
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 146, Number 4, April 2018, Pages 1825–1832
http://dx.doi.org/10.1090/proc/13843

Article electronically published on November 10, 2017
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(Communicated by Thomas Schlumprecht)

Abstract. A topological space is said to be sequential if every subspace closed
under taking limits of convergent sequences is closed. We consider Banach
spaces with weak*-sequential dual ball. In particular, we show that if X is
a Banach space with weak*-sequentially compact dual ball and Y ⊂ X is a
subspace such that Y and X/Y have weak*-sequential dual ball, then X has
weak*-sequential dual ball. As an application we obtain that the Johnson-
Lindenstrauss space JL2 and C(K) for K a scattered compact space of count-
able height are examples of Banach spaces with weak*-sequential dual ball.
These results provide a negative solution to a question of A. Plichko, who
asked whether the dual ball of a Banach space is weak*-angelic whenever it is
weak*-sequential.

1. Introduction

All topological spaces considered in this paper are Hausdorff. The symbol w∗

denotes the weak* topology of the corresponding Banach space. A topological space
T is said to be sequentially compact if every sequence in T contains a convergent
subsequence. Moreover, T is said to be Fréchet-Urysohn (FU for short) if for every
subspace F of T , every point in the closure of F is the limit of a sequence in F .
Every FU compact space is sequentially compact. A Banach space with weak*-
FU dual ball is said to have weak*-angelic dual. Some examples of Banach spaces
with weak*-angelic dual are WCG Banach spaces (i.e., Banach spaces generated by
a weakly compact set) and, in general, WLD Banach spaces (i.e., Banach spaces
whose dual ball with the weak*-topology is Corson). On the other hand, every
weak Asplund Banach space and every Banach space without copies of �1 in the
dual have weak*-sequentially compact dual ball [7, Chapter XIII].

In this paper we are going to focus on sequential spaces, which is a generalization
of the FU property. If T is a topological space and F is a subspace of T , the
sequential closure of F is the set of all limits of sequences in F . F is said to be
sequentially closed if it coincides with its sequential closure. A topological space is
said to be sequential if any sequentially closed subspace is closed. Thus, every FU
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space is sequential. Another natural generalization of the FU property is countable
tightness. A topological space T is said to have countable tightness if for every
subspace F of T , every point in the closure of F is in the closure of a countable
subspace of F . It can be proved that every sequential space has countable tightness.
However, whether the converse implication in the class of compact spaces is true
is known as the Moore-Mrowka Problem and it is undecidable in ZFC (i.e., in the
usual axioms of set-theory)[2]. Therefore, for a compact space K, we have the
following implications:

K is FU =⇒ K is sequential =⇒ K is sequentially compact

⇓
K has countable tightness

In [20, Question 10] A. Plichko asked whether every Banach space with weak*-
sequential dual ball has weak*-angelic dual. In the next section we prove the
following theorem, which is applied to prove that the Johnson-Lindenstrauss space
JL2 provides a negative answer to Plichko’s question:

Theorem 1.1. Let X be a Banach space with weak*-sequentially compact dual ball.
Let Y ⊂ X be a subspace with weak*-sequential dual ball with sequential order ≤ γ1
and such that X/Y has weak*-sequential dual ball with sequential order ≤ γ2. Then
X has weak*-sequential dual ball with sequential order ≤ γ1 + γ2.

One of the properties studied by Plichko in [20] is property E of Efremov. A
Banach space X is said to have property E if every point in the weak*-closure of
any convex subset C ⊂ BX∗ is the weak*-limit of a sequence in C. We say that
X has property E ′ if every weak*-sequentially closed convex set in the dual ball is
weak*-closed. Thus, if X has weak*-angelic dual, then it has property E ; and if X
has weak*-sequential dual ball, then X has property E ′. We also provide a convex
version of Theorem 1.1 (see Theorem 2.3).

Other related Banach space properties are the Mazur property and property
(C). A Banach space X has Mazur property if every x∗∗ ∈ X∗∗ which is weak*-
sequentially continuous on X∗ is weak*-continuous and, therefore, x∗∗ ∈ X. Notice
that if a topological space T is sequential, then any sequentially continuous function
f : T → R is continuous. Thus, it follows from the Banach-Dieudonné Theorem
that every Banach space with weak*-sequential dual ball has the Mazur property.
Moreover, property E ′ also implies the Mazur property.

A Banach space X has property (C) of Corson if and only if every point in the
closure of C is in the weak*-closure of a countable subset of C for every convex set
C in BX∗ (this characterization of property (C) is due to R. Pol [19]).

Thus, we have the following implications among these Banach space properties:

weak*-angelic dual ⇒ weak*-sequential dual ball ⇒ weak*-seq. compact dual ball

⇓ ⇓
property E =⇒ property E ′ =⇒ property (C)

⇓
Mazur property
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Notice that C([0, ω1]) has weak*-sequentially compact dual ball, but it is not
weak*-sequential. Moreover, �1(ω1) has the Mazur property [9, Section 5], but it
does not have property (C).

In [21, p. 352] it is asked whether property (C) implies property E . J.T. Moore
in an unpublished paper and C. Brech in her PhD thesis [6] provided a negative
answer under some additional consistent axioms, but the question is still open in
ZFC. Notice that the convex version of Plichko’s question is whether property E ′

implies property E . A negative answer to this question would provide an example
of a Banach space with property (C) not having property E .

In [10, Lemma 2.5] it is proved that the dual ball of C(K) does not contain
a copy of ω1 + 1 = [0, ω1] when K is a scattered compact space of finite height
satisfying some properties. It is also proved in [17] that C(K) has the Mazur prop-
erty whenever K is a scattered compact space of countable height. We generalize
these results by proving that C(K) has weak*-sequential dual ball whenever K is a
scattered compact space of countable height (Theorem 3.2).

2. Banach spaces with weak*-sequential dual ball

Definition 2.1. Let T be a topological space and F a subspace of T . For any
α ≤ ω1 we define Sα(F ) as the αth sequential closure of F by induction on α:
S0(F ) = F , Sα+1(F ) is the sequential closure of Sα(F ) for every α < ω1 and
Sα(F ) =

⋃
β<α Sβ(F ) if α is a limit ordinal.

Notice that Sω1
(F ) is sequentially closed for every subspace F . Thus, a topo-

logical space T is sequential if and only if Sω1
(F ) = F for every subspace F of T .

We say that T has sequential order α if Sα(F ) = F for every subspace F of T and
for every β < α there exists F with Sβ(F ) �= F . Therefore, a topological space
T is sequential with sequential order ≤ 1 if and only if it is FU. We will use the
following lemma in the proof of Theorem 1.1:

Lemma 2.2. Let f : K → L be a continuous function, where K,L are topological
spaces and K is sequentially compact. Then, f(Sα(F )) = Sα(f(F )) for every F ⊂
K and every ordinal α.

Proof. The inclusion f(Sα(F )) ⊂ Sα(f(F )) follows from the continuity of f .
We prove the other inclusion by induction on α. The case α = 0 is immediate.

Suppose α = 1. Take s ∈ S1(f(F )). Then, there exists a sequence tn in F such that
f(tn) converges to s. Since K is sequentially compact, without loss of generality we
may suppose tn is converging to some point t. Then, it follows from the continuity
of f that f(t) = s. Thus, s ∈ f(S1(F )).

Now suppose the result is true for every β < α and α ≥ 2. If α is a limit ordinal,
then

f(Sα(F )) = f(
⋃
β<α

Sβ(F )) =
⋃
β<α

f(Sβ(F )) =
⋃
β<α

Sβ(f(F )) = Sα(f(F )).

If α = β + 1 is a successor ordinal, then

f(Sα(F )) = f(S1(Sβ(F ))) = S1(f(Sβ(F ))) = S1(Sβ(f(F ))) = Sα(f(F )).

�
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Proof of Theorem 1.1. It is enough to prove that if F ⊂ BX∗ and 0 ∈ F
w∗

, then
0 ∈ Sγ1+γ2

(F ). Let R : X∗ → Y ∗ be the restriction operator. For each finite set
A ⊂ X and each ε > 0, define

FA,ε = {x∗ ∈ F : |x∗(x)| ≤ ε for all x ∈ A}.

Since R is weak*-weak* continuous and 0 ∈ FA,ε
w∗

, we have that

0 ∈ R(FA,ε)
w∗

= Sγ1
(R(FA,ε)) = R(Sγ1

(FA,ε)),

where the last equality follows from Lemma 2.2.
Thus, for every finite set A ⊂ X and every ε > 0 we can take x∗

A,ε ∈ Sγ1
(FA,ε)

such that R(x∗
A,ε) = 0.

Therefore, 0 ∈ G
w∗

, where

G := {x∗
A,ε : A ⊂ X finite, ε > 0} ⊂ Y ⊥ ∩BX∗ .

Note that (Y ⊥ ∩BX∗ , w∗) is homeomorphic to the dual ball of (X/Y )∗ with the
weak* topology. Hence

0 ∈ Sγ2
(G) ⊂ Sγ2

(Sγ1
(F )) = Sγ1+γ2

(F ).

�
If (xn)n∈N is a sequence in a Banach space, we say that (yk)k∈N is a convex

block subsequence of (xn)n∈N if there is a sequence (Ik)k∈N of subsets of N with
max(Ik) < min(Ik+1) and a sequence an ∈ [0, 1] with

∑
n∈Ik

an = 1 for every k ∈ N

such that yk =
∑

n∈Ik
anxn. A Banach space X is said to have weak*-convex block

compact dual ball if every bounded sequence in X∗ has a weak*-convergent convex
block subsequence. Every Banach space containing no isomorphic copies of �1 has
weak*-convex block compact dual ball [5]. Therefore, every WPG Banach space
(i.e. every Banach space with a linearly dense weakly precompact set) also has
weak*-convex block compact dual ball.

For any ordinal γ ≤ ω1, we say that X has property E(α) if Sα(C) = C for every
convex subset C in (BX∗ , w∗). Thus, property E is property E(1) and property E ′

is property E(ω1). The proof of the following theorem is an immediate adaptation
of the proof of Lemma 2.2 and Theorem 1.1.

Theorem 2.3. Let X be a Banach space with weak*-convex block compact dual
ball. Let Y ⊂ X be a subspace with property E(γ1) such that X/Y has property
E(γ2). Then X has property E(γ1 + γ2).

Theorem 2.4. Let X be a Banach space and (Xn)n∈N an increasing sequence of

subpaces with X =
⋃

n∈N
Xn. Suppose that each Xn has weak*-sequential dual ball

with sequential order αn. Then X has weak*-sequential dual ball with sequential
order ≤ α+ 1, where α := sup{αn : n ∈ N}.
Proof. Set Rn : X∗ → X∗

n as the restriction operator for every n ∈ N. Since
the countable product of sequentially compact spaces is sequentially compact and
(BX∗ , w∗) is homeomorphic to a subspace of

∏
(BX∗

n
, w∗), it follows that X has

weak*-sequentially compact dual ball. In order to prove the theorem, it is enough

to prove that if F ⊂ BX∗ and 0 ∈ F
w∗

, then 0 ∈ Sα+1(F ). Since BX∗ is weak*-

sequentially compact, we have that 0 ∈ Rn(F )
w∗

= Sα(Rn(F )) = Rn(Sα(F )) for
every n ∈ N, where the last equality follows from Lemma 2.2. Thus, we can take
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a sequence x∗
n ∈ Sα(F ) such that Rn(x

∗
n) = 0. Now there exists some subsequence

of x∗
n converging to a point x∗ ∈ Sα+1(F ). Since Rn(x

∗) = 0 for every n ∈ N, we
conclude that x∗ = 0. �

Corollary 2.5. Let X be a Banach space and (Xα)α<γ an increasing sequence of

subspaces with X =
⋃

α<γ Xα, where γ is a countable limit ordinal. Suppose that

each Xα has weak*-sequential dual ball with sequential order ≤ θα. Then X has
weak*-sequential dual ball with sequential order ≤ θ+1 where θ := sup{θα : α < γ}.

The next theorem follows from combining Theorem 1.1 and Corollary 2.5:

Theorem 2.6. Let γ be a countable ordinal, Xγ a Banach space and (Xα)α≤γ an
increasing sequence of subspaces of Xγ such that:

(1) X0 has weak*-sequential dual ball with sequential order ≤ θ;
(2) each quotient Xα+1/Xα has weak*-angelic dual;

(3) Xα =
⋃

β<α Xβ if α is a limit ordinal;

(4) Xγ has weak*-sequentially compact dual ball.

Then each Xα has weak*-sequential dual ball with sequential order ≤ θ+α if α < ω
and sequential order ≤ θ + α+ 1 if α ≥ ω.

Proof. It follows from (4) that every Xα has weak*-sequentially compact dual ball.
Thus, the result for α < ω follows by applying inductively Theorem 1.1. Suppose
α ≥ ω and Xβ has weak*-sequential dual ball with sequential order ≤ θ+ β+1 for
every β < α. If α is a limit ordinal, then it follows from (3) and from Corollary 2.5
that Xα has weak*-sequential dual ball with sequential order

≤ sup
β<α

{θ + β + 1}+ 1 = θ + α+ 1.

If α is a successor ordinal, then the result is a consequence of Theorem 1.1. �

We also have the following convex equivalent version of the previous theorem:

Theorem 2.7. Let γ be a countable ordinal, Xγ a Banach space and (Xα)α≤γ an
increasing sequence of subspaces of Xγ such that:

(1) X0 has property E(θ);
(2) each quotient Xα+1/Xα has E ;
(3) Xα =

⋃
β<α Xβ if α is a limit ordinal;

(4) Xγ has weak*-convex block compact dual ball.

Then each Xα has property E(θ + α) if α < ω and property E(θ + α+ 1) if α ≥ ω.

3. Applications

As an application of Theorem 1.1, we obtain that the Johnson-Lindenstrauss
space JL2 has weak*-sequential dual ball. Let us recall the definition of JL2:

Let {Nr : r ∈ Γ} be an uncountable maximal almost disjoint family of infi-
nite subsets of N. For each Nr, χNr

∈ �∞ denotes the characteristic function
of Nr. The Johnson-Lindenstrauss space JL2 is defined as the completion of
span (c0 ∪ {χNr

: r ∈ Γ}) ⊂ �∞ with respect to the norm

‖x+
∑

1≤i≤k

aiχNri
‖ = max

{
‖x+

∑
1≤i≤k

aiχNri
‖∞,

( ∑
1≤i≤k

|ai|2
) 1

2
}
,
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where x ∈ c0 and ‖ · ‖∞ is the supremum norm in �∞. If we just consider the
supremum norm in the definition, then we obtain the space JL0. We refer the
reader to [14] for more information about these spaces.

Theorem 3.1. The Johnson-Lindenstrauss space JL2 has weak*-sequential dual
ball with sequential order 2.

Proof. We use the following results proved in [14]:

(i) JL2 has an equivalent Fréchet differentiable norm;
(ii) JL2/c0 is isometric to �2(Γ).

It follows from (i) that JL2 has weak*-sequentially compact dual ball (cf. [12]).
It follows from (ii) and Theorem 1.1 that JL2 has weak*-sequential dual ball with
sequential order ≤ 2. Since JL2 does not have weak*-angelic dual (cf. [9, Proposi-
tion 5.12]) we have that JL2 has weak*-sequential dual ball with sequential order
2. �

Theorem 3.1 provides an example of a Banach space with weak*-sequential dual
ball which does not have weakly*-angelic dual, answering a question of Plichko in
[20, Question 10].

For a scattered compact space K, we denote by ht(K) the height of K, i.e. the
minimal ordinal γ such that the γth Cantor-Bendixson derivative K(γ) is discrete.
Since every Banach space with weak*-sequential dual ball has the Mazur property,
the following theorem improves [17, Theorem 4.1]:

Theorem 3.2. Let K be an infinite scattered compact space. If ht(K) < ω, then
C(K) has weak*-sequential dual ball with sequential order ≤ ht(K). Moreover, if
ω ≤ ht(K) < ω1, then C(K) has weak*-sequential dual ball with sequential order
≤ ht(K) + 1.

Proof. It is well-known that if K is scattered, then C(K) is Asplund and therefore
BC(K)∗ is weak*-sequentially compact (see, for example, [22]). Denote by {K(α) :
α ≤ γ} the Cantor-Bendixson derivatives of K, where γ = ht(K). For every α ≤ γ,
set

Xα = {f ∈ C(K) : f(t) = 0 for every t ∈ K(α)}.
Since C(K) contains a complemented copy of c0, every finite-codimensional sub-

space of C(K) is isomorphic to C(K). Therefore, since Xγ is a finite-codimensional
subspace of C(K), it is isomorphic to C(K). Notice that for every 0 ≤ α < γ we
have that Xα+1/Xα is isomorphic to c0(K

(α) \ K(α+1)). Moreover, if α ≤ γ is a
limit ordinal, then

⋂
β<α K(β) = K(α) and therefore

⋃
β<α

Xβ = {f ∈ C(K) : ∃β < α with f(t) = 0 ∀t ∈ K(β)} = Xα.

Now the conclusion follows from Theorem 2.6. �
R. Haydon [13] and K. Kunen [18] constructed under CH an FU compact space

K such that BC(K)∗ does not have countable tightness. Thus, it is not true for a
general compact space K that if K is sequential, then BC(K)∗ is sequential. We
refer the reader to [11] for a discussion on this topic.

It can be easily checked that the space JL0 is isomorphic to a C(K) space where
K is a scattered compact space with ht(K) = 2 and sequential order 2. Thus, JL0

has weak*-sequential dual ball with sequential order 2.
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The known examples in ZFC of sequential compact spaces are all of sequential
order ≤ 2. Nevertheless, A.I. Baškirov constructed sequential compact spaces of any
sequential order ≤ ω1 under the Continuum Hypothesis [3]. A different construction
was also given by V. Kannan in [16]. Baškirov’s construction is studied in detail
in [1] and, as C. Baldovino highlights in [1, Remark 6.8], these constructions are
scattered compact spaces such that the sequential order and the scattering height
coincide whenever the sequential order is a successor ordinal.

Moreover, A. Dow constructed under the assumption b = c a scattered compact
space K of sequential order 4 such that the sequential order and the scattering
height coincide [8].

Corollary 3.3. Under the Continuum Hypothesis there exist Banach spaces with
weak*-sequential dual ball of any sequential order < ω and Banach spaces with
weak*-sequential dual ball with arbitrarily large countable sequential order.

On the other hand, under b = c, there exist Banach spaces with weak*-sequential
dual ball of any sequential order ≤ 4.
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[5] J. Bourgain, La proprieté de Radon-Nikodým, Publ. Math. Univ. Pierre et Marie Curie, 36,
1979.

[6] C. Brech, Construções genéricas de espaços de Asplund C(K), PhD thesis, Universidade de
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