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Abstract. Let R0(N) be the Riemann surface of the congruence subgroup
Γ0(N) of SL2(Z). Using some properties of the field of meromorphic functions
on R0(11), we confirm a conjecture of H.H. Chan and P.C. Toh [J. Number
Theory 130 (2010), pp. 1898–1913] about the partition function p(n). More-

over, we prove three infinite families of congruences modulo arbitrary powers
of 11 for other partition functions, including 11-regular partitions and 11-core
partitions.

1. Introduction

A partition of an integer n is a sequence of non-increasing positive integers whose
sum equals n. Let p(n) denote the number of unrestricted partitions of n. It is well
known that the generating function of p(n) is given by

∞∑
n=0

p(n)qn =
1

(q; q)∞
.

Here and throughout the paper, we use the following standard q-series notation:

(a; q)∞ =

∞∏
k=1

(1− aqk−1).

Let [x] denote the integer part of x. For � ∈ {5, 7, 11}, let δ�,j be the reciprocal
of 24 modulo �j , i.e., 24δ�,j ≡ 1 (mod �j). For n ≥ 0, it is known that

p(5jn+ δ5,j) ≡ 0 (mod 5j),(1.1)

p(7jn+ δ7,j) ≡ 0 (mod 7[j/2]+1),(1.2)

p(11jn+ δ11,j) ≡ 0 (mod 11j).(1.3)

These are known as Ramanujan congruences [24]. Congruences (1.1) and (1.2)
were first proved by G.N. Watson using the modular equations of degrees 5 and
7, respectively. Using the modular equation of degree 11, A.O.L. Atkin [3] proved
(1.3). Later M. Hirschhorn and D.C. Hunt [15], and F. Garvan [9] gave simple proofs
of (1.1) and (1.2), respectively, without using the theory of modular functions.
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The ideas for Watson’s proof of (1.1)–(1.2) and Atkin’s proof of (1.3) are similar.
Let

(1.4) Ln,� =

⎧⎪⎨
⎪⎩

(q�; q�)∞
∞∑

m=0
p(�nm+ δ�,n)q

m+1 if n is odd,

(q; q)∞
∞∑

m=0
p(�nm+ δ�,n)q

m+1 if n is even.

One can show that Ln,� are modular functions on Γ0(�) for � ∈ {5, 7, 11}. Therefore,
we can express them using linear basis for the space of modular functions on Γ0(�).
Examining the �-adic orders of the coefficients will lead to (1.1)–(1.3).

Let

Δ = q(q; q)24∞, E8 = 1 + 480

∞∑
n=1

n7qn

1− qn
.

H.H. Chan and P.C. Toh [8] observed that there exist integers an, bn and cn with
(5, an) = (7, bn) = (11, cn) = 1 such that

Ln,5 ≡ 5nanΔ (mod 5n+1),(1.5)

Ln,7 ≡ 7[n/2]+1bnΔ (mod 7[n/2]+2),(1.6)

and

(1.7) Ln,11 ≡ 11ncnΔE8 (mod 11n+1).

It is clear that both (1.5) and (1.6) follow immediately from Watson’s work (see
[17]). Chan and Toh [8] commented that “it is very likely that one can obtain a
rigorous proof of (1.7) using Atkin’s method given in [3].” In this paper, our first
goal is to show that (1.7) indeed follows from Atkin’s work [3]. So we can rewrite
it as

Theorem 1. For any integer n ≥ 1, there exists an integer cn with (11, cn) = 1
such that

Ln,11 ≡ 11ncnΔE8 (mod 11n+1).

Motivated by Ramanujan’s work [24], arithmetic properties of various types of
partition functions have been studied. For example, the t-regular partitions and t-
core partitions have drawn much attention. Let t be a positive integer. A partition
of n is called a t-core partition if it has no hook numbers divisible by t. We denote
the number of t-core partitions of n by at(n) with the convention that at(0) = 1.
The generating function of at(n) is given by (see [10], for example)

∞∑
n=0

at(n)q
n =

(qt; qt)t∞
(q; q)∞

.

A partition is called t-regular if none of its parts are divisible by t. For example,
4 + 3 + 2 + 1 is a 5-regular partition of 10, but 5 + 3 + 1 + 1 is not 5-regular. We
denote by bt(n) the number of t-regular partitions of n and agree that bt(0) = 1. It
is easy to see that the generating function of bt(n) is

(1.8)

∞∑
n=0

bt(n)q
n =

(qt; qt)∞
(q; q)∞

.
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If we follow the notation of Chan and Toh [8], we define p[1ctd](n) by

∞∑
n=0

p[1ctd](n)q
n =

1

(q; q)c∞(qt; qt)d∞
, c, d, t ∈ Z.

It is then clear that in this notation, we have at(n) = p[11t−t](n) and bt(n) =
p[11t−1](n).

For some particular integer triples (c, d, t), arithmetic properties of p[1ctd](n)
have been extensively investigated. See [1], [5]-[8], [10], [11], [14], [16], [19]-[21], [23]
and [27]-[29]. For more comprehensive reference lists about t-core partitions and
t-regular partitions, we refer the reader to [27] and [28].

It should be noted that so far almost all works have concentrated on discovering
congruences modulo small powers of primes for those partition functions. There
are only a few works where congruences modulo arbitrary prime powers appear;
see [4,6–8,13,18,21,23,28,29] for example. By using Ramanujan’s cubic continued
fraction, H.C. Chan [6] proved that

p[1121](3
jn+ cj) ≡ 0 (mod 32[j/2]+1),

where cj ≡ 1/8 (mod 3j). Similarly, letting dj ≡ 1/8 (mod 5j), Chan and Toh [8]
showed that for any integer n ≥ 0,

p[1121](5
jn+ dj) ≡ 0 (mod 5[j/2]).

Recently, using the modular equation of fifth order, L. Wang [28] proved that for
any integers k ≥ 1 and n ≥ 0,

b5

(
52k−1n+

52k − 1

6

)
≡ 0 (mod 5k).

Wang [29] also proved that

p[1151]

(
5kn+

3 · 5k + 1

4

)
≡ 0 (mod 5k).

While congruences modulo arbitrary powers of 2, 3, 5 or 7 have appeared in
the literature, we observed that after the work of Atkin [3], people seldom discover
congruences modulo powers of 11 for partition functions other than p(n). One of the
few examples known to us is the work of B. Gordon [12], where Gordon established
many congruences modulo arbitrary powers of 11 for the function pk(n) defined by

(1.9)

∞∑
n=0

pk(n)q
n = (q; q)k∞.

In view of this phenomenon, the second goal of this paper is to provide more
partition congruences modulo arbitrary powers of 11. We will follow the strategy
of Atkin [3] and Gordon [12] to establish those congruences for three different types
of partition functions.

Theorem 2. For any integers n ≥ 0 and k ≥ 1, we have

a11

(
11kn+ 11k − 5

)
≡ 0 (mod 11k).

Theorem 3. For any integers n ≥ 0 and k ≥ 1, we have

b11

(
112k−1n+

7 · 112k−1 − 5

12

)
≡ 0 (mod 11k).
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Theorem 4. For any integers n ≥ 0 and k ≥ 1, we have

p[11111]

(
11kn+

11k + 1

2

)
≡ 0 (mod 11k).

We remark here that Theorem 2 was discovered by F. Garvan [11, eq. (1.9)].
To prove Theorem 2, Garvan used Hecke operators on spaces of cusp forms, and
we will give a new proof by applying Atkin’s approach of U -operators on modular
functions.

The method used in this paper can be applied to obtain similar results for
p[1c11d](n) for other values of c, d ∈ Z. Since the partition functions in Theorems
2–4 are more popular, we will illustrate the method by studying these examples.

2. Preliminary results

In this section, we collect some facts which are essential in proving our results.
We will follow the notation of Gordon [12].

Let H be the upper half complex plane. Recall that the Dedekind eta function
is

η(τ ) = q1/24(q; q)∞, q = e2πiτ , τ ∈ H.

For any positive integer N , the congruence subgroup Γ0(N) of SL2(Z) is defined
as

Γ0(N) :=

{(
a b
c d

) ∣∣∣a, b, c, d ∈ Z, ad− bc = 1, c ≡ 0 (mod N)

}
.

Let R0(N) be the Riemann surface of Γ0(N). Let K0(N) be the field of mero-
morphic functions on R0(N). It is known that R0(N) has a cusp at τ = i∞ and
q = e2πiτ is a uniformizing parameter there. If f(τ ) ∈ K0(N), then the Laurent
expansion about τ = i∞ has the form

f(τ ) =
∑
n≥n0

anq
n.

By abuse of notation, we also denote f(τ ) by f(q). For example, let

φ(q) =
η(121τ )

η(τ )
= q5

(q121; q121)∞
(q; q)∞

.

It is known that φ(q) ∈ K0(121). This function will play a key role in our proofs.
We define the U -operator as

Uf(τ ) =
∑

11n≥n0

a11nq
n.

It is known (see [2, pp. 80–82], for example) that if f(q) ∈ K0(121), then Uf(q) ∈
K0(11).

If f(τ ) ∈ K0(11) and p is a point of R0(11), we use ordpf(τ ) to denote the order
of f(τ ) at p.

Let V be the vector space of functions g(τ ) ∈ K0(11) which are holomorphic
except possibly at 0 and ∞. Atkin [3] has constructed a basis for V . Following the
notation of Gordon [12], for k �= 0,−1, let Jk(τ ) be the element of Atkin’s basis
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whose order at ∞ is k. We define J0(τ ) = 1 and J−1(τ ) = J−6(τ )J5(τ ). In terms
of the notation of Atkin, we have for k ≥ 1,

(2.1) Jk(τ ) =

⎧⎨
⎩

gk(τ ) if k ≡ 0 (mod 5),
gk+2(τ ) if k ≡ 4 (mod 5),
gk+1(τ ) otherwise,

and Jk(τ ) = Gk(τ ) for k ≤ −2. Explicit expressions of Jk(τ ) (−6 ≤ k ≤ 5) could
be found in [3, Appendix A]. For example, J5(τ ) = (η(11τ )/η(τ ))12 and

(2.2) J1(τ ) =
1

10
· 1

(q; q)5∞

(
−

∞∑
n=0

(
1 +

(n− 3

11

))
p5(n)q

n + 112q25(q121; q121)5∞

)
,

where p5(n) was defined in (1.9).

Lemma 2.1 (Cf. [12, Lemma 3]). For all k ∈ Z, we have
(i) Jk+5(τ ) = Jk(τ )J5(τ ),
(ii) {Jk(τ )|k ∈ Z} is a basis of V ,
(iii) ord∞Jk(τ ) = k,

(iv) ord0Jk(τ ) =

⎧⎨
⎩

−k if k ≡ 0 (mod 5),
−k − 1 if k ≡ 1, 2 or 3 (mod 5),
−k − 2 if k ≡ 4 (mod 5),

(v) the Fourier series of Jk(τ ) has integer coefficients and is of the form Jk(q) =
qk + · · · .

From [12] we know that V is mapped into itself by the linear transformation

Tλ : g(q) → U(φ(q)λg(q))

for any integer λ. Following Atkin, we write the elements of V as row vectors and

let matrices act on the right. Let C(λ) = (c
(λ)
μ,ν) be the matrix of Tλ with respect to

the basis {Jk} of V . We have

(2.3) U(φ(q)λJμ(q)) =
∑
ν∈Z

c(λ)μ,νJν(q).

For any integer n, let π(n) be the 11-adic order of n with the convention that
π(0) = ∞. As shown in [12], we have

(2.4) π(c(λ)μ,ν) ≥ [(11ν − μ− 5λ+ δ)/10],

where δ = δ(μ, ν) depends on the residues of μ and ν (mod 5) according to Table
1.

Table 1

μ
ν

0 1 2 3 4

0 -1 8 7 6 15
1 0 9 8 2 11
2 1 10 4 3 12
3 2 6 5 4 13
4 3 7 6 5 9
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From Table 1, we see that δ(λ, μ) ≥ −1 for any λ, μ. Therefore, (2.4) implies
that

(2.5) π(c(λ)μ,ν) ≥ [(11ν − μ− 5λ− 1)/10].

By Lemma 2.1(v) and (2.3) we know that the Fourier series of U(φλJμ) has all
coefficients divisible by 11 if and only if

(2.6) c(λ)μ,ν ≡ 0 (mod 11) for all ν.

We define a function θ(λ, μ) as follows. If (2.6) holds we put θ(λ, μ) = 1 and
θ(λ, μ) = 0 otherwise. From [12] we know that

(2.7) θ(λ, μ) = θ(λ− 11, μ), θ(λ+ 12, μ− 5) = θ(λ, μ).

This implies that θ(λ, μ) is completely determined by its values in the range 0 ≤
λ ≤ 10, 0 ≤ μ ≤ 4, which are listed in Table 2.

Table 2

μ
λ

0 1 2 3 4 5 6 7 8 9 10

0 0 1 0 1 0 1 0 1 1 0 0
1 1 1 0 1 0 0 0 1 1 0 0
2 1 1 1 0 0 0 0 1 1 0 0
3 1 0 1 0 1 0 0 1 1 0 0
4 1 0 1 0 1 0 1 1 0 0 0

Let Mk(Γ0(N), χ) denote the space of modular forms of weight k on Γ0(N) with
Dirichlet character χ (see [22]). In particular, if χ is the trivial Dirichlet character,
we also write Mk(Γ0(N), χ) as Mk(Γ0(N)). The following result, known as Sturm’s
criterion [25], will be used in proving Theorem 1.

Lemma 2.2. Let p be a prime and f(z) =
∑∞

n=0 a(n)q
n ∈ Mk(Γ0(N)) where

an ∈ Q for all n ≥ 0. If an ≡ 0 (mod p) for

n ≤ kN

12

∏
d|N

(
1 +

1

d

)
,

where the product is over the distinct prime divisors of N , then f(z) ≡ 0 (mod p),
i.e., an ≡ 0 (mod p) for any n ≥ 0.

3. Proofs of the theorems

Proof of Theorem 1. As in [3, p. 20], we define a(1) = 0, a(2) = 1 and for n ≥ 3,

a(n) =

{
n− 1 if n ≡ 4 (mod 5),
n− 2 otherwise.

Similarly, let b(1) = 0, b(2) = 1 and b(n) = a(n) + 1 (n ≥ 3). We denote by X0 the
class of functions f(τ ) with

f(τ ) =

N∑
n=1

λn11
a(n)Jn(τ ), π(λ1) = 0, N ≥ 1,
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and by Y 0 the class of functions f(τ ) with

f(τ ) =

M∑
n=1

μn11
b(n)Jn(τ ), π(μ1) = 0, M ≥ 1.

Note here that we have changed Atkin’s original definitions in terms of gn(τ ) to
expressions involving Jn(τ ) according to (2.1). We also change the sequences ξ(n)
and η(n) in [3] to a(n) and b(n) accordingly.

In the proof of (1.3), Atkin [3, p. 26] showed that

(3.1) 111−2nL2n−1,11(τ ) ∈ X0, 11−2nL2n,11(τ ) ∈ Y 0.

For n ≥ 2, we have a(n) ≥ 1 and b(n) ≥ 1. By Lemma 2.1, the Fourier expansion
of Jn(τ ) has integer coefficients. We deduce from (3.1) that

111−2nL2n−1,11(τ ) ≡ λ1J1(τ ) (mod 11),

11−2nL2n,11(τ ) ≡ μ1J1(τ ) (mod 11)
(3.2)

for some integers λ1 and μ1 which depend on n and are relatively prime with 11.
Thus we have shown that there exist integers cn such that (11, cn) = 1 and

11−nLn,11(τ ) ≡ cnJ1(τ ) (mod 11).

To prove (1.7), it suffices to show that

(3.3) J1(τ ) ≡ ΔE8 (mod 11).

By Lemma 2.1 we know ord∞J1(τ ) = 1 and ord0J1(τ ) = −2. Let

f(τ ) =
η11(τ )

η(11τ )
.

From [22, Theorems 1.64 and 1.65], we know that f(τ ) ∈ M5(Γ0(11),
(−11

·
)
). More-

over, ord0f(τ ) = 5. Hence f4(τ )J1(τ ) ∈ M20(Γ0(11)).
Note that ΔE8 ∈ M20(Γ0(11)), hence f4(τ )J1(τ )−ΔE8 ∈ M20(Γ0(11)). Write

f4(τ )J1(τ )−ΔE8 =

∞∑
n=0

c(n)qn, c(n) ∈ Z, ∀n ≥ 0.

Using (2.2), it is easy to verify that c(n) ≡ 0 (mod 11) for n ≤ 20. Hence by Lemma
2.2 we deduce that

(3.4) f4(τ )J1(τ ) ≡ ΔE8 (mod 11).

By the binomial theorem, we have f(τ ) ≡ 1 (mod 11). Therefore, (3.4) implies
(3.3), and we complete the proof of Theorem 1. �

Before we proceed to proofs of Theorems 2-4, note that by setting j = 1 in (1.3),
we have

(3.5) p(11n+ 6) ≡ 0 (mod 11).

It is then clear that Theorems 2-4 are true for the case k = 1. Therefore, we only
need to give proofs for k ≥ 2.

Proof of Theorem 2. Recall that
∞∑

n=0

a11(n)q
n =

(q11; q11)11∞
(q; q)∞

.
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Let

L0(τ ) :=
η11(11τ )η(121τ )

η(τ )η11(1331τ )
=

(q121; q121)∞
(q1331; q1331)11∞

∑
n≥0

a11(n)q
n−600.

We have

UL0(τ ) =
(q11; q11)∞
(q121; q121)11∞

∑
n≥0

a11(11n+ 6)qn−54.

Let

L1(τ ) := U2L0(τ ) =
(q; q)∞

(q11; q11)11∞

∑
n≥0

a11(11
2n+ 116)qn−4.

Note that L0(τ ) ∈ K0(1331), hence UL0(τ ) ∈ K0(121) and L1(τ ) ∈ K0(11). For
r ≥ 2, we define

(3.6) Lr(τ ) := U(φ(τ )λr−1Lr−1(τ )),

where λr is 1 if r is odd and -11 if r is even. By induction on r we can show that
for r ≥ 1, Lr(τ ) ∈ V and
(3.7)

Lr(τ ) =

⎧⎨
⎩

(q; q)∞(q11; q11)−11
∞

∑
n≥0

a11(11
r+1n+ 11r+1 − 5)qn−4 if r is odd,

(q11; q11)∞(q; q)−11
∞

∑
n≥0

a11(11
r+1n+ 11r+1 − 5)qn+1 if r is even.

Let

μr =

{
−4 if r is odd,
1 if r is even.

For any integer r ≥ 1, since Lr(τ ) ∈ V , from (3.7) we may write

(3.8) Lr(τ ) =
∑
ν≥μr

ar,νJν(τ ), ar,ν ∈ Z.

We will prove that for any r ≥ 1,

(3.9) π(ar,ν) ≥ r + 1 + [
ν − μr

2
], ∀ν ≥ μr.

If r = 1, with the help of Mathematica, we find that

L1(τ ) = 167948J−4(τ ) + 3529812J−3(τ ) + 19501812J−2(τ ) + 214358881J0(τ ).

Therefore, we have

π(a1,−4) = 2, π(a1,−3) = 3, π(a1,−2) = 4, π(a1,−1) = ∞, π(a1,0) = 8

and π(a1,ν) = ∞ for any ν ≥ 1. Hence (3.9) is true for r = 1.
Now suppose (3.9) holds for r − 1 (r ≥ 2). From (2.3) we see that

ar,ν =

∞∑
μ=μr−1

ar−1,μc
(λr−1)
μ,ν .

Thus

(3.10) π(ar,ν) ≥ min
μ≥μr−1

(
π(ar−1,μ) + π(c(λr−1)

μ,ν )
)
.

To complete the induction, it suffices to prove that

(3.11) π(ar−1,μ) + π(c(λr−1)
μ,ν ) ≥ r + 1 +

[ν − μr

2

]
, for all μ ≥ μr−1, ν ≥ μr.
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By induction hypothesis and (2.5), we deduce that

(3.12) π(ar−1,μ) + π(c(λr−1)
μ,ν ) ≥ r +

[μ− μr−1

2

]
+
[11ν − μ− 5λr−1 − 1

10

]
.

Note that if we increase μ by 2, the value of the right hand side cannot decrease.
Therefore, its minimum value occurs when μ = μr−1 + 1. Thus

(3.13) π(ar−1,μ) + π(c(λr−1)
μ,ν ) ≥ r +

[11ν − μr−1 − 5λr−1 − 2

10

]
.

If r is odd, then μr−1 = 1 and λr−1 = −11. For ν ≥ −3, we have

(3.14) π(ar−1,μ) + π(c(λr−1)
μ,ν ) ≥ r + 1 +

[11ν + 42

10

]
≥ r + 1 +

[ν + 4

2

]
.

For ν = −4, (3.11) reduces to

(3.15) π(ar−1,μ) + π(c(λr−1)
μ,ν ) ≥ r + 1, μ ≥ μr−1.

This inequality holds for μ = μr−1 since π(ar−1,μr−1
) ≥ r and

π(c(λr−1)
μr−1,ν) ≥ θ(λr−1, μr−1) = θ(−11, 1) = 1.

Similarly it holds for μ = μr−1 + 1, as θ(−11, 2) = θ(0, 2) = 1. If μ ≥ μr−1 + 2,
then we have

π(ar−1,μ) ≥ r +
[μ− μr−1

2

]
≥ r + 1.

Thus (3.15) holds.
Combining (3.14) with (3.15), we see that (3.11) holds for r.
If r is even, then μr−1 = −4 and λr−1 = 1. For ν ≥ 2, from (3.13) we have

(3.16) π(ar−1,μ) + π(c(λr−1)
μ,ν ) ≥ r + 1 +

[11ν − 13

10

]
≥ r + 1 +

[ν − 1

2

]
.

For ν = 1, (3.11) reduces to

(3.17) π(ar−1,μ) + π(c(λr−1)
μ,ν ) ≥ r + 1, μ ≥ μr−1.

This inequality holds for μ = μr−1 since π(ar−1,μr−1
) ≥ r and

π(c(λr−1)
μr−1,ν) ≥ θ(λr−1, μr−1) = θ(1,−4) = 1.

Similarly it holds for μ = μr−1 +1, as θ(1,−3) = θ(0, 2) = 1. If μ ≥ μr−1 +2, then
we have

π(ar−1,μr−1
) ≥ r +

[μ− μr−1

2

]
≥ r + 1.

Thus (3.17) holds.
Combining (3.16) with (3.17), we see that (3.11) holds for r.
By induction on r, we complete the proof of (3.9) and hence the theorem. �

Proof of Theorem 3. Recall that

∞∑
n=0

b11(n)q
n =

(q11; q11)∞
(q; q)∞

.

Let

L0(τ ) :=
η(11τ )η(121τ )

η(τ )η(1331τ )
=

(q121; q121)∞
(q1331; q1331)∞

∑
n≥0

b11(n)q
n−50.
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We have

UL0(τ ) =
(q11; q11)∞
(q121; q121)∞

∑
n≥0

b11(11n+ 6)qn−4.

Let

L1(τ ) := U2L0(τ ) =
(q; q)∞

(q11; q11)∞

∑
n≥0

b11(11
2n+ 50)qn.

Note that L0(τ ) ∈ K0(1331), hence UL0(τ ) ∈ K0(121) and L1(τ ) ∈ K0(11). For
r ≥ 2, we define

(3.18) Lr(τ ) := U(φ(τ )λr−1Lr−1(τ )),

where λr is 1 if r is odd and −1 if r is even. By induction on r we can show that
for r ≥ 1, Lr(τ ) ∈ V and
(3.19)

Lr(τ ) =

⎧⎪⎨
⎪⎩

(q; q)∞(q11; q11)−1
∞

∑
n≥0

b11(11
r+1n+ 5·11r+1−5

12 )qn if r is odd,

(q11; q11)∞(q; q)−1
∞

∑
n≥0

b11(11
r+1n+ 7·11r+1−5

12 )qn+1 if r is even.

Let

μr =

{
0 if r is odd,
1 if r is even.

For any integer r ≥ 1, since Lr(τ ) ∈ V , we may write

(3.20) Lr(τ ) =
∑
ν≥μr

ar,νJν , ar,ν ∈ Z.

We will prove that for any r ≥ 1,

(3.21) π(ar,ν) ≥ 1 +
[r
2

]
+
[ν − μr

2

]
, ∀ν ≥ μr.

If r = 1, with the help of Mathematica, we find that

L1(τ ) =
50∑
ν=0

a1,νJν(τ ).

We have π(a1,0) = 1, and the 11-adic orders of a1,ν (1 ≤ ν ≤ 50) are given in Table
3, from which it is easy to verify that (3.21) holds for r = 1.

Table 3

ν 1 2 3 4 5 6 7 8 9 10
π(a1,ν) 3 4 4 7 6 8 9 10 12 12

ν 11 12 13 14 15 16 17 18 19 20
π(a1,ν) 14 14 15 17 17 19 21 22 24 24

ν 21 22 23 24 25 26 27 28 29 30
π(a1,ν) 26 26 27 29 29 31 32 34 36 36

ν 31 32 33 34 35 36 37 38 39 40
π(a1,ν) 37 38 39 41 41 43 44 45 49 48

ν 41 42 43 44 45 46 47 48 49 50
π(a1,ν) 50 51 52 55 54 56 57 58 ∞ 58
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Now suppose (3.21) holds for r− 1 (r ≥ 2). For the same reason as in the proof
of Theorem 2, to complete the induction, it suffices to prove that

(3.22) π(ar−1,μ) + π(c(λr−1)
μ,ν ) ≥ 1 +

[r
2

]
+
[ν − μr

2

]
, for all μ ≥ μr−1, ν ≥ μr.

By the induction hypothesis and (2.5), we deduce that

π(ar−1,μ) + π(c(λr−1)
μ,ν ) ≥ 1 +

[r − 1

2

]
+
[μ− μr−1

2

]
+
[11ν − μ− 5λr−1 − 1

10

]
.

Note that if we increase μ by 2, the value of the right hand side cannot decrease.
Therefore, its minimum value occurs when μ = μr−1 + 1. Thus

(3.23) π(ar−1,μ) + π(c(λr−1)
μ,ν ) ≥ 1 +

[r − 1

2

]
+
[11ν − μr−1 − 5λr−1 − 2

10

]
.

If r is odd, then μr−1 = 1 and λr−1 = −1. We have

(3.24) π(ar−1,μ)+π(c(λr−1)
μ,ν ) ≥ 1+

[r − 1

2

]
+
[11ν + 2

10

]
≥ 1+

[ r
2

]
+
[ν
2

]
, ∀ν ≥ 0.

Thus (3.22) holds for r.
If r is even, then μr−1 = 0 and λr−1 = 1. For ν ≥ 2, by (3.23) we have

(3.25) π(ar−1,μ)+π(c(λr−1)
μ,ν ) ≥ 1+

[r − 1

2

]
+1+

[11ν − 17

10

]
≥ 1+

[r
2

]
+
[ν − 1

2

]
.

For ν = 1, (3.22) reduces to

(3.26) π(ar−1,μ) + π(c(λr−1)
μ,ν ) ≥ 1 +

[r
2

]
, μ ≥ μr−1.

This inequality holds for μ = μr−1 since π(ar−1,μr−1
) ≥ 1 +

[
r−1
2

]
and

π(c(λr−1)
μr−1,ν) ≥ θ(λr−1, μr−1) = θ(1, 0) = 1.

Similarly it holds for μ = μr−1 + 1, as θ(1, 1) = 1. If μ ≥ μr−1 + 2, then by the
induction hypothesis we have

π(ar−1,μ) ≥ 1 +
[r − 1

2

]
+
[μ− μr−1

2

]
≥ 1 +

[r
2

]
.

Thus (3.26) holds.
Combining (3.25) with (3.26) we see that (3.22) holds for r.
By induction on r, we complete the proof of (3.21) and hence the theorem. �

Remark 1. Since the progression of the odd case r = 2m + 1 is always a subpro-
gression of the even case r = 2m in (3.19), the statement in Theorem 3 is only for
the progressions of even r in (3.19).

Remark 2. It is only the case ν = 0 that causes the expression in (3.21) to be 1+[ r2 ]
rather than 1 + r as in (3.9).

Proof of Theorem 4. Let

L0(τ ) :=
η(121τ )η(1331τ )

η(τ )η(11τ )
= q60

(q121; q121)∞(q1331; q1331)∞
(q; q)∞(q11; q11)∞

.

We have

L0(τ ) = (q121; q121)∞(q1331; q1331)∞
∑
n≥0

p[11111](n)q
n+60.
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Applying the U -operator twice, we get

L1(τ ) := U2L0(τ ) = (q; q)∞(q11; q11)∞
∑
n≥0

p[11111](11
2n+ 61)qn+1.

Since L0(τ ) ∈ K0(1331), we have UL0(τ ) ∈ K0(121) and L1(τ ) ∈ K0(11). For
r ≥ 2, we define

(3.27) Lr(τ ) := U(φλr−1(τ )Lr−1(τ )),

where λr = 1 for any r ≥ 1. By induction on r we can show that for r ≥ 1,
Lr(τ ) ∈ V and

(3.28) Lr(τ ) = (q; q)∞(q11; q11)∞
∑
n≥0

p[11111]

(
11r+1n+

11r+1 + 1

2

)
qn+1.

Let μr = 1 for all r ≥ 1. For any integer r ≥ 1, since Lr(τ ) ∈ V we can write

Lr(τ ) =
∑
ν≥μr

ar,νJν(τ ), ar,ν ∈ Z.

We will prove that for any r ≥ 1,

(3.29) π(ar,ν) ≥ r + 1 + [
ν − μr

2
], ∀ν ≥ μr.

If r = 1, with the help of Mathematica, we find that

L1(τ ) =
60∑
ν=1

a1,νJν(τ ).

The 11-adic orders of a1,ν (1 ≤ ν ≤ 60) are given in Table 4, from which it is easy
to verify that (3.29) holds for r = 1.

Table 4

ν 1 2 3 4 5 6 7 8 9 10
π(a1,ν) 2 3 3 5 5 8 8 10 11 11

ν 11 12 13 14 15 16 17 18 19 20
π(a1,ν) 13 14 14 17 16 18 19 20 22 22

ν 21 22 23 24 25 26 27 28 29 30
π(a1,ν) 24 25 25 27 27 29 31 32 34 34

ν 31 32 33 34 35 36 37 38 39 40
π(a1,ν) 36 36 37 39 39 41 42 44 46 46

ν 41 42 43 44 45 46 47 48 49 50
π(a1,ν) 47 48 49 51 51 53 54 55 59 57

ν 51 52 53 54 55 56 57 58 59 60
π(a1,ν) 59 60 61 64 63 65 66 67 ∞ 68

Now suppose (3.29) holds for r− 1 (r ≥ 2). For the same reason as in the proof
of Theorem 2, to complete the induction, it suffices to prove that

(3.30) π(ar−1,μ) + π(c(λr−1)
μ,ν ) ≥ r + 1 +

[ν − μr

2

]
, for all μ ≥ μr−1, ν ≥ μr.

By the induction hypothesis and (2.5), we deduce that

(3.31) π(ar−1,μ) + π(c(λr−1)
μ,ν ) ≥ r +

[μ− μr−1

2

]
+
[11ν − μ− 5λr−1 − 1

10

]
.
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Note that if we increase μ by 2, the value of the right hand side cannot decrease.
Therefore, its minimum value occurs when μ = μr−1 + 1. Thus

π(ar−1,μ) + π(c(λr−1)
μ,ν ) ≥ r +

[11ν − μr−1 − 5λr−1 − 2

10

]
.

Since μr−1 = λr−1 = 1, for ν ≥ 2 we have

(3.32) π(ar−1,μ) + π(c(λr−1)
μ,ν ) ≥ r + 1 +

[11ν − 18

10

]
≥ r + 1 +

[ν − 1

2

]
.

For ν = 1, (3.30) reduces to

(3.33) π(ar−1,μ) + π(c(λr−1)
μ,ν ) ≥ r + 1.

By the induction hypothesis, we have π(ar−1,μr−1
) ≥ r. Since

π(c(λr−1)
μr−1,ν) ≥ θ(λr−1, μr−1) = θ(1, 1) = 1,

we see that (3.33) holds for μ = μr−1. Similarly it holds for μ = μr−1 + 1, as
θ(1, 2) = 1. If μ ≥ μr−1 + 2, then we have

π(ar−1,μ) ≥ r +
[μ− μr−1

2

]
≥ r + 1.

Thus (3.33) holds for r.
Combining (3.32) with (3.33), we see that (3.30) holds for r.
By induction on r, we complete the proof of (3.29) and hence the theorem. �
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