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EXPANSION BY ORTHOGONAL SYSTEMS

WITH RESPECT TO FREUD WEIGHTS

RELATED TO HARDY SPACES

Z. DITZIAN

(Communicated by Yuan Xu)

Abstract. For the basic class of Freud weights wα(x) = exp(−|x|α/2), α > 1
the coefficients of the expansion of wαf ∈ Hp(R) by the Freud orthogonal
system {wαpn,α}∞n=0 , where pn,α are polynomials of degree n, are related
to the quasi-norm (or norm) of wαf in Hp(R). Relations are achieved for all

α > 1 and 1
2

< p < 1, and for some α for a larger range of p. As a result,
estimates for 1 < p ≤ 2 are also improved.

1. Introduction

For f ∈ Lp(T ), f ∼
∞∑

n=−∞
Cne

inx the well-known classical inequality

(1.1)
∞∑

n=−∞
|Cn|p(1 + |n|)p−2 ≤ C‖f‖pLp(T ), 1 < p ≤ 2,

was proved by Polya. The inequality (1.1) was extended by Hardy and Littlewood
to the Hardy space Hp(T ) i.e.

(1.2)

∞∑
n=−∞

|Cn|p(1 + |n|)p−2 ≤ C‖f‖pHp(T ) , f ∈ Hp(T ), 0 < p ≤ 1.

Several analogues of (1.1) and (1.2) for different expansions and spaces were
given (see for instance [Ra-Th], [Ka], [Di,13A] [Di,13B] and [Di,16]).

In this paper we deal with expansion with respect to the Freud weights wα(x) =
exp (−|x|α/2), α > 1 which is the important and typical subset of Freud weights.

The complete orthonormal system {wαpn,α}∞n=0 is given by

(1.3)

∫ ∞

−∞
pn,α(x)pk,α(x)w

2
α(x)dx =

{
1 n = k,

0 n �= k,

where pn,α is a polynomial of degree n.We recall that w2pn,2 is the Hermite function
hn(x) (see [Th, p. 41]).

Received by the editors January 7, 2017, and in revised form, June 5, 2017.
2010 Mathematics Subject Classification. Primary 42C10, 42B30, 42C05, 26D15.
Key words and phrases. Hardy spaces, Freud weights, expansion by orthogonal system, atomic

decomposition, Hardy-Littlewood inequality.

c©2017 American Mathematical Society

1665

http://www.ams.org/proc/
http://www.ams.org/proc/
http://dx.doi.org/10.1090/proc/13842


1666 Z. DITZIAN

For fwα ∈ L1(R)+L∞(R) the expansion by wαpn,α is well defined and given by

(1.4) fwα ∼
∞∑

n=0

Cn,αwαpn,α where Cn,α(fwα) = Cn,α =

∫ ∞

−∞
fpn,αw

2
α .

Investigations of wαpn,α , its derivatives, norms and the expansion (1.4) are given
in the texts [Di-To], [Fr], [Le-Lu], [Mh] and in numerous articles. When we use a
result, we will give the exact location where it is proved (mostly from [Le-Lu] which
is the most extensive source). In [Di,13A], we proved

(1.5)
∞∑

n=0

(1 + n)(p−2)( 7
6−

1
2α ) |Cn,α(fwα)

p ≤ C ‖fwα‖pLp(R) , 1 < p ≤ 2,

which is a Polya-Hardy-Littlewood type inequality for the Freud expansion. In
Section 2, we will prove a Hardy-Littlewood inequality for fwα ∈ Hp(R) when
α > 1 and 1

2 < p ≤ 1. In Section 3, we will show that when α = 2k, the range
of p for this inequality is 0 < p ≤ 1, and when α > k, the range is shown to be
1

k+1 < p ≤ 1.

In Section 4, we will give an improvement of (1.5) for Lp(R), 1 < p ≤ 2 and
other comments.

The atomic decomposition of Hp(R) will be used. a(x) is an atom of Hp(R) if
for some r > 0

(1.6) supp a(x) ⊂
[
x0 −

r

2
, x0 +

r

2

]
,

(1.7) |a(x)| ≤ r−1/p

and

(1.8)

∫ ∞

−∞
a(x)x�dx = 0 for all � ≤

(1
p
− 1), � = 0, 1, . . . .

Different atoms may have different x0 and r. The space Hp(R) has atomic de-
composition, which means for fwα ∈ Hp(R) there exist Hp(R) atoms such that

(1.9) fwα =
∑

λiai(x), C−1‖fwα‖pHp(R) ≤
∑

|λi|p ≤ C‖fwα‖pHp(R),

and the last set of inequalities is denoted by
∑

|λi|p ≈ ‖fwα‖pHp(R) .

2. The basic result (α > 1, 1
2 < p ≤ 1)

In this section we prove a Hardy-Littlewood type result for expansion with re-
spect to the Freud weight wα , α > 1 in the Hardy space Hp(R), 1

2 < p ≤ 1.

Theorem 2.1. For fwα ∈ Hp(R) with α > 1 and 1
2 < p ≤ 1 one has

(2.1)
∞∑

n=0

(1 + n)(
19
18−

1
2α )(p−2)|Cn,α(fwα)|p ≤ C‖fwα‖pHp(R)

with C independent of f and p.

Remark 2.2. The coefficients Cn,α(fwα) are well defined by (1.4) as fwα ∈ Hp(R)
implies fwα ∈ S′ (the Schwartz space of distribution) and wαpn,α ∈ S (the Schwartz
space of test functions). The factor

(
19
18−

1
2α

)
is smaller than

(
7
6−

1
2α

)
and represents

an improvement which in Section 4 will imply an inequality stronger than (1.5).
For p = 1, α = 2 (2.1) was proved by Kanjin (see [Ka]).
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Proof. Following many articles on the subject (see [Di,13B, p. 37], [Ka, p. 334] and
[Ra-Th, p. 3528] for example), we observe that (1.8) implied that it is sufficient to
show that for any atom a(x) ∈ Hp(R) one has

(2.2) I ≡
∞∑

n=0

(1 + n)(
19
18−

1
2α )(p−2)|Cn,α(a)|p ≤ C‖a‖pHp(R) = C.

For σ = 19
18 − 1

2α and β = 1
(2σ−1) we write

I =
∑

1+n≤r−β

+
∑

1+n>r−β

≡ S(1) + S(2).

To estimate S(2) we use the Hölder inequality and write

S(2) ≤
( ∑

1+n>r−β

(1 + n)−2σ
) 2−p

2
( ∑

|Cn,α(a)|2
)p/2

≤
(
(1 + n0)

−2σ+1
) 2−p

2
( 1

r2/p
r
)p/2

≤ C1(r)
1−p

2 r−1rp/2 ≤ C1

since when n0 = min {n : 1 + n > r−β}, 1 + n0 ≈ r−1(2σ−1).
We note that in the estimate of S(2) we did not use the fact that 1

2 < p and
hence we can use this estimate in the next section. In addition, we used the fact
that 2σ > 1, which we will also use in the next section.

We now estimate S(1). As wαpn,α for α > 1 has at least one continuous deriva-
tive, we write the Taylor formula

(2.3) wα(x)pn,α(x) = wα(x0)pn,α(x0) + (x− x0)
d

dx

(
wα(x)pn,α(x)

)∣∣∣
x=ξ

.

We will need the estimate

(2.4) ‖(wαpn,α)
′‖L∞(R) ≤ C2(1 + n)1−

1
α (1 + n)(1−

3
α )/6 = C2(1 + n)

7
6−

3
2α

which we now assume and will prove in the following lemma.
For σ = 19

18 − 1
2α and β = 1/(2σ − 1) we now write

S(1) ≤
∑

1+n<r−β

(1 + n)(p−2)σ
∣∣∣ ∫

a(x)(x− x0)(wαpn,α)
′
x=ξdx

∣∣∣p

≤ C2

∑
(1+n)<r−β

(1 + n)pσ(1 + n)−2σ
∣∣∣ 1

r1/p
r2(1 + n)

7
6−

3
2α

∣∣∣p

≤ C3r
2p−1(1 + n0)

p(σ− 7
6−

3
2α )(1 + n0)

−2σ+1.

As

−
(
σ +

7

6
− 3

2α

)
/(2σ − 1) = −

(40

18
− 2

α

)/(20

18
− 1

α

)
= −2

and (1 + n0) ≈ r−β = r1/(2σ−1) when n0 = max {n : (1 + n) < r−β}, we have
S(1) ≤ C.

We observe that S(1) = 0 if r > 1 but we did not use this fact here. (We
will, however, use it in the next section.) We completed the proof of our theorem
pending the proof of (2.4). �
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Lemma 2.3. For wα(x) = exp(−|x|α/2) and pn.α of (1.1), the inequality (2.4)
holds with C independent of n.

Proof. We recall first from [Le-Lu, p. 360, (13.4)] that

(2.5) ‖wαpn,α‖L∞(R) ≤ C(1 + n)(1−
3
α )/6

since for wα we have in [Le-Lu] an = a−n ≈ δn ≈ n1/α and T (an) = α (see
[Le-Lu, pp. 5-10]).

We then use the estimate from [Le-Lu, p. 294, Cor.10.2, (10.3)], which for pn,α
(and in fact for any polynomial pn of degree n), yields

(2.6) ‖wαp
′
n,α‖L∞(R) ≤ Cn1− 3

2α ‖wαpn,α‖L∞(R)

where we used an, δn and T (an) as we did for (2.5). Therefore,

‖wαp
′
n,α‖L∞(R) ≤ C2(1 + n)

7
6−

2
α .

For s ≥ α− 1, we now estimate

‖xα−1wα(x)pn,α(x)‖L∞(R) ≤ ‖wαpn,α‖(s−α+1)/s
L∞(R) ‖xswαpn,α‖(α−1)/s

L∞(R) .

We use the result of Mhaskar and Saff (see [Le-Lu, p. 4, (1.12)]) i.e.

‖wαpn+s‖L∞(R) = ‖wαpn+1‖L∞(−an+s,an+s), an ≈ an+1 ≈ n1/α .

We now have

(2.7) ‖xα−1wαpn,α‖L∞(R) ≤ C3(1 + n)(1−
1
α )(1 + n)(1+

3
α )/6 ≤ C3(1 + n)

7
3−

3
2α .

Since 1− 1
α > 1− 3

2α , we combine (2.6) and (2.7) to obtain (2.4). �

Remark 2.4. We note that for α = 2 ‖hn‖L∞(R) ≤ C(1+n)−1/12 (see [Th, Lemma
1.5.2(iii), p. 27]) which confirms (2.5) for the special case α = 2. To obtain (2.4)
for α = 2 from the estimate of ‖hn‖L∞(R) , we may combine

(
− d

dx
− x

)
hk(x) = (2k + 2)1/2hk+1(x) with

( d

dx
+ x

)
hk(x) = (2k)1/2hk−1(x)

(see [Th, pp. 2-5]). To obtain the estimate of ‖xswαpn,α‖ we may also use repeatedly

the formula given in [Mh, (3.1.14), p. 51] since for wα γn−1/γn ≈ n1/α. We used
the text [Le-Lu] which contains all the estiamtes we needed.

3. Extending the range of p for some α

In Theorem 2.1 the inequality (2.1) was shown to hold for 1
2 < p ≤ 1 and all

α > 1. In the following theorem we show that for a significant subset of α we can
extend the range of p for which (2.1) is valid.

Theorem 3.1. For fwα ∈ Hp(R), and α > L for some integer L, (2.1) holds for
1

L+1 < p ≤ 1. When α = 2k, (2.1) holds for 0 < p ≤ 1. The constant in (2.1)

depends on the interval I� =
(

1
�+1 ,

1
�

]
which contains p.
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Proof. When α > L wαpn,α has (at least) L continuous derivatives and when
α = 2k, wαpn,α ∈ C∞(R). Hence we may use the Taylor formula for � ≤ L (in
case α > L) and all � for α = 2k, and write
(3.1)

wα(x)pn,α(x) = wα(x0)pn,α(x0) + · · ·+ (x− x0)
�−1

(�− 1)!

(
wα(x)pn,α(x)

)(�−1)∣∣
x=x0

+
(x− x0)

�

�!

(
wα(x)pn,α(x)

)(�)∣∣
x=ξ

.

As in the proof of Theorem 2.1, we split the sum in (2.1) into S(1) and S(2),
and as commented there, the estimate of S(2) was already proved for all p. We will
estimate S(1) for 1

�+1 < p ≤ 1
� for which (3.1) holds. Recall that σ = 19

18 − 1
2α and

β = 1
(2σ−1) and write

(3.2) S(1) =
∑

(1+n)≤r−β

(1 + n)(p−2)σ|Cn,α(a)|p

where a(x) satisfies (1.6), (1.7) and (1.8) with x0 of (3.1) and r of (3.2). We use
(3.1), (1.6), (1.7) and (1.8) to estimate |Cn,α(a)| and write

(3.3)

|Cn,α(a)| =
∣∣∣ ∫

a(x)wα(x)pn,α(x)dx
∣∣∣

≤ 1

�!

∫
1

r
|x− x0|�‖(wαpn,α)

(�)‖L∞(R)

≤ 1

r
r�+1‖(wαpn,α)

(�)‖L∞(R) .

We will prove our theorem pending the estimate

(3.4)

∥∥(wαpn,α)
(�)

∥∥
L∞(R)

≤ C1(1 + n)(1−
1
α )�(1 + n)(1−

3
α )/6

= C1(1 + n)�+
1
6−(�+ 1

2 )
1
α

for � ≤ L in case α > L and for any � in case α = 2k. The estimate (3.4) is proved
in Lemma 3.2 after the proof of our theorem. For 1

�+1 < p ≤ 1
� , σ = 19

18 − 1
2α and

β = 1/(2σ − 1) = 1
/(

20
18 − 1

α

)
, we have

S(1) ≤ C2

( ∑
(1+n)≤r−β

(1 + n)pσ(1 + n)[(�+
1
6 )−(�+ 1

2 )
1
α ]p(1 + n)−2σ

)
r−1r(�+1)p

≤ C3

[
(1 + n0)

( 19
18+�+ 1

6 )p(1 + n0)
−(�+1) 1

α (1 + n0)
−2σ+1

]
r−1r(�+1)p

where n0 = max {n : (1 + n) ≤ r−β} and hence (1 + n0) ≤ r−β . We observe that

19

18
+ �+

1

6
− (�+ 1)

1

α
= (�+ 1)

(20

18
− 1

α

)
− (�− 1)

9

and hence for β = 1
/(

20
18 − 1

α

)
S(1) ≤ C3 r

(�−1)/9
(

20
18−

1
α

)
≤ C3

since S(1) = 0 whenever r ≥ 1. We now have S(1) ≤ C3 pending the proof of
(3.4). �

Lemma 3.2. For α > L (3.4) holds for � ≤ L. For α = 2k (3.4) holds for any �.
Both hold with constants that depend on �.
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Proof. We write first for any m (not just m ≤ �)

(3.5)

∥∥wαp
(m)
n,α

∥∥
L∞(R)

≤ C(1 + n)m
(
1− 3

2α

)∥∥wαpn,α
∥∥
L∞(R)

≤ C1(1 + n)

(
1− 3

2α

)
m+

(
1− 3

α

)
/6

by repeating the result of [Le-Lu, p. 294, Cor.10.2, 10.3] m times and using (2.5).
We note that the above result of [Le-Lu] is valid for any polynomial of degree n and

p
(m)
n,α is such a polynomial. (The inequality (3.5) applies to wαpn,α with the special

pn,α that is given in (1.3).) We now show for any integer s

(3.6)
∥∥xswα(x)p

(m)
n,α (x)

∥∥
L∞(R)

≤ C(1 + n)s/α(1 + n)

(
1− 3

2α

)
m(1 + n)

(
1− 3

α

)
/6

which follows as xsp
(m)
n,α is a polynomial of degree n−m+s, and using the Mhaskar-

Saff result (see [Le-Lu, p. 4,(1.12)]),∥∥xswα(x)p
(m)
n,α (x)

∥∥
L∞(R)

=
∥∥xswα(x)p

(m)
n,α

∥∥
L∞(−an−m+s ,an−m+s)

with |an−m+s| ≈ n1/α and hence we have (3.6).
We now obtain for any γ ≥ 0

(3.7)
∥∥xγwα(x)p

(m)
n,α (x)

∥∥
L∞(R)

≤ C(1 + n)γ/α(1 + n)

(
1− 3

2α

)
m(1 + n)

(
1− 3

α

)
/6

by choosing s ≥ γ (s = [γ] + 1 for instance) and using the interpolation∥∥xγwα(x)p
(m)
n,α (x)

∥∥
L∞(R)

≤
∥∥wαp

(m)
n,α

∥∥1− γ
s

L∞(R)

∥∥xswα(x)p
(m)
n,α (x)

∥∥γ/s

L∞(R)
.

To prove (3.4) we note that for � ≤ L in case α > L or any � when α = 2k,
(wαpn,α)

(�) is a combination of terms like (wα)
(�−m)(pn,α)

(m) with m ≤ �. As in
both (3.6) and (3.7) the estimate is monotone increasing in γ or s, and hence the
estimate of (wα)

(�−m)(pn,α)
(m) depends only on the highest power of x in (wα)

(�−m)

which is x(α−1)(�−m). Therefore,

(3.8)

∥∥w(�−m)
α p(m)

n,α

∥∥
L∞(R)

≤ C(1 + n)

(
1− 1

α

)
(�−m)(1 + n)

(
1− 3

2α

)
m(1 + n)

(
1− 3

α

)
/6

≤ C(1 + n)

(
1− 1

α

)
�(1 + n)

(
1− 3

α

)
/6 .

Combining (3.8) for 0 ≤ m ≤ �, we obtain (3.4). �

4. Extension for 1 < p ≤ 2 and other remarks

In [Di,13A] the Hardy-Littlewood type inequality

(4.1)
{ ∞∑

n=0

(1 + n)(p−2)
(

7
6−

1
2α

)
|Cn|p

}1/p

≤ C‖fwα‖Lp(R)

was proved for 1 < p ≤ 2. Using Theorem 2.1, we obtain the following stronger
inequality.

Theorem 4.1. For wα = exp(−|x|α/2), α > 1, Cn,α ≡ Cn,α(fwα) given by
(1.4), 1 < p ≤ 2 and fwα ∈ Lp(R) one has

(4.2)
{ ∞∑

n=0

(1 + n)(p−2)
(

19
18−

1
2α

)
|Cn,α|p

}1/p

≤ C‖fwα‖Lp(R) .
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Remark 4.2. As 7
6 > 19

18 (4.2) is stronger than (4.1). We believe the reason the
weak (1.1) result and Marcinkiewicz interpolation used in [Di,13A] did not yield
the optimal result is that the maxima of |wα(x)pn,α(x)| occurs at widely different
xn for different n.

Proof. Clearly, for p = 2 (4.2) with equality and C = 1 is the Parseval iden-
tity. We now use [Ga-Ru, pp. 307-310, Theorem 6.1] with T (fwα) →

{
Cn,α(n +

1)

(
19
18−

1
2α

)}∞
n=0

in the weighted �p with weights
{
(n + 1)−2

(
19
18−

1
2α

)}∞
n=0

to inter-

polate between T on fwα ∈ H1(R) and T on fwα ∈ L2(R). In fact, the map
T (fwα) from H1(R) to the corresponding weighted �1 space is strongly bounded
by Theorem 2.1. �

Using duality, we also have the following corollary which is an improvement over
[Di,13A, Theorem 3.2].

Corollary 4.3. If for q, 2 ≤ q < ∞ there exists a constant C and a sequence {Cn}
such that

∞∑
n=0

|Cn|q(n+ 1)(q−2)
(

19
18−

1
2α

)
< C, then fwα where fwα ∼

∞∑
n=0

Cnwαpn,α

satisfies fwα ∈ Lq(R) and

(4.3) ‖fwα‖Lq(R) ≤ C
{ ∞∑

n=0

(n+ 1)(q−2)
(

19
18−

1
2α

)
|Cn|q

}1/q

.

For the Hermite functions (the case α = 2) one has

(4.4)

∞∑
n=0

(1 + n)(p−2) 29
36 |Cn,2(fwα)|p ≤ C‖fwα‖pHp(R) , 0 < p ≤ 2

which was proved by Kanjin (see [Ka]) for important partial range 1 ≤ p ≤ 2.
To answer a question by the referee, we believe (but cannot prove) that (2.1) is

optimal when the whole range α > 1 and 1
2 < p ≤ 1 is considered, and that further

progress will concentrate on special α and p.
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