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INVARIANT RADON MEASURES FOR UNIPOTENT FLOWS

AND PRODUCTS OF KLEINIAN GROUPS
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(Communicated by Nimish Shah)

Abstract. Let G = PSL2(F) where F = R,C, and consider the space Z =
(Γ1 × Γ2)\(G × G) where Γ1 < G is a co-compact lattice and Γ2 < G is a
geometrically finite discrete Zariski dense subgroup. For a horospherical sub-
group N of G, we classify all ergodic, conservative, invariant Radon measures
on Z for the diagonal N-action.

1. Introduction

The celebrated theorem of M. Ratner in 1991 classifies all finite invariant mea-
sures for unipotent flows on the quotient space of a connected Lie group by its
discrete subgroup [16]. The problem of classifying invariant locally finite Borel mea-
sures (i.e., Radon measures) is far from being understood in general. Most of the
known classification results are restricted to the class of horospherical invariant mea-
sures on a quotient of a simple Lie group of rank one (e.g., [2,7,11,12,15,17,19,23]).
In this article, we obtain a classification of Radon measures invariant under unipo-
tent flows in one of the most basic examples of the quotient of a higher rank
semisimple Lie group by a discrete subgroup of infinite co-volume.

Let G = PSL2(F) where the field F is either R or C. Let Γ1 and Γ2 be ge-
ometrically finite Zariski dense, discrete subgroups of G. Consider the quotient
space

Z := (Γ1 × Γ2)\(G×G) = X1 ×X2

where Xi = Γi\G for i = 1, 2. For a subset S ⊂ G, Δ(S) := {(s, s) : s ∈ S} denotes
the diagonal embedding of S into G×G.

Theorem 1.1 ([5], Benoist-Quint). Assume that Γ1 < G is co-compact. Then any
ergodic Δ(G)-invariant Radon measure μ on Z is, up to a constant multiple, one
of the following:

• μ is the product mHaar ×mHaar of Haar measures;
• μ is the graph of the Haar measure, in the sense that for some g0 ∈ G with
[Γ2 : g−1

0 Γ1g0 ∩ Γ2] < ∞, μ = φ∗m
Haar
(g−1

0 Γ1g0∩Γ2)
, i.e., the push-forward of
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the Haar-measure on (g−1
0 Γ1g0∩Γ2)\G to the closed orbit [(g0, e)]Δ(G) via

the isomorphism φ given by [g] �→ [(g0g, g)].

Indeed, it is proved in [5] that any ergodic Γ2-invariant Borel probability measure
on X1 is either a Haar measure or supported on a finite orbit of Γ2. This result
is equivalent to the above theorem, in view of the homeomorphism ν �→ ν̃ between
the space of all Γ2-invariant measures on X1 and the space of all Δ(G)-invariant
measures on Z, given by

ν̃(f) =

∫
X2

∫
X1

f(Γ1hg,Γ2g) dν(h) dm
Haar(g).

Since the Haar measuremHaar onX1 is ergodic for any element of G which generates
an unbounded subgroup, it follows that mHaar is Γ2-ergodic and hence the product
mHaar ×mHaar of the Haar measures in X1 ×X2 is Δ(G)-ergodic. We also refer to
[6] for the topological version of Theorem 1.1 (also see [4]).

In this paper, we consider the action of Δ(N) on Z where N is a horospherical
subgroup of G, i.e., N is conjugate to the subgroup{(

1 0
t 1

)
: t ∈ F

}
.

A Δ(N)-invariant Radon measure on Z is said to be conservative if for any subset
S of positive measure in Z, the measure of {n ∈ N : xn ∈ S}, with respect to the
Haar measure of N , is infinite for almost all x ∈ S.

The aim of this paper is to classify all Δ(N)-invariant ergodic conservative Radon
measures on Z, assuming Γ1 is co-compact. Since Ratner [16] classified all such
finite measures, our focus lies on infinite Radon measures.

Note that if μ is a Δ(N)-invariant measure, then the translate w∗μ is also Δ(N)-
invariant for any w in the centralizer of Δ(N). The centralizer of Δ(N) in G ×G
is equal to N × N . Hence it suffices to classify Δ(N)-invariant measures, up to a
translation by an element of N ×N .

Let mBR
Γ2

denote the N -invariant Burger-Roblin measure on X2. It is known

that, up to a constant multiple, mBR
Γ2

is the unique N -invariant ergodic conservative
measure on X2, which is not supported on a closed N -orbit ([7], [17], [23]). When
Γ2 is of infinite co-volume, mBR

Γ2
is an infinite measure.

In the following two theorems, which are main results of this paper, we assume
that Γ1 < G is co-compact and Γ2 is a Zariski dense, geometrically finite subgroup
of G with infinite co-volume.

Theorem 1.2. The product measure mHaar × mBR
Γ2

on Z is a Δ(N)-ergodic con-
servative infinite Radon measure.

Theorem 1.3. Any Δ(N)-invariant, ergodic, conservative, infinite Radon measure
μ on Z is one of the following, up to a translation by an element of N ×N and up
to a constant multiple:

(1) μ is the product measure mHaar ×mBR
Γ2

.
(2) μ is the graph of the BR-measure, in the sense that for some g0 ∈ PSL2(F)

with [Γ2 : g−1
0 Γ1g0 ∩ Γ2] < ∞,

μ = φ∗m
BR
(g−1

0 Γ1g0∩Γ2)
,

i.e., the push-forward of the BR-measure on (g−1
0 Γ1g0∩Γ2)\G to the closed

orbit [(g0, e)]Δ(G) via the isomorphism φ given by [g] �→ [(g0g, g)].
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(3) F = C and there exists a closed orbit x2N in X2 homeomorphic to R× S1

such that μ is supported on X1 × x2N . To describe μ more precisely, let
U < N denote the one dimensional subgroup containing StabN (x2) and
dn the N-invariant measure on x2N in X2. We then have one of the two
possibilities:
(a)

μ = mHaar × dn;

(b) there exist a connected subgroup L � SL2(R) with L ∩ N = U , and a
compact L orbit Y in X1 such that

μ =

∫
x2N

μx dx

where μx2n0
is given by μx2n0

(ψ) =
∫
Y
ψ(yn0, x2n0) dy with dy being

the L-invariant probability measure on Y .

We deduce Theorem 1.2 as a consequence of Theorem 1.3 (see subsection 3.2).
Two main ingredients of the proof of Theorem 1.3 are Ratner’s classification of

probability measures on X1 which are invariant and ergodic under a one parameter
unipotent subgroup of G, and the classification of N -equivariant (set-valued) Borel
maps X2 → X1, established in our earlier work [14].

2. Recurrence and algebraic actions on measure spaces

In this section, let G = PSL2(C) and let Γ < G be a Zariski dense geometrically
finite discrete subgroup. Set X = Γ\G. Let N be the horospherical subgroup

N =

{
nt :=

(
1 0
t 1

)
: t ∈ C

}

and let mBR denote the Burger-Roblin measure on X invariant under N .
Recall that mBR is the unique ergodic N -invariant Radon measure on X which

is not supported on a closed N -orbit.
Let U < N be a non-trivial connected subgroup of N . We denote by P(U\N)

the space of probability measures on U\N . The natural action N on U\N induces
an action of N on P(U\N).

We will use the following lemma [24, B.5].

Lemma 2.1. Let H be a locally compact and second countable group. Let X be
a standard Borel H-space with quasi-invariant measure and let Y be a standard
Borel H-space. Let f : X → Y be a Borel function so that for every h ∈ H,
f(hx) = hf(x) for almost all x ∈ X. Then there exists an H-invariant co-null

Borel subset X0 ⊂ X and a Borel H-map f̃ : X0 → Y such that f = f̃ almost
surely.

The aim of this section is to prove the following technical result:

Theorem 2.2. Let Γ < G be a Zariski dense geometrically finite discrete sub-
group and U < N be a one dimensional connected subgroup. Then there is no
N-equivariant Borel map

f : (X,mBR) → P(U\N).
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For the proof, we will first observe that the N -action on P(U\N) is smooth [24,
Def. 2.1.9]. By the fact that mBR is N -ergodic, it then follows that after possibly
modifying f on a BR-null set, f is concentrated on a single N -orbit in P(U\N). We
will use a recurrence property of mBR, which is stronger than the conservativity,
to prove U = N .

We begin with the following lemma. The space P(R) is equipped with the weak-
star topology: i.e., νn → ν if and only if νn(ψ) → ν(ψ) for all ψ ∈ Cc(R).

Lemma 2.3. If {tn : n = 1, 2, · · · } is a sequence in R, so that tn∗σ → σ′ for some
σ, σ′ ∈ P(R), then {tn} is bounded.

Proof. Assume the contrary and after passing to a subsequence suppose tn → ∞.
Since σ and σ′ are probability measures on R, there is some M > 1 such that

σ([−M,M ]) > 0.9 and σ′([−M,M ]) > 0.9.

Let ψ ∈ Cc(R) be a continuous function so that 0 ≤ ψ ≤ 1, ψ|[−M,M ] = 1 and
ψ|(−∞,−M−1)∪(M+1,∞) = 0. Since tn → ∞ we have

([−M − 1,M + 1]− tn) ∩ [−M − 1,M + 1] = ∅ for all large n.

Therefore, tn∗σ(ψ) < 0.1 but σ′(ψ) > 0.9, which contradicts the assumption that
tn∗σ → σ′. �

As was mentioned above, we will need certain recurrence properties of the ac-
tion of N on (X,mBR). This will be deduced from recurrence properties of the
Bowen-Margulis-Sullivan measure mBMS on X with respect to the diagonal flow
diag(et/2, e−t/2). We normalize so that mBMS is the probability measure. These
two measures mBMS and mBR are quasi-product measures and on weak-stable man-
ifolds (i.e., locally transversal to N -orbits), they are absolutely continuous to each
other.

Set M = {diag(z, z−1) : |z| = 1}. Then G/M can be identified with the unit
tangent bundle of the hyperbolic 3-space H3. Hence for every g ∈ G, we can
associate a point g− in the boundary of H3 which is the backward end point of the
geodesic determined by the tangent vector gM .

Now the set Xrad := {Γg ∈ X : g− is a radial limit point of Γ} has a full BMS-
measure as well as a full BR-measure. For x ∈ Xrad, n �→ xn is a bijection N → xN ,
and μPS

x denotes the leafwise measure of mBMS, considered as a measure on N
(see [14, §2]).

We recall the following result of Rudolph [18, Theorem 17]: for any Borel set B
of X and any η > 0, the set

(2.1)

{
x ∈ Xrad : lim inf

T

1
μPS
x (BN (T ))

∫
BN (T )

χB(xnt)dμ
PS
x (t) ≥ (1− η)mBMS(B)

}

has full BMS-measure mBMS.

Lemma 2.4. Let U be a one dimensional connected subgroup of N . Then for every
subset B ⊂ X of positive BMS-measure, the set

{n ∈ U\N : xn ∈ B}

is unbounded for mBMS-a.e. x ∈ X.
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Proof. We denote by NbdR(U) the R-neighborhood of U , i.e.,

NbdR(U) = {nt ∈ N : |t− s| < R for some ns ∈ U}.
We set BN (R) := NbdR({e}) which is the R-neighborhood of e.

Let B ⊂ X be any Borel set of positive BMS-measure. Then by (2.1), there is a
BMS full measure set X ′ of Xrad with the following property: for all x ∈ X ′, there
is Tx > 0 such that if T > Tx, then

(2.2) μPS
x {nt ∈ BN (T ) : xnt ∈ B} ≥ 0.9μPS

x (BN (T ))mBMS(B).

Let x ∈ X ′. Since x is a radial limit point for Γ, there exists a sequence Ti → ∞
so that xa− log Ti

converges to some y ∈ supp(mBMS). Therefore, we have

(2.3) μPS
xa− log Ti

→ μPS
y ,

in the space of regular Borel measures on N endowed with the weak-topology
(see [14, Lemma 2.1]).

Moreover, since μPS
y (U) = 0, by [14, Lemma 4.3], for every ε > 0, there exists

ρ0 > 0 such that for every 0 < ρ ≤ ρ0 we have

(2.4) μPS
y (BN (1) ∩ Nbdρ(U)) ≤ ε · μPS

y (BN (1)).

Recall that μPS
x (BN (T )) = T δμPS

xa− log T
(BN (1)). Therefore,

μPS
x (BN (Ti)∩NbdR(U))

μPS
x (BN (Ti))

=
μPS
xa− log Ti

(BN (1)∩NbdR/Ti
(U))

μPS
xa− log Ti

(BN (1)) .

Hence, it follows from (2.3) and (2.4) that for every ε > 0 and for all sufficiently
large i such that R/Ti < ρ,

(2.5) μPS
x (BN (Ti) ∩ NbdR(U)) ≤ ε · μPS

x (BN (Ti)).

Put ε = 1/10 ·mBMS(B). Given any j, there exists ij > j such that Tij > Tx and

μPS
x (BN (Tj)) ≤ ε · μPS

x (BN (Tij )).

Then for all sufficiently large i > ij , we have

μPS
x (BN (Tj)) + μPS

x (BN (Ti) ∩ NbdR(U)) ≤ 2εμPS
x (BN (Ti)).

Therefore it follows from (2.2) that for any j and for all i > ij ,

μPS
x {nt ∈ BN (Ti) \ (BN (Tj) ∪ NbdR(U)) : xnt ∈ B}

≥ 0.5μPS
x (BN (Ti))m

BMS(B) > 0.

This implies that the set of x with xnt ∈ B cannot be contained in any bounded
neighborhood of U , proving the claim. �
Proof of Theorem 2.2. First by modifying f on a BR-null set, we may assume that
for all x ∈ X, and for all n ∈ N ,

f(xn) = n∗f(x).

Fix a compact subset Q ⊂ Xrad such that f is continuous on Q and mBR(Q) > 0.
This is possible by Lusin’s theorem. We claim that for some y ∈ Q, the set

{n ∈ N : yn ∈ Q}
is unbounded in the quotient space U\N .

First note that there exists ρ0 > 0 such that QBN (ρ0) has a positive BMS-
measure.
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By Lemma 2.4 there is a BMS full measure set X ′ so that for all x ∈ X ′,

{n ∈ N : xn ∈ QBN (ρ0)} is unbounded in U\N.

Using the fact that N is abelian, the above implies that

(2.6) {n ∈ N : yn ∈ Q} is unbounded in U\N for all y ∈ X ′N .

The set X ′N is a BR-co-null set and mBR(Q) > 0. Therefore, there is some
y ∈ Q which satisfies (2.6), proving the claim. Now, there is a sequence {nti ∈ N}
such that nti → ∞ in U\N and that ynti ∈ Q and ynti → z ∈ Q. The function f
is continuous on Q. Therefore we get

(nti)∗f(y) → f(z).

Since f(y) and f(z) are probability measures on U\N � R, and nti → ∞ in U\N �
R, this contradicts Lemma 2.3. This yields that U = N , yielding a contradiction.

�

3. Proof of Theorems 1.2 and 1.3

We continue the notation set up in the introduction. Let F = R or C and
G = PSL2(F). Let Γ1 < G be a co-compact lattice and Γ2 < G be a geometrically
finite and Zariski dense subgroup. Set Xi = Γi\G for i = 1, 2. Let Z = X1 ×X2.
Let N = {nt : t ∈ F} < G be a horospherical subgroup.

We denote by mBR
Γ2

the N -invariant Burger-Roblin measure on X2; this is unique
up to a constant multiple.

Let μ be a Δ(N)-invariant, ergodic, conservative infinite Radon measure on Z.
Let

π : Z → X2

be the canonical projection. Since X1 is compact, the push-forward π∗μ defines an
N -invariant ergodic conservative infinite Radon measure on X2.

Theorem 3.1. Up to a constant multiple,

π∗μ = mBR
Γ2

or π∗μ = dn

for the N-invariant measure dn on a closed orbit x2N homeomorphic to R × S1.
The latter happens only when F = C and Γ has a parabolic limit point of rank one.

Proof. Since Γ2 is assumed to be geometrically finite and Zariski dense, up to a
proportionality, the measure π∗μ is either mBR

Γ2
or it is the N -invariant measure

supported on a closed N -orbit x2N in X2 ([17] and [23]). In the latter case, x2N
is homeomorphic to one of the following: S1 × S1, R × R, and R × S1. The first
possibility cannot happen as that would mean that μ is a finite measure. The second
possibility would contradict the assumption that μ is N -conservative. Hence x2N
must be R× S1, up to a homeomorphism. �

The following is one of the main ingredients of our proof of Theorem 1.3, estab-
lished in [14].

Theorem 3.2. One of the following holds, up to a constant multiple:

(1) π∗μ = mBR
Γ2

and μ is invariant under U × {e} for a non-trivial connected
subgroup U of N ;
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(2) π∗μ = mBR
Γ2

and the fibers of the map π are finite with the same cardinality
almost surely. Moreover, in this case, μ is the graph of the BR-measure in
the sense of Theorem 1.3(2);

(3) F = C and π∗μ = dn for the N-invariant measure dn on a closed orbit
x2N homeomorphic to R× S1.

Proof. For the case when π∗μ = mBR
Γ2

, it follows from [14, Thm. 7.12 and Thm. 7.17]
either that the fibers of the map π are finite with the same cardinality almost surely
or that μ is invariant under a non-trivial connected subgroup of N , yielding the
cases (1) and (2). Indeed [14, Thm. 7.12] states this under the assumption that μ
is an N -joining, but all that is used in the proof is the fact that the projection of
the measure onto one of the factors is the BR-measure. �

3.1. Proof of Theorem 1.3.

3.1.1. The case of G = PSL2(R). In this case, mBR
Γ2

is the unique infinite conserva-
tive N -invariant measure on X2. Therefore we may assume, after the normalization
of mBR

Γ2
if necessary, that π∗μ = mBR

Γ2
. By the standard disintegration theorem,

see [1], we have

μ =

∫
X2

μx dm
BR
Γ2

(x)

where μx is a probability measure on X1 for mBR
Γ2

-a.e. x.
Suppose that Theorem 3.2(1) holds, i.e., μ is invariant under N × {e}. Then,

since every element in the σ-algebra

{X1 ×B : B ⊂ X2 is a Borel set}
is invariant under N × {e}, we get that μx is an N -invariant probability measure
on X1 for mBR

Γ2
-a.e. x.

By the unique ergodicity of N on the compact space X1 [8], we have

(3.1) μx = mHaar for mBR
Γ2

-a.e. x;

hence μ = mHaar ×mBR
Γ2

.
If Theorem 3.2(2) holds, we obtain that μ is the graph of the BR-measure as

desired in Theorem 1.3.

3.1.2. The case of G = PSL2(C). In analyzing the three cases in Theorem 3.2, we
use the following special case of Ratner’s measure classification theorem [16]:

Theorem 3.3. Let Γ1 < G = PSL2(C) be a co-compact lattice. Let U be a one
parameter unipotent subgroup of G. Let L � PSL2(R) be the connected subgroup
generated by U and its transpose U t. Then any ergodic U-invariant probability mea-
sure on Γ1\G is either the Haar measure or a v−1Lv-invariant measure supported
on a compact orbit Γ1\Γ1gLv for some g ∈ G and v ∈ N .

Indeed, since there are no compact U orbits in the compact space Γ1\G, the
same conclusion holds for any ergodic u-invariant probability measure on Γ1\G for
any non-trivial element u ∈ U ; see [16] and also [22].

Also note that in the second case of Theorem 3.3, the support of the measure is
contained in yLN for some compact orbit yL.

We now investigate each case of Theorem 3.2 as follows:

Theorem 3.4. For k = 1, 2, 3, Theorem 3.2(k) implies Theorem 1.3(k).
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Proof. Observe first that the case of k = 2 follows directly from Theorem 3.2.
Consider the case k = 1: suppose that μ is invariant under a subgroup U×{e} for

a non-trivial connected subgroup U of N . We normalize mBR
Γ2

so that π∗μ = mBR
Γ2

.
It follows from the standard disintegration theorem, see [1], that

(3.2) μ =

∫
X2

μx dm
BR
Γ2

(x).

Arguing as in section 3.1.1, since μ is invariant under U × {e}, we get that μx is a
U -invariant probability measure on X1 for mBR

Γ2
-a.e. x. We claim that

(3.3) μx = mHaar for mBR
Γ2

-a.e. x;

this implies μ = mHaar ×mBR
Γ2

and finishes the proof in this case.
We apply Theorem 3.3 to U . Let L � PSL2(R) be defined as in Theorem 3.3.

Compactness of Γ1\Γ1gL implies that g−1Γ1g ∩ L is a co-compact lattice of L. In
particular, g−1Γ1g ∩ L is finitely generated and Zariski dense in L. This implies
there are only countably many compact L orbits in X1.

Let {yiL : i = 0, 1, 2, . . .} be the collection of all compact L-orbits in X1. Then
for mBR

Γ2
-a.e. x ∈ X2, we have

(3.4) μx = cxm
Haar +

∑
i

μx,i

where cx ≥ 0 and μx,i is a U -invariant finite measure supported in yiLN .
The set {(x1, x2) : cx2

> 0} is a Δ(N)-invariant Borel measurable set. There-
fore, (3.3) follows if this set has positive measure.

In view of this, we assume from now that cx = 0 for mBR
Γ2

-a.e. x. Then the
support of μ is contained in a countable union⋃

i

(yiLN ×X2).

Hence for some i,

(3.5) μ(yiLN ×X2) > 0.

Without loss of generality, we may assume i = 0.
Since y0LN × X2 is Δ(N)-invariant and μ is Δ(N)-ergodic, (3.5) implies that

y0LN ×X2 is μ-co-null. Therefore, μx is supported on y0LN for mBR
Γ2

-a.e. x ∈ X2.
For each n ∈ N , let ηn be the probability measure supported on y0Ln, invariant

under n−1Ln. Noting that y0Ln = y0Ln
′ if n ∈ Un′, the map n �→ ηn factors

through U\N . We also have

(3.6) n0∗ηn = ηnn0
for any n, n0 ∈ N.

By Theorem 3.3, the collection {ηn : n ∈ U\N} provides all U -invariant ergodic
probability measures on X1 whose supports are contained in y0LN .

Hence the U -ergodic decomposition of μx gives that for a.e. x ∈ X2, there is a
probability measure σx on U\N such that

μx =

∫
U\N

ηn dσx(n).

Since μ is Δ(N)-invariant, we have

(3.7) μxn0
= n0∗μx for mBR

Γ2
-a.e. x ∈ X2 and all n0 ∈ N.
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Observe that

(3.8) μxn0
=

∫
U\N

ηn dσxn0
(n),

and that

n0∗μx =

∫
X1

n0∗ηn dσx(n) =

∫
X1

ηnn0
dσx(n) =

∫
X1

ηn d(n0σx)(n).

Therefore (3.7) implies that for mBR
Γ2

-a.e. x ∈ X2 and for a.e. n0 ∈ N ,

(3.9) n0∗σx = σxn0
.

It follows that the Borel map f : (X2,m
BR
Γ2

) → P(U\N) defined by

f(x) := σx

is essentially N -equivariant for the natural action of N on P(U\N).
As U is one dimensional, this yields a contradiction to Theorem 2.2 and hence

completes the proof of case k = 1.
We now turn to the proof of the case k = 3. The argument is similar to the

above case. Let x2N be a closed orbit as in the statement of Theorem 3.2(3). We
disintegrate μ as follows:

(3.10) μ =

∫
x2N

μx dn

where μx is a probability measure onX1 for a.e. x ∈ x2N . As x2N is homeomorphic
to R × S1, the stabilizer of x2 in N is generated by a unipotent element, say, u.
Note that u acts trivially on x2N and Δ(u) leaves μ invariant. Hence again we
have

(3.11) μx is u-invariant almost surely.

We apply (3.4) for u-invariant measures μx. Let L � PSL2(R) denote the con-
nected closed subgroup containing u and ut and let {yiL : i = 0, 1, . . .} be the
collection of all compact L-orbits. Then for almost every x ∈ x2N we write

μx = cxm
Haar +

∑
i

μx,i,

where μx,i is a u-invariant finite measure supported in yiLN . As before, if cx > 0 on
a positive measure subset of x2N , then cx = 1 almost surely by the Δ(N) ergodicity
of μ. Then μ = mHaar × dn; note that this measure is Δ(N) ergodic since mHaar is
u-ergodic. This is the case of Theorem 1.3(3)(a).

Lastly we consider the case when cx = 0 almost surely. As before,

μ(yiLN × x2N) > 0

for some i, and hence almost all μx is supported on one yiLN by the ergodicity of
μ. We assume i = 0 without loss of generality.

Set U = L∩N . Then {ηn : n ∈ U\N} (with ηn defined as in the previous case) is
the set of all u-ergodic probability measures on X1 whose supports are contained in
y0LN by Theorem 3.3 and the remark following it. Therefore, we get a probability
measure σx ∈ P(U\N) such that

μx =

∫
n∈U\N

ηn dσx(n).

Moreover, n∗σx = σxn for a.e. x and all n ∈ N .
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Put σ := σx for some fixed x. Without loss of generality, we assume x = x2.
Then for ψ ∈ Cc(Z),

μ(ψ) =

∫
n∈U\N

∫
x2n0∈x2N

∫
Y

ψ(yn0n, x2n0)dy dn0 dσ(n)

where Y = y0L and dy is the probability Haar measure on Y .
However for each n ∈ U\N , ψ �→

∫
x2n0∈x2N

∫
Y
ψ(yn0n, x2n0)dy dn0 defines a

Δ(N)-invariant measure, and hence by the Δ(N)-ergodicity assumption on μ, σ
must be a delta measure at a point, say n ∈ U\N . Therefore we arrive at Theorem
1.3(3)(b). �

3.2. Proof of Theorem 1.2. Suppose that the product measure

μ := mHaar ×mBR
Γ2

is not ergodic for the action of Δ(N). Let Ω be the support of μ. We consider
the decomposition Ω = Ωd ∪ Ωc where Ωd and Ωc are maximal Δ(N)-invariant
dissipative and conservative subsets respectively. That is, for any positive measure
S ⊂ Ωd (resp. S ⊂ Ωc), the Haar measure of {n ∈ N : xn ∈ S} is finite (resp.
infinite) for almost all s ∈ S (see [9]).

Consider the ergodic decomposition of μ. By Theorem 1.3, any ergodic conser-
vative component in the ergodic decomposition, see [1], of μ should be one of the
measures as described in Theorem 1.3(2) and 1.3(3).

Now μ gives measure zero to sets of the form

(x1, x2)Δ(G)(N × {e})

where (x1, x2)Δ(G) is a closed orbit. Moreover, there are only countably many
closed Δ(G) orbits in Z.

Also, any closed N orbit x2N gives rise to the family x2NA of closed N -orbits
where A is the diagonal subgroup. There are only finitely many such AN -orbits in
X2, as Γ2 is geometrically finite and hence there are only finitely many Γ orbits of
parabolic limit points. Therefore mBR

Γ2
gives zero measure to the set of all closed

N -orbits in X2.
It follows that Ωc is trivial and hence the product measure mHaar × mBR

Γ2
is

completely dissipative. This is a contradiction since X1 is compact and mBR
Γ2

is
N -conservative. This proves Theorem 1.2. �
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