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CONFIRMING A q-TRIGONOMETRIC CONJECTURE

OF GOSPER

MOHAMED EL BACHRAOUI

(Communicated by Mourad Ismail)

Abstract. We shall confirm a conjecture of Gosper on the q-analogue of the
function cos(2z) and we shall give a short proof for his other related identity
on the q-analogue of sin(2z) which was recently proved by Mező.

1. Introduction

Throughout the paper let q = eπiτ with Im(τ ) > 0, let τ ′ = − 1
τ , and let p = eπiτ

′
.

Note that the assumption Im(τ ) > 0 guarantees that |q| < 1 and |p| < 1. For a
complex variable a, the q-shifted factorials are given by

(a; q)0 = 1, (a; q)n =
n−1∏
i=0

(1− aqi), (a; q)∞ = lim
n→∞

(a; q)n,

and for brevity let

(a1, . . . , ak; q)n = (a1; q)n · · · (ak; q)n, (a1, . . . , ak; q)∞ = (a1; q)∞ · · · (ak; q)∞.

The four Jacobi’s theta functions (with nome q) are defined as follows:

θ1(z, q) = θ1(z | τ ) = 2
∞∑
n=0

(−1)nq(2n+1)2/4 sin(2n+ 1)z,

θ2(z, q) = θ2(z | τ ) = 2
∞∑
n=0

q(2n+1)2/4 cos(2n+ 1)z,

θ3(z, q) = θ3(z | τ ) = 1 + 2
∞∑
n=1

qn
2

cos 2nz,

θ4(z, q) = θ4(z | τ ) = 1 + 2

∞∑
n=1

(−1)nqn
2

cos 2nz.

A standard reference for information about theta functions is the book by Whit-
taker and Watson [11]. By Jacobi’s triple product identity (see [11, p. 469] and [3,
p. 15])

∞∑
n=−∞

(−1)nqn
2

zn = (zq, z−1q, q2; q2)∞,
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it can be seen that each of the Jacobi’s theta functions have infinite product repre-
sentations. In particular, we have

θ1(z | τ ) = iq
1
4 e−iz(q2e−2iz, e2iz, q2; q2)∞,

and
θ2(z | τ ) = q

1
4 e−iz(−q2e−2iz,−e2iz, q2; q2)∞.

It is clear that the function θ1 is odd and the function θ2 is even. For the purpose
of this work we will need the following basic properties of θ1 and θ2 which can be
derived straightforwardly by the definitions:

θ1(kπ) = 0 (k ∈ Z),

θ1(z + π | τ ) = −θ1(z | τ ),(1)

θ1(z + πτ | τ ) = −q−1e−2izθ1(z | τ ),

θ1

(
z + πτ

∣∣ τ
2

)
= q−2e−4izθ1

(
z
∣∣ τ
2

)
,

θ2(k
π

2
) = 0 (k ∈ Z),

θ2(z | τ ) = θ1(z +
π

2
| τ ),(2)

θ2(z + πτ | τ ) = q−1e−2izθ2(z | τ ).
Jacobi’s imaginary transformation for the function θ1 states that

(3) θ1(z | τ ) = (−iτ )−
1
2 (−i)e

iτ′z2
π θ1(zτ

′ | τ ′).
See [11, p. 475]. Gosper [4] introduced q-analogues of sin(z) and cos(z) as follows:

sinq(πz) = q(z−1/2)2
∞∏

n=1

(1− q2n−2z)(1− q2n+2z−2)

(1− q2n−1)2
= q(z−

1
2 )

2 (q2z, q2−2z; q2)∞
(q; q2)2∞

,

cosq(πz) = qz
2

∞∏
n=1

(1− q2n−2z−1)(1− q2n+2z−1)

(1− q2n−1)2
= qz

2 (q1+2z, q1−2z; q2)∞
(q; q2)2∞

.

It is easy to see that cosq(z) = sinq(π/2− z). Gosper proved a variety of identities
involving these two functions. In particular, he showed that both sinq(z) and cosq(z)
in fact are ratios of Jacobi’s theta functions with nome p. More specifically, he
showed that

sinq(z) =
θ1(z, p)

θ1
(
π
2 , p

) where (ln p)(ln q) = π2,

which is readily seen to be equivalent to

(4) sinq(z) =
θ1(z | τ ′)
θ1

(
π
2

∣∣ τ ′) .
As to cosq(z), clearly the formula (4) combined with the identities cosq(z) =
sinq(π/2− z) and θ1(z + π) = −θ1(z) yield

(5) cosq(z) =
θ1

(
z + π

2 , p
)

θ1
(
π
2 , p

) =
θ1

(
z + π

2

∣∣ τ ′)
θ1

(
π
2

∣∣ τ ′) .

See Gosper [4, p. 98]. The author after introducing the function cosq z proved that

(6) sinq(2z) = q−
1
4
(q2; q4)4∞
(q; q2)2∞

· sinq2(z) cosq2(z)
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which can be seen to be a q-analogue for the famous trigonometric identity sin 2z =
2 sin z cos z; refer to [4, p. 92]. Mező [8] gave another proof for (6). Besides, in an
attempt to give a q-analogue for the related identity cos 2z = cos2 z−sin2 z, Gosper
conjectured that

(7) cosq(2z) = (cosq2(z))
2 − (sinq2(z))

2,

and noted that he found “empirical confirmation”; see Gosper [4, p. 93]. Note that
taking into account the relations (4) and (5), formula (7) can be written as

θ1
(
2z + π

2

∣∣ τ ′)
θ1

(
π
2

∣∣ τ ′) =

⎛
⎝θ1

(
z + π

2

∣∣ τ ′

2

)
θ1

(
π
2

∣∣ τ ′

2

)
⎞
⎠

2

−

⎛
⎝θ1

(
z
∣∣ τ ′

2

)
θ1

(
π
2

∣∣ τ ′

2

)
⎞
⎠

2

,

which after rearrangement becomes

θ1

(
2z +

π

2

∣∣ τ ′) θ21

(
π

2

∣∣ τ ′
2

)

= θ1

(π
2

∣∣ τ ′) θ21

(
z +

π

2

∣∣ τ ′
2

)
− θ1

(π
2

∣∣ τ ′) θ21

(
z
∣∣ τ ′
2

)
.

Furthermore, again by virtue of (4) and (5) note that formula (6) means

θ1(2z | τ ′)
θ1

(
π
2

∣∣ τ ′) = C(q)
θ1

(
z
∣∣ τ ′

2

)
θ1

(
π
2

∣∣ τ ′

2

) ·
θ1

(
z + π

2

∣∣ τ ′

2

)
θ1

(
π
2

∣∣ τ ′

2

) ,

or equivalently,

θ1(2z | τ ′)θ21
(
π

2

∣∣ τ ′
2

)
= C(q)θ1

(π
2

∣∣ τ ′) θ1

(
z
∣∣ τ ′
2

)
θ1

(
z +

π

2

∣∣ τ ′
2

)
.

Therefore, Gosper’s identities (6) and (7) both can be seen as three-term addition
formulas involving theta functions. The theory of elliptic functions proved to be
a powerful tool to study this type of addition formulas. For recent papers dealing
with addition formulas using elliptic functions, we refer to Liu [6, 7]. See also
Whittaker and Watson [11], Lawden [5], and Shen [9,10] for more additive formulas
involving theta functions and applications. In this paper we will confirm conjecture
(7) and we will reproduce a short proof for formula (6) by employing the theory of
elliptic functions. We shall prove the following results.

Theorem 1. For all complex number z we have

θ1

(
2z +

π

2

∣∣ τ ′) θ21

(
π

2

∣∣ τ ′
2

)
= θ1

(π
2

∣∣ τ ′) θ21

(
z +

π

2

∣∣ τ ′
2

)

− θ1

(π
2

∣∣ τ ′) θ21

(
z
∣∣ τ ′
2

)
.

Theorem 2. For all complex number z we have

θ1(2z | τ ′)θ21
(
π

2

∣∣ τ ′
2

)
= C(q)θ1

(π
2

∣∣ τ ′) θ1

(
z
∣∣ τ ′
2

)
θ1

(
z +

π

2

∣∣ τ ′
2

)
,

where

C(q) =
θ21

(
π
2

∣∣ τ ′

2

)
θ21

(
π
4

∣∣ τ ′

2

) = q−
1
4
(q2; q4)4∞
(q; q2)2∞

.
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It turns out that Theorem 1 and Theorem 2 are direct consequences of the
following result.

Theorem 3. For all complex number x, y, and z we have

θ1(z − x− y | τ )θ1
(
x− y

∣∣ τ
2

)
θ1

(
z − π

2

∣∣ τ
2

)

= θ1(y − x− z | τ )θ1
(
x− z

∣∣ τ
2

)
θ1

(
y − π

2

∣∣ τ
2

)

−θ1(x− y − z | τ )θ1
(
y − z

∣∣ τ
2

)
θ1

(
x− π

2

∣∣ τ
2

)
.

To prove Theorem 3, we shall need the following more general result.

Theorem 4. Let f(u) be an entire function such that

f(u+ π) = −f(u) and f
(
u+

πτ

2

)
= q−

1
2 e−2iuf(u).

Then for all complex numbers x, y, and z we have

θ1(z − x− y | τ )f(z)
θ1

(
x− z

∣∣ τ
2

)
θ1

(
y − z

∣∣ τ
2

) =
θ1(y − x− z | τ )f(y)

θ1
(
x− y

∣∣ τ
2

)
θ1

(
y − z

∣∣ τ
2

)
− θ1(x− y − z | τ )f(x)

θ1
(
x− y

∣∣ τ
2

)
θ1

(
x− z

∣∣ τ
2

) .
2. Proof of Theorem 4

Let

g(u) =
θ1(2u− x− y − z | τ )f(u)

θ1(u− x
∣∣ τ

2 )θ1(u− y
∣∣ τ

2 )θ1(u− z
∣∣ τ

2 )
,

where x, y, and z are different from the zeros of θ1(2u−x−y− z | τ )f(u). Suppose
for the moment that 0 < x, y, z < π. Then by the properties of the function θ1 and
the assumptions on the function f(u) we can easily check that

g(u+ π) = g(u) and g
(
u+

πτ

2

)
= g(u),

showing that g(u) is an elliptic function with periods π and πτ
2 . Clearly, the function

g(u) has simple poles at x, y, and z in the fundamental parallelogram 0, π, πτ2 , π+πτ
2 .

We have

Res(g;x) = lim
u→x

u− x

θ1
(
u− x

∣∣ τ
2

) · θ1(x− y − z | τ )f(x)
θ1

(
x− y

∣∣ τ
2

)
θ1

(
x− z

∣∣ τ
2

)
=

θ1(x− y − z | τ )f(x)
θ′
(
0
∣∣ τ

2

)
θ1

(
x− y

∣∣ τ
2

)
θ1

(
x− z

∣∣ τ
2

) ,
(8)

and similarly,

Res(g; y) =
θ1(y − x− z | τ )f(y)

θ′
(
0
∣∣ τ

2

)
θ1

(
y − x

∣∣ τ
2

)
θ1

(
y − z

∣∣ τ
2

) ,
Res(g; z) =

θ1(z − x− y | τ )f(z)
θ′
(
0
∣∣ τ

2

)
θ1

(
z − x

∣∣ τ
2

)
θ1

(
z − y

∣∣ τ
2

) .
(9)

Hence by the residue theorem for elliptic functions and the formulas in (8) and (9)
we obtain the desired identity which holds for all complex x, y, and z by analytic
continuation.
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3. Proof of Theorem 3

Let f(u) = θ2(u | τ
2 ). Then it is easily verified by the properties (2) that the

function f(u) satisfies the two conditions of Theorem 4 and so,

θ1(z − x− y | τ )θ2
(
z
∣∣ τ

2

)
θ1

(
x− z

∣∣ τ
2

)
θ1

(
y − z

∣∣ τ
2

) =
θ1(y − x− z | τ )θ2

(
y
∣∣ τ

2

)
θ1

(
x− y

∣∣ τ
2

)
θ1

(
y − z

∣∣ τ
2

)

−
θ1(x− y − z | τ )θ2

(
x
∣∣ τ

2

)
θ1

(
x− y

∣∣ τ
2

)
θ1

(
x− z

∣∣ τ
2

) .
Now rearranging and using the basic fact θ2(z | τ ) = θ1(z − π/2 | τ ), the previous
formula yields

θ1(z − x− y | τ )θ1
(
x− y

∣∣ τ
2

)
θ1

(
z − π

2

∣∣ τ
2

)

= θ1(y − x− z | τ )θ1
(
x− z

∣∣ τ
2

)
θ1

(
y − π

2

∣∣ τ
2

)

−θ1(x− y − z | τ )θ1
(
y − z

∣∣ τ
2

)
θ1

(
x− π

2

∣∣ τ
2

)
,

as desired.

4. Proof of Theorem 1

Letting in Theorem 3, x− z = y − π/2, y − z = x− 3π/2, and so z = π, gives

θ21

(π
2

∣∣ τ
2

)
θ1

(
π − 2y − π

2
| τ

)
= θ1

(
−3π

2
| τ

)
θ21

(
y − π

2

∣∣ τ
2

)

−θ1

(
−π

2
| τ

)
θ1

(
y − π

∣∣ τ
2

)
θ1

(
y
∣∣ τ
2

)

which by the basic properties (1) is equivalent to

−θ21

(π
2

∣∣ τ
2

)
θ1

(
2y − π

2
| τ

)
= θ1(

π

2
| τ )θ21

(
y − π

2

∣∣ τ
2

)
− θ1

(π
2
| τ

)
θ21

(
y
∣∣ τ
2

)
.

Then using the substitution z := y − π/2 in the previous identity gives the desired
formula.

5. Proof of Theorem 2

Let z = y − x in Theorem 3 and use the basic properties in (1) to get

θ1(2x | τ )θ1
(
y − x

∣∣ τ
2

)
θ1

(
y − x− π

2

∣∣ τ
2

)

= θ1(2y − 2x | τ )θ1
(
x
∣∣ τ
2

)
θ1

(
x− π

2

∣∣ τ
2

)
.

Then the substitution z := x− π/2 in the previous identity implies

θ1(2z + π | τ )θ1
(
y − z − π

2

∣∣ τ
2

)
θ1

(
y − z − π

∣∣ τ
2

)

= θ1(2y − 2z − π | τ )θ1
(
z +

π

2

∣∣ τ
2

)
θ1

(
z
∣∣ τ
2

)
,

or, equivalently

−θ1(2z | τ )θ1
(
y − z − π

2

∣∣ τ
2

)
θ1

(
y − z

∣∣ τ
2

)

= θ1(2y − 2z | τ )θ1
(
z +

π

2

∣∣ τ
2

)
θ1

(
z
∣∣ τ
2

)
.
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Finally, let in the previous identity y − z = π/4 to get

θ1(2z | τ )θ21
(π
4

∣∣ τ
2

)
= θ1

(π
2

∣∣ τ) θ1

(
z +

π

2

∣∣ τ
2

)
θ1

(
z
∣∣ τ
2

)
,

or, equivalently

θ1(2z | τ )θ21
(π
2

∣∣ τ
2

)
=

θ21
(
π
2

∣∣ τ
2

)
θ21

(
π
4

∣∣ τ
2

)θ1
(π
2

∣∣ τ) θ1

(
z +

π

2

∣∣ τ
2

)
θ1

(
z
∣∣ τ
2

)
.

It remains to prove that if we replace τ by τ ′ in the previous identity, then

(10)
θ21

(
π
2

∣∣ τ ′

2

)
θ21

(
π
4

∣∣ τ ′

2

) = q−
1
4
(q2; q4)4∞
(q; q2)2∞

.

Indeed, by virtue of Jacobi’s imaginary transformation (3) we have

θ1

(
π

2

∣∣ τ ′
2

)
=

(
−i

τ ′

2

)− 1
2

(−i)ei(2τ)
π
4 θ1

(π
2
(2τ )

∣∣ 2τ)

=

(
−i

τ ′

2

)− 1
2

(−i)q
1
2 iq−

1
2 (q2, q2, q4; q4)∞

=

(
−i

τ ′

2

)− 1
2

(q2; q4)2∞(q4; q4)∞,

(11)

and similarly,

θ1

(
π

4

∣∣ τ ′
2

)
=

(
−i

τ ′

2

)− 1
2

(−i)ei(2τ)
π
16 iq

1
2 e−iπτ

2 (q3, q, q4; q4)∞

=
(
−i

τ

2

)− 1
2

q
1
8 (q; q2)∞(q4; q4)∞.

(12)

Finally take the squares in the relations (11) and (12) and divide to establish
identity (10). This completes the proof.
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