(t) = θi

∫ t

−∞
eλ1,i(t−s)(G̃i(ρ)(s)− G̃i(u)(s))ds ≥ 0,

which shows that (Γ3ρ)i(t)−(Γ3u)i(t) ≥ 0 for all i = 1, . . . , N . A similar procedure
proves that (Γjρ)i(t) − (Γju)i(t) ≥ 0 for j = 1, 2, 4 and i = 1, . . . , N . From the
above we have that Γu ≤ Γρ ≤ ρ. The proof that ρ ≤ Γρ ≤ Γu is similar. �

We can prove now our first theorem on the existence of a traveling wave for (1.1).

In this result, L̃(G) = (2LG ‖ ρ ‖C(R;RN ) +sups∈R ‖ (DG)c(ρs) ‖L(C([−cτ,0];RN );RN )

.

Theorem 2.1. Let condition H1
F,G hold and assume 2 max

i=1,...,N
{θi}cL̃(G)

√
N < 1.

Then there exists a nondecreasing traveling wave front solution u(·) of the problem
(1.1) such that limt→−∞ u(t) = 0 and limt→∞ u(t) = K.

Proof. To begin, we select M > 0 large enough such that

2( max
i=1,...,N

{θiβiKi}+ max
i=1,...,N

{θiKi}LF + max
i=1,...,N

{θi}cL̃(G)M)
√
N < M.(2.11)

Since the sets of functions {βiui : u ∈ UM
ρ,ρ, i = 1, . . . , N} and {s → Hc

i (us) :

u ∈ UM
ρ,ρ, i = 1, . . . , N,Hi = Fi, λ1,i, cG

c
i , λ2,icG

c
i } are bounded in C(R;RN ), from

Lemma 2.2 we have that the map Γ : UM
ρ,ρ ⊂ C1

g (R;R
N ) → C1

g (R;R
N ) defined by
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(2.7)-(2.10) is completely continuous. To prove that Γ(UM
ρ,ρ) ⊂ UM

ρ,ρ, we use the

decomposition Γu =
∑3

j=1(Υ
ju)i, where

(Υ1u)i(t) = θi

∫ t

−∞
eλ1,i(t−s)F c

i (us)ds+ θi

∫ ∞

t

eλ2,i(t−s)F c
i (us)ds,

(Υ2u)i(t) = θi

∫ t

−∞
eλ1,i(t−s)βiui(s)ds+ θi

∫ ∞

t

eλ2,i(t−s)βiui(s)ds,

(Υ3u)i(t) = θi

∫ t

−∞
eλ1,i(t−s)λ1,icG

c
i (us)ds+ θi

∫ ∞

t

eλ2,i(t−s)λ2,icG
c
i (us)ds.

Let u ∈ UM
ρ,ρ. Using that u ≤ ρ̄ ≤ K and F (0) = 0, from Lemma 2.1 we get

| (Υ2u)′i(t) | ≤ θiβiKi(−λ1,i

∫ t

−∞
eλ1,i(t−s)ds+ λ2,i

∫ ∞

t

eλ2,i(t−s)ds) ≤ 2θiβiKi,

| (Υ1u)′i(t) | ≤ θiLFKi(−λ1,i

∫ t

−∞
eλ1,i(t−s)ds+ λ2,i

∫ ∞

t

eλ2,i(t−s)ds) ≤ 2θiLFKi.

To estimate | (Υju)′i(t) |, for j = 3, i = 1, . . . , N , we note that

‖ c(DG)c(ut) ‖L(C([−cτ ;0];RN );RN )

≤‖ c(DG)c(ut)− c(DG)c(ρt) ‖L(C([−cτ ;0];RN );RN )

+ c ‖ (DG)c(ρt) ‖L(C([−cτ ;0];RN );RN )

≤ cLG2 ‖ ρ ‖C(R;RN ) +c sup
s∈R

‖ (DG)c(ρs) ‖L(C([−cτ ;0];RN );RN )= cL̃(G),

and c | ((DG)c(ut))
c(u′

t) |RN≤ cL̃(G)M. Using now Lemma 2.1, we get

| (Υ3u)′i(t) | ≤ −θiλ1,i

∫ t

−∞
eλ1,i(t−s) | c((DGi)

c(us))
c(u′

s) | ds

+ θiλ2,i

∫ ∞

t

eλ2,i(t−s) | c((DGi)
c(us))

c(u′
s) | ds

≤ −θiλ1,icL̃(G)M

∫ t

−∞
eλ1,i(t−s)ds+ θiλ2,icL̃(G)M

∫ ∞

t

eλ2,i(t−s)ds

≤ 2cθiL̃(G)M.

From the above estimates and (2.11),

‖ (Γu)′(t) ‖ = (

N∑
i=1

(

3∑
j=1

(Υju)′i(t))
2)

1
2 ≤ (

N∑
i=1

(2θiβiKi + 2θiLFKi + 2θicL̃(G)M)2)
1
2

≤ 2( max
i=1,...,N

{θiβiKi}+ max
i=1,...,N

{θiKi}LF + max
i=1,...,N

{θi}cL̃(G)M)
√
N,(2.12)

which shows ‖ (Γu)′(t) ‖≤ M for all t ∈ R. Moreover, from Lemma 2.7 we have that
Γu is nondecreasing and ρ ≤ Γu ≤ ρ, which complete the proof that Γ(UM

ρ,ρ) ⊂ UM
ρ,ρ.

From the above remarks, there exists u ∈ UM
ρ,ρ such that Γu = u. Since u(·) is

nondecreasing and ρ ≤ Γρ ≤ u = Γu ≤ Γρ ≤ ρ, we have that u− = limt→−∞ u(t) =
0. Moreover, using that u′(·) is bounded and ρ �= 0, from Lemma 2.5 we infer that
F (û+) = 0 and u+ = K. This completes the proof. �
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Our result depends on the existence of upper and lower solutions, which is usu-
ally a nontrivial problem. Considering this fact and the developments in [16], we
introduced the concepts of super and sub-solutions for the problem (1.2).

Definition 2.2. A function ρ ∈ C(R;RN) is called a super solution of (1.2) if
there exist numbers T1, . . . , Tm such that ρ′′ is continuous on R \ {T1, . . . , Tm},
ρ′ and ρ′′ are bounded, the function t → Gc(ρt) is differentiable a.e. on R and
Dρ′′(t) − cρ′(t) + c d

dtG
c(ρt) + F c(ρt) ≤ 0 a.e. on R. A sub-solution is defined in

the same form by reversing the last inequality.

Remark 2.1. Arguing as in the proof of [16, Lemma 2.5], we can prove that if ρ
is a super-solution of (1.2) such that ρ′(t+) ≤ ρ′(t−) for all t ∈ R (resp. if � is a
sub-solution of (1.2) such that �′(t+) ≥ �′(t−) for all t ∈ R), then Γρ (resp. Γ�)
is an upper solution (resp. a lower) solution of (1.2). Moreover, from the proof of
[16, Lemma 2.5] we also infer that Γ(ρ) ≤ ρ ( resp. Γ(�) ≥ �).

2.2. The nonquasi-monotone case. To prove the results of this section and
considering the results in [21], we introduce the following condition:

H2
F,G There are positive matrix γ = diag(γ1, . . . , γn), ζ = diag(ζ1, . . . , ζn) such

that Gc(φ)−Gc(ψ) ≤ 0,

[F c
i (φ)− F c

i (ψ)] + γi(φ(0)− ψ(0)) ≥0,(2.13)

λ2,ic[G
c
i (φ)−Gc

i (ψ)] + ζi(φi(0)− ψi(0)) ≥0,(2.14)

for all ψ, φ ∈ C([−cτ, 0];RN) such that 0 ≤ ψ ≤ φ ≤ K and the function
e(γ+ζ)(·)[φ(·)− ψ(·)] is nondecreasing on [−cτ, 0].

Remark 2.2. In what follows, for v, w ∈ C(R;RN) and s > 0, we use the notation vs

and Lv,w for the functions vs : R → RN and Lv,w : R → RN given by vs(t) = v(t+s)
and (Lv,w)i(t) = eβit[vi(t)− wi(t)]. We also introduce the set

(2.15) SM
ρ,ρ = {φ ∈ UM

ρ,ρ : Lρ,φ,Lφ,ρ,Lφs,φ are nondecreasing on R for all s > 0}.

To prove our next theorem we need some additional lemmas.

Lemma 2.8. Let u ∈ SM
ρ,ρ and s > 0. If c > 1−min{ βidi : i = 1, . . . N} and the

condition H2
F,G is verified, then Lρ,Γu, LΓu,ρ and L(Γu)s,Γu are nondecreasing.

Proof. To begin we prove that L(Γu)s,Γu is nondecreasing. For t ∈ R we see that

(
d

dt
(L(Γu)s,Γu)(t))i = eβitθi(βi + λ1,i)

∫ t

−∞
eλ1,i(t−τ)(F̃ c

i (u)(τ + s)− F̃ c
i (u)(τ ))dτ

+ eβitθi(βi + λ2,i)

∫ ∞

t

eλ2,i(t−τ)(F̃ c
i (u)(τ + s)− F̃ c

i (u)(τ ))dτ

+ eβitθi(βi + λ1,i)

∫ t

−∞
eλ1,i(t−τ)(G̃c

i (u)(τ + s)− G̃c
i (u)(τ ))dτ

+ eβitθi(βi + λ2,i)

∫ ∞

t

eλ2,i(t−τ)(Ĝc
i (u)(τ + s)− Ĝc

i (u)(τ ))dτ

+ eβitθi(G̃
c
i (u)(t+ s)− G̃c

i (u)(t))

− eβitθi(Ĝ
c
i (u)(t+ s)− Ĝc

i (u)(t)).
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From condition H2
F,G and the fact that λ1,ic < 0, we have that (F̃ c

i (u)(τ + s) −
F̃ c
i (u)(τ )) ≥ 0, (G̃c

i (u)(τ + s) − G̃c
i (u)(τ )) ≥ 0 and (Ĝc

i (u)(τ + s) − Ĝc
i (u)(τ )) ≥ 0

for all τ ∈ R and i = 1, . . . , N . Moreover, since c > 1 −min{ βidi : i = 1, . . . , N},
we note that (βi + λj,i) ≥ 0 for j = 1, 2 and i = 1, . . . , N , which allows us to
conclude that the first four terms in the previous decomposition are nonnegative.
In addition, from condition H2

F,G we observe that

eβitθi(G̃
c
i(u)(t+ s)− G̃c

i (u)(t))− eβitθi(Ĝ
c
i (u)(t+ s)− Ĝc

i (u)(t))

= eβitθi(λ1,i − λ2,i)(cG
c
i(u)(t+ s)− cGc

i (u)(t))

= −ceβit

di
(Gc

i (u)(t+ s)−Gc
i (u)(t)) ≥ 0.

From the above remarks we obtain that d
dt (L(Γu)s,Γu(t))i ≥ 0, which shows that

L(Γu)s,Γu is nondecreasing.
To prove that Lρ,Γu is nondecreasing, we note that Lρ,Γu = Lρ,Γρ + LΓρ,Γu and

we show that Lρ,Γρ and LΓρ,Γu are nondecreasing. Arguing as above, we have that

d

dt
(LΓρ,Γu)i = eβitθi(βi + λ1,i)

∫ t

−∞
eλ1,i(t−τ)(F̃ c

i (ρ)(τ )− F̃ c
i (u)(τ ))dτ

+ eβitθi(βi + λ2,i)

∫ ∞

t

eλ2,i(t−τ)(F̃ c
i (ρ)(τ )− F̃ c

i (u)(τ ))dτ

+ eβitθi(βi + λ1,i)

∫ t

−∞
eλ1,i(t−τ)(G̃c

i (ρ)(τ )− G̃c
i (u)(τ ))dτ

+ eβitθi(βi + λ2,i)

∫ ∞

t

eλ2,i(t−τ)(Ĝc
i (ρ)(τ )− Ĝc

i (u)(τ ))dτ

− eβitc

di
(Gc

i (ρ)(t)−Gc
i (u)(t)),

which allows us to conclude that LΓρ,Γu is nondecreasing. �

We study now the function Lρ,Γρ. Let w = ρ − Γρ. Using that ρ is an upper
solution, we have that there exists a nonnegative bounded integrable function h =
(h1, . . . , hN ) : R → RN such that Dw′′(ξ)− cw′(ξ)−βw(ξ)+h(ξ) = 0 for all ξ ∈ R.
From the above, there exist real numbers qi, li, i = 1, . . . , N such that

(2.16) wi(t) = pie
λ1,it+lie

λ2,it+θi

∫ t

−∞
eλ1,i(t−s)hi(s)ds+θi

∫ ∞

t

eλ2,i(t−s)hi(s)ds.

Since the functions wi are bounded, we have that pi = li = 0 for all i and

(2.17) wi(t) = θi

∫ t

−∞
eλ1,i(t−s)hi(s)ds+ θi

∫ ∞

t

eλ2,i(t−s)hi(s)ds, ∀ t ∈ R.

Using this representation, we obtain that

d

dt
(Lρ,Γρ)i(t) = eβit(βi + λ1,i)θi

∫ t

−∞
eλ1,i(t−s)hi(s)ds

+ eβit(βi + λ2,i)θi

∫ ∞

t

eλ2,i(t−s)hi(s)ds, ∀ t ∈ R,

which permit us to conclude that Lρ,Γρ is nondecreasing and completes the proof
that Lρ,Γu in nondecreasing.
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Arguing as above and using that ρ is a lower solution, we can prove that LΓu,Γρ

LΓρ,ρ and LΓu,ρ are nondecreasing. This completes the proof. �
The proof of the next lemma follows from the proof of [21, Lemma 4.1].

Lemma 2.9. Assume c > 1 −min{βidi : i = 1, . . . N} and the condition H2
F,G is

verified. If u ∈ SM
ρ,ρ, then ρ ≤ Γρ ≤ Γu ≤ Γρ ≤ ρ and Γu is nondecreasing on R.

Proof. Since Lρ,u and Lus,u are nondecreasing, from the proof of [21, Lemma 4.1
(ii),(iii)] it follows that H(ρ) ≤ H(u) ≤ H(ρ) and H(u) is nondecreasing for H =

F̃ , G̃, Ĝ. From the above and the definition of Γ it is easy to see that Γρ ≤ Γu ≤ Γρ.
Moreover, from the proof of Lemma 2.8 (see (2.17)) we have that

(2.18) ρ(t)− Γρ(t) = θi

∫ t

−∞
eλ1,i(t−s)hi(s)ds+ θi

∫ ∞

t

eλ2,i(t−s)hi(s)ds,

where hi(·) is a nonnegative bounded integrable function. This implies that Γρ ≤ ρ.
The proof that ρ ≤ Γρ is similar. This completes the proof. �

In the next theorem, L̃(G) is the number introduced in Theorem 2.1.

Theorem 2.2. If c > 1−min{βidi : i = 1, . . . , N}, the condition H2
F,G is satisfied

and 2 max
i=1,...,N

{θi}cL̃(G)
√
N < 1, then there exists a nondecreasing traveling wave

solution u(·) of (1.1) such that limt→−∞ u(t) = 0 and limt→∞ u(t) = K.

Proof. Let M > 0 and Γ : SM
ρ,ρ ⊂ C1

g (R;R
N ) → C1

g (R;R
N ) be defined as in the

proof of Theorem 2.1. It is easy to see that SM
ρ,ρ is a closed and convex subset of

UM
ρ,ρ and from the proof of Theorem 2.1 we infer that ‖ (Γξ)′ ‖≤ M for all ξ ∈ SM

ρ,ρ

and that Γ is completely continuous. Moreover, from Lemma 2.8 and Lemma 2.9
it follows that Γ(SM

ρ,ρ) ⊂ SM
ρ,ρ, which implies that Γ has a fixed point u ∈ SM

ρ,ρ.

From the above, u(·) is nondecreasing and ρ ≤ u ≤ ρ, which implies that u+ =
limt→∞ u(t) exists and u− = limt→−∞ u(t) = 0. Finally, since u′(·) is bounded and
ρ �= 0, from Lemma 2.5 we obtain that F (û+) = 0 and u+ = K. �

3. Examples

In this section we present some examples motivated by ordinary neutral dif-
ferential equations arising in population dynamic; see [2, 5, 6, 11–13]. For sake of
simplicity, we assume N = d = 1 and η is a positive number. To begin, we study
the neutral problem

(3.1)
d

dt
[u(t, x) + ηu(t− τ, x)] = Δu(t, x) + u(t, x)(1− u(t− τ, x)), t ∈ R, x ∈ R.

To study this problem, we consider the equation

(3.2) w′′(t)− cw′(t)− ηcw′(t− cτ ) + w(t)[1− w(t− τc)] = 0, t ∈ R,

submitted to the condition

lim
t→−∞

w(t) = 0 and lim
t→∞

w(t) = 1.(3.3)

Let F c(·) and Gc(·) be given by F c(φ) = φ(0)[1−φ(−τc)] and Gc(φ) = −ηφ(−τc).
Next, we study the condition H2

F,G and we construct a super- and a sub-solution.
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If φ, ψ are the function in condition H2
F,G, we note that

Gc(φ)−Gc(ψ) = −η(φ(−τc)− ψ(−τc)) ≤ 0,(3.4)

F c(φ)− F c(ψ) ≥ (φ(0)− ψ(0))(1− φ(−τc)− ψ(0)eβτc)

≥ −(φ(0)− ψ(0))eβτc.(3.5)

From (3.5) we have that (2.13) is satisfied if γ − eβτc ≥ 0. For simplicity, we take

c > 2, ζ = γ > 1, β = γ+ ζ and we assume τ small so that β
2 −eβτc = γ−eβτc ≥ 0.

Moreover, for λ1,1 =
c−
√

c2+4β

2 and λ2,1 =
c+
√

c2+4β

2 , we suppose η > 0 small such

that β
2 − λ2,1cηe

βτc = ζ − λ2,1cηe
βτc ≥ 0. Under these conditions,

λ2,1c[G
c(φ)−Gc(ψ)] + ζ(φ(0)− ψ(0))

= −λ2,1cη[φ(−τc)− ψ(−τc)] + ζ(φ(0)− ψ(0))

≥ (−λ2,1cηe
βτc +

β

2
)(φ(0)− ψ(0)) ≥ 0.

From the above remarks we have that the condition H2
F,G is satisfied.

To obtain an upper and a lower solution, we construct a super-solution ρ and sub-
solution � such that ρ′(t+) ≤ ρ′(t−) and �′(t+) ≥ �′(t−) for all t ∈ R; see Remark

2.1. Let f : R → R be given by f(λ) = λ2 − (c+ ηce−τcλ)λ+ 1 and λ1 = c−
√
c2−4
2 .

Since f(λ1) = −ηce−τcλ1 < 0 and f(0) = 1, there exists ϑ1 ∈ (0, λ1) such that
f(ϑ1) = 0. Let ρ : R → R be given by ρ(t) = min{eϑ1t, 1}. For t ≤ 0, we see that

ρ′′(t)− cρ′(t)− ηcρ′(t− τc) + F (ρt)

= eϑ1t[ϑ2
1 − (c+ ηce−τcϑ1)ϑ1 + 1]− ρ(t)ρ(t− τc)

= −ρ(t)ρ(t− τc) ≤ 0,

which permit us to conclude that ρ is a super-solution.
We now construct a sub-solution. Noting that 2ϑ1−c < 2λ1−c < 0 and assuming

η small enough, we have that f ′(ϑ1) = 2ϑ1 − c + ηc(ϑ1τc − 1)e−ϑ1τc < 0. In this
case, we select ϑ1 > ε > 0 small and M > 1 large such that f(ϑ1 + ε) < 0 and
−Mf(ϑ1 + ε) − 1 > 0. Let � : R → R be given by �(t) = max{eϑ1t(1 −Meεt), 0}
and t∗ < 0 such that �(t∗) = 0. For t ≤ t∗, we get

�′′(t)− c�′(t)− ηc�′(t− τc) + F c(�t)

= eϑ1t[ϑ2
1 − cϑ1 + 1]−Me(ϑ1+ε)t[(ϑ1 + ε)2 − c(ϑ1 + ε) + 1]

+[−ηcϑ1e
ϑ1te−ϑ1τc +Mηc(ϑ1 + ε)e(ϑ1+ε)te−(ϑ1+ε)τc]− �(t)�(t− τc)

≥ eϑ1t[ϑ2
1 − (c+ ηce−ϑ1τc)ϑ1 + 1]

−Me(ϑ1+ε)t[(ϑ1 + ε)2 − (c+ ηce−(ϑ1+ε)τc)(ϑ1 + ε) + 1]

− e2ϑ1te−ϑ1τc(1−Meεt)(1−Meε(t−τc))

≥ −Me(ϑ1+ε)t[(ϑ1 + ε)2 − (c+ ηce−(ϑ1+ε)τc)(ϑ1 + ε) + 1]− e2ϑ1te−ϑ1τc

≥ e(ϑ1+ε)t[−Mf(ϑ1 + ε)− e(ϑ1−ε)t] ≥ e(ϑ1+ε)t[−Mf(ϑ1 + ε)− 1] ≥ 0,

and hence, � is a sub-solution. Moreover, it is easy to see that 0 ≤ � ≤ ρ ≤ 1,
ρ′(t+) ≤ ρ′(t−) and �′(t+) ≥ �′(t−) for all t ∈ R, which implies that there exists an
upper and a lower solution ρ, ρ verifying the general assumptions in Section 2.



1614 EDUARDO HERNÁNDEZ AND JIANHONG WU

From the above and Theorem 2.2, we have the next result. In this result,

the condition cη√
c2+4β

< 1 is concerning the inequality 2 max
i=1,...,N

{θi}cL̃(G)
√
N < 1

inTheorem 2.2.

Proposition 3.1. Let ζ = γ > 1, β = γ + ζ, c > 2 and assume τ, η are small
enough such that β − 2eβτc ≥ 0, β − 2λ2,1ηce

βτc ≥ 0 and cη√
c2+4β

< 1. Then there

exists a nondecreasing traveling wave front solution of (3.1) satisfying (3.3).

In the next example we study the existence of a traveling wave for the problem

(3.6)
d

dt
[u(t, x)+ηu(t, x)u(t−τ, x)] = Δu(t, x)+u(t)[1−u(t−τ, x)], t ∈ R, x ∈ R.

To this end, we study the equation

(3.7) w′′(t)− cw′(t)− ηc(w(t)w(t− cτ ))′ + w(t)[1− w(t− τc)] = 0, t ∈ R,

submitted to the condition (3.3). Next, F c(·) is the function introduced in the first
example and Gc(·) is given by Gc(ψ) = −ηψ(0)ψ(−τc).

Let γ = ζ > 1, β = γ + ζ and c > 2, and assume τ, η small enough such that
β − 2eβτc ≥ 0 and β − 2λ2,1cη(1 + eβτc) ≥ 0. From the first example, we infer that
the inequality (2.13) is satisfied. Moreover, if φ, ψ are the functions in condition
H2

F,G, we get

[Gc(φ)−Gc(ψ)] = −η[(φ(0)− ψ(0))φ(−τc) + ψ(0)(φ(−τc)− ψ(−τc))] ≤ 0.

c[Gc(φ)−Gc(ψ)] ≥ −ηc[(φ(0)− ψ(0))φ(−τc) + ψ(0)eβτc(φ(0)− ψ(0))]

≥ −ηc(φ(0)− ψ(0))(φ(−τc) + ψ(0)eβτc)

≥ −ηc(φ(0)− ψ(0))(1 + eβτc),

which implies that (2.14) is verified since β−2cλ2,1η(1+eβτc) ≥ 0. From the above
we have that the condition H2

F,G is satisfied. Next, we construct a super- and a
sub-solution.

Let ρ : R → R be defined by ρ(t) = min{eλ1t, 1}. For t ≥ 0, we note that

dρ′′(t)− cρ′(t)− ac(ρ(t)ρ(t− τc))′ + F (ρt)

≤ dρ′′(t)− cρ′(t) + F (ρt) = eλ1t[dλ2
1 − cλ1 + 1]− ρ(t)ρ(t− τc)

= −ρ(t)ρ(t− τc) ≤ 0,

and hence, ρ is a super-solution of (3.7).
Let g : R → R be given by g(λ) = λ2−cλ+1 and 0 < ε < λ1 such that λ1+ε ≤ c

2
and g(λ1 + ε) < 0. Let M > 1 such that −Mg(λ1 + ε) > 1, � : R → R be the
function given by �(t) = max{eλ1t(1 − Meεt), 0} and t∗ < 0 such that �(t∗) = 0.
For t ≤ t∗, we get

d

dt
[−ηc�(t)�(t− cτ )] ≥ ηc[−2λ1e

2λ1te−λ1τc − 2M2(λ1 + ε)e2(λ1+ε)te−(λ1+ε)τc]

≥ ηc[−2M2(λ1 + ε)e2λ1t − 2M2(λ1 + ε)e(2λ1+ε)t]

= −2ηc(λ1 + ε)M2(e2λ1t + e(2λ1+ε)t)

≥ −4ηcM2(λ1 + ε)e2λ1t,

−�(t)�(t− τc) = −eλ1t(1−Meεt)eλ1(t−τc)(1−Meε(t−τc)) ≥ −e(λ1+ε)te(λ1−ε)t.



TRAVELING WAVE FRONT FOR NEUTRAL EQUATIONS 1615

From the above, we have that

�′′(t)− c�′(t)− [ηc�(t)�(t− cτ )]′ + F c(�t)

≥ eλ1t[λ2
1 − cλ1 + 1]− e(λ1+ε)tM [(λ1 + ε)2 − c(λ1 + ε) + 1]

− 4ηcM2(λ1 + ε)e2λ1t − �(t)�(t− τc)

≥ −e(λ1+ε)tM [(λ1 + ε)2 − c(λ1 + ε) + 1]− 4ηcM2(λ1 + ε)e2λ1t

− e(λ1+ε)te(λ1−ε)t

≥ e(λ1+ε)t[−Mg(λ1 + ε)− 4ηcM2(λ1 + ε)e(λ1−ε)t − 1].

Thus, if η is sufficiently small such that −Mg(λ1 + ε) − 1 − 4ηcM2(ε + λ1) > 0,
we have that � is a sub-solution of (3.7). Moreover, we note that 0 ≤ � ≤ ρ ≤ 1,
ρ′(t+) ≤ ρ′(t−) and �′(t+) ≥ �′(t−) for all t ∈ R.

The next result follows from Theorem 2.2. In this result, the condition 12cη√
c2+4β

<

1 is equivalent to the inequality 2 max
i=1,...,N

{θi}cL̃(G)
√
N < 1 in Theorem 2.2.

Proposition 3.2. Let ζ > 1, γ = ζ, β = γ+ζ and c > 2. Let M,λ1 and ε be defined
as above. Assume τ, η small enough such that β−2eβτc ≥ 0, β−2λ2,1cη(1+eβτc) ≥
0, −Mg(λ1+ε)−4ηc2M2(ε+λ1) > 1 and 12cη√

c2+4β
< 1. Then there exists a traveling

wave front of (3.6) satisfying (3.3).

To finish this section, we study the problem

(3.8)
d

dt
[u(t, x)−

∫ 0

−τ

ξ(s)u(t+ s, x)ds] = Δu(t, x) + u(t)[1− u(t− τ, x)],

where ξ ∈ L1([−τ, 0];R−), ξ �= 0 and 0 < τ . We study this problem via the equation

(3.9) w′′(t)− cw′(t) + c
d

dt

∫ 0

τ

ξ(s)w(t+ cs)ds+ w(t)[1− w(t− τc)] = 0, t ∈ R,

submitted to the condition (3.3).

Let F c(·) be defined as above and Gc(·) be given by Gc(φ) =
∫ 0

−τ
ξ(s)φ(cs)ds.

Let γ = ζ > 1, β = ζ + γ, c > 0 and assume τ and ‖ ξ ‖L1([−τ,0];R−) are small

enough such that β−2eβτc ≥ 0, β−2λ2,1c ‖ ξ ‖L1([−τ,0];R−) e
βcτ ≥ 0 and λ1rc < 1.

If φ, ψ are the functions in condition H2
F,G, then

[Gc(φ)−Gc(ψ)] =

∫ 0

−τ

ξ(s)[φ(sc)− ψ(sc)]ds ≤ 0,(3.10)

λ2,1c[G
c(φ)−Gc(ψ)] ≥ −(φ(0)− ψ(0))λ2,1c ‖ ξ ‖L1([−τ,0];R−) e

βcτ .(3.11)

From the above we have that the condition H2
F,G is satisfied.

Let h : R → R be given by h(λ) = λ2 − cλ+ λ
∫ 0

−τ
ξ(s)eλscds+ 1. Since h(λ1) =

λ1

∫ 0

−τ
ξ(s)eλ1scds < 0 and h(0)=1, there exists ϑ2 ∈ (0, λ1) such that h(ϑ2) = 0.

Noting that h′(ϑ2) ≤ (λ1τc− 1) ‖ ξ ‖L1([−τ,0];R−) +2λ1 − c < 0, we can select
0 < ε < θ2 small and M > 0 large such that h(ϑ2 + ε) < 0 and −Mh(ϑ2 + ε) > 1.
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Let �, ρ : R → R be defined by �(t) = max{eθ2t − Me(θ2+ε)t, 0}, ρ(t) =
min{eϑ2t, 1} and t∗ < 0 such that �(t∗) = 0. It is easy to show that ρ is a super-
solution. In addition, for t ≤ t∗ we get

�′′(t)− c�′(t) + c
d

dt
Gc(�)(t) + F c(�t)

≥ eϑ2t[ϑ2
2 − cϑ2 + cϑ2

∫ 0

−τ

ξ(s)eϑ2scds+ 1]− e(ϑ2+ε)te(ϑ2−ε)t

−Me(ϑ2+ε)t[(ϑ2 + ε)2 − c(ϑ2 + ε) + c(ϑ2 + ε)

∫ 0

−τ

ξ(s)e(ϑ2+ε)scds+ 1]

≥ e(ϑ2+ε)t[−Mh(ϑ2 + ε)− 1] > 0,

which shows that �(·) is a sub-solution.
Proposition 3.3 below is a consequence of Theorem 2.2. We note that the in-

equality 6cη√
c2+4β

‖ ξ ‖L1([−τ,0];R−)< 1 is related to the inequality in the statement

of Theorem 2.2.

Proposition 3.3. Let γ = ζ > 1, β = ζ + γ and c > 2. Suppose, β − 2eβτc ≥ 0,
β − 2λ2,1c ‖ ξ ‖L1([−τ,0];R−) e

βcτ ≥ 0, λ1τc < 1 and 6cη√
c2+4β

‖ ξ ‖L1([−τ,0];R−)< 1.

Then there exists a nondecreasing traveling wave front of (3.8) verifying (3.3).
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