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RECIPROCITY OF DEDEKIND SUMS AND THE EULER CLASS

CLAIRE BURRIN

(Communicated by Kathrin Bringmann)

Abstract. Dedekind sums are arithmetic sums that were first introduced by
Dedekind in the context of elliptic functions and modular forms, and later
recognized to be surprisingly ubiquitous. Among the variations and general-
izations introduced since, there is a construction of Dedekind sums for lattices
in SL2(R). Building upon work of Asai, we prove the reciprocity law for these
Dedekind sums, based on a concrete realization of the Euler class. As an ap-
plication, we obtain an explicit formula for Dedekind sums on Hecke triangle
groups in terms of continued fractions.

Introduction

Let ((·)) : R →
(
− 1

2 ,
1
2

)
be the sawtooth function defined by

((x)) =

{
x− �x� − 1/2, x �∈ Z,

0, x ∈ Z,

where �x� is the largest integer ≤ x. Dedekind [De1892] introduced the arithmetic
sums

s(d, c) =

c−1∑
k=1

((
k

c

))((
kd

c

))
,(1)

for d, c coprime integers, in connection to the modular transformation of log η, the
logarithm of the Dedekind η-function,

η(z) = eπiz/12
∏
n≥1

(
1− e2πinz

)
.

From that transformation, Dedekind further deduced the beautiful identity

s(d, c) + s(c, d) =
1

12

(
d

c
+

1

dc
+

c

d

)
− 1

4
.(2)

Beyond being esthetically appealing, this reciprocity law has an immediate practical
purpose; together with the more obvious observations

s(0, 1) = 0 and

s(d′, c) = s(d, c) if d′ ≡ d mod c,

it allows for the fast computation of values of Dedekind sums via the Euclidean
algorithm. (In terms of applications, this is all the more significant when consider-
ing, say, the various interactions between Dedekind-type sums and pseudo-random
number generation.)
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Dedekind’s reciprocity law (2) can be seen as a special case of the more general
formula deduced by Dieter [Die57] (once again from the transformation of log η),

s(d1, c1) + s(d2, c2) + s(d3, c3) =
1

12

(
c1
c3c2

+
c2
c1c3

+
c3
c2c1

)
− 1

4
(3)

for ci, di given by the relation(
a1 b1
c1 d1

)(
a2 b2
c2 d2

)(
a3 b3
c3 d3

)
=

(
1

1

)
,

where each matrix is an element of SL2(Z).
Following an idea of Kubota, Asai [Asa70] argues that these reciprocity formulas

are consequences of a deeper mechanism underlying the relation between Dedekind
sums and the transformation of log η. Indeed, he shows that Dieter’s reciprocity
law (3) can be derived without relying explicitly on the theory of modular forms
(which is what Dieter, and before him, Dedekind, had done) but instead from a
careful investigation of the “splitting” of the central extension

0 → Z → S̃L2(R) → SL2(R) → 1

over SL2(Z), where S̃L2(R) denotes the universal covering group of SL2(R). To
explain what this means, we first reinterpret this statement in terms of the Euler
class. It is a standard fact that isomorphism classes of central extensions are classi-
fied by cohomology in degree 2, and that the second cohomology group H2(SL2(R))
is one-dimensional, and generated by the Euler class. In Asai’s terminology, the
“splitting” refers to the existence of a map ρ : SL2(Z) → R satisfying the relation

ρ(γτ )− ρ(γ)− ρ(τ ) = ω(γ, τ ),(4)

where ω is a 2-cocycle representative of the Euler class. In these terms, Dieter’s
reciprocity law (3) can be tracked down to two features of the chosen representative
ω

(I) the Dedekind sums are determined by a function ρ : SL2(Z) → R satisfying
(4),

(II) there is an explicit formula expressing ω.

Consequently, Asai suggests that (4) be named the generalized reciprocity law.
Using this framework, we will deduce Dieter’s reciprocity law (3) for generalized
Dedekind sums arising from lattices Γ < SL2(R).

We conclude that, while (1), (2) and (3) are arithmetic formulas, and can as well
be proven purely arithmetically (see [RaG72]), their underlying mechanism is not
only independent of arithmetic – that was already clear from Dedekind’s original
proof – but also independent of any arithmetic properties of the group at large.

Moreover, the cohomological considerations above indicate that any ρ : Γ → R
satisfying (4) relates to the generalized Dedekind sums coming from Γ. Atiyah
famously identified seven (roughly) equivalent definitions, coming from geometry,
topology, physics, number theory, of ρ for SL2(Z) [Ati87], a list that was further
complemented by Barge and Ghys, who made explicit the relation to the Euler
class [BG92]. The identification of general invariants for hyperbolic surfaces that
thus relate to Dedekind sums is an intriguing program, and the object of further
research.
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Presentation of results. If Γ < SL2(R) is a lattice with cusp(s), there is a known
construction of maps ρ : Γ → R satisfying (4) in the automorphic forms literature,
with connections to the Kronecker first limit formula and to the theory of multiplier
systems [Gol73, Hej83, Pat75]. Using this construction, the author introduced in
[Bu017] Dedekind symbols, whose definition we now review.

Fix a cusp a of Γ. Let Γa be the isotropy subgroup of a. Fix a scaling σa. Each
non-trivial double coset [[γ]] = ΓaγΓa, γ ∈ Γ, yields the Dedekind symbol

Sa ([[γ]]) =
vol(Γ\H)

4π

aγ + dγ
cγ

− ρa

(
aγ bγ
cγ dγ

)
− 1

4
sign(cγ),

where
(

aγ bγ
cγ dγ

)
= σ−1

a γσa and where ρa verifies (4). We note that the definition of

Dedekind symbol does not actually depend on the particular choice of scaling σa.
While the algebraic structure of double cosets is very useful in practice, it is not
the most intuitive. The following proposition shows that the Dedekind symbol Sa

can alternatively be seen as a function on the cusp set O = Γ.a of Γ.

Theorem 1. Let O = Γ.a be the orbit of a under the action of Γ by fractional
linear transformations, endowed with the equivalence relation [x] = [y] if there exists
γ ∈ Γa such that γx = y. Let O′ = Γ.a\{a}. There is a one-to-one correspondance
between equivalence classes [x], x ∈ O′, and non-trivial double cosets in Γa\Γ/Γa.
Consequently, we may define

Sa([γ.a]) = Sa([[γ]]).

In the case of SL2(Z), the latter result expresses the one-to-one correspondance
between coprime integers and Q, and allows one to regard Dedekind sums as a
function on the cusp set of the modular group, minus the point at infinity.

Our main result expresses Dieter’s reciprocity law (3) for Dedekind symbols.

Theorem 2. In the notation introduced above,

Sa([[γ1]]) + Sa([[γ2]]) + Sa([[γ3]])

=
vol(Γ\H)

4π

(
cγ1

cγ3
cγ2

+
cγ2

cγ1
cγ3

+
cγ3

cγ2
cγ1

)
− 1

4
sign(cγ1

cγ2
cγ3

),

for all γi ∈ Γ such that γ1γ2γ3 = I, and [[γi]] are non-trivial double cosets in Γa\Γ/
Γa.

On the other hand, the generalization of Dedekind’s reciprocity law (2) only
makes sense for groups that contain the involution S =

( −1
1

)
. In the second part

of this article, we restrict our attention to the Hecke triangle groups Gq.
Recall that Gq is a discrete triangle group of type (2, q,∞), where q ≥ 3. This

means that Gq is generated by reflections on the sides of a triangle with interior
angles (π/2, π/q, 0). Algebraically, Gq is generated by the involution S together

with the translation Tq =
(
1 λq

1

)
, where λq = 2 cos(π/q). Since there is only one

cusp, hence one Dedekind symbol, we will write S instead of S∞, and consider S
as a function on equivalence classes of

O = {γ.∞ mod λq : γ ∈ Gq},

as per the correspondance stated in Theorem 1.
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Theorem 3. If a
c ∈ O with ac �= 0, then

S
([a

c

])
− S

([ c
a

])
=

1− 2
q

8 cos(πq )

(
a

c
+

1

ac
+

c

a

)
− 1

4
sign(ac)

Furthermore, points in O can be expanded in λq-continued fractions. In fact,

each element γ ∈ Gq can be expressed as a word in the group generators Sq =
(

1
λq 1

)
and Tq =

(
1 λq

1

)
, and

(
Sa1
q T a2

q · · ·T an−1
q San

q

)
.∞ =

1

a1λq +
1

a2λq +
1

. . .

.

We denote the RHS of this equation by [a1, a2, . . . , an]. By applying the reciprocity
law of Theorem 3 recursively, we obtain an explicit formula for the Dedekind symbol
S in terms of λq-continued fractions, which generalizes a theorem of Hickerson for
the Dedekind sums [Hic77, Thm. 1].

Theorem 4. Let [a1, a2, . . . , an] be a finite λq-continued fraction expansion as
above. Then

S([a1, a2, . . . , an])

=
1− 2

q

4λq

⎛
⎝[a1, . . . , an] + (−1)n+1[an, . . . , a1]− λq

n∑
j=1

(−1)jaj

⎞
⎠− 1− (−1)n

8
.

0. Notation and terminology

Let H denote the hyperbolic upper half-plane, and recall that SL2(R) acts on H
by fractional linear transformations, and that this action factors through PSL2(R).
Throughout the article, Γ will denote a cofinite Fuchsian group. That is, a discrete
subgroup of SL2(R) of finite covolume V = vol(Γ\H) < ∞, containing at least one
parabolic element. We recall that γ ∈ Γ is parabolic if |tr(γ)| = 2 or, equivalently,
if the action of γ on H = H ∪ ∂H fixes a single point and that this point is in
∂H = R ∪ {∞}. Such a point is referred to as a cusp and will be denoted a. For
each cusp a, the isotropy subgroup of elements of Γ fixing a is denoted by Γa. It
is, up to sign, an infinite cyclic subgroup of Γ. A matrix σa ∈ SL(2,R) is called a
scaling if it verifies σa(∞) = a and

σ−1
a Γaσa =

(
σ−1
a Γσa

)
∞ = ±

(
1 Z

1

)
.

These two conditions do not determine uniquely σa but up to right multiplication
by any element of the group ( 1 R

1 ). There is a one-to-one correspondence between

subgroups of PSL2(R) and subgroups of SL2(R) that contain −I =
(−1

−1

)
. We

shall always assume that −I ∈ Γ.
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1. A concrete realization of the Euler class

1.1. Petersson’s cocycle. We review the classical construction investigated by
Petersson [Pet30,Pet38], which provides an explicit bounded Euler class represen-
tative ω. For any z ∈ H, set

ω(g, h) =
1

2πi
(log j(g, hz) + log j(h, z)− log j(gh, z)) ,(5)

where log denotes the principal branch of the logarithm, that is, log(cz + d) =
ln |cz + d|+ i arg(cz + d) for −π < arg(cz + d) ≤ π, and where j(g, z) = cz + d, for
g = ( ∗ ∗

c d ) ∈ SL2(R), is the usual automorphy factor, which satisfies

j(gh, z) = j(g, hz)j(h, z).(6)

Lemma 1.1. The function ω defines a bounded 2-cocycle representative of the
Euler class.

Proof. Observe that (6) implies that the LHS of (5) is real-valued. Since it is also
holomorphic in z, it must be constant; ω is indeed independent of the choice of
z. By definition, ω can only take integer values. Since moreover |ω(g, h)| ≤ 3

2 , we
conclude that ω only takes values in {−1, 0, 1}. Finally, one can check by direct
computation that

ω(g1, g2) + ω(g1g2, g3) = ω(g1, g2g3) + ω(g2, g3).

Hence [ω] ∈ H2(SL2(R)) and we conclude from the previous observations that [ω]
coincides with the Euler class. �

1.2. Computing values of ω. The 2-cocycle (5) can be computed on explicit
elements. Asai provides a clean formula to do so [Asa70, Thm. 2], simplifying
the laborious presentation of Petersson [Pet38]. However, his formula is obtained
under the unusual choice −π ≤ arg(cz + d) < π. By a simple reparametrization,
we recover that formula for the principal branch of the logarithm.

Theorem 1.2. Set

c(−d) =

{
c, c �= 0,

−d, c = 0,
and sign(x) =

⎧⎪⎨
⎪⎩
1, x > 0,

0, x = 0,

−1, x < 0.

Then

ω(g, h) =
1

4
(sign(cg(−dg))+sign(ch(−dh))

− sign(cgh(−dgh))− sign(cg(−dg)cτ (−dh)cgh(−dgh))).(7)

Corollary 1.3. The explicit values of ω(g, h) are given by the following table:

sign (cg(−dg)) sign (ch(−dh)) sign (cgh(−dgh)) ω(g, h)
1 1 −1 1
−1 −1 1 −1

otherwise 0

(8)

Proof. One can check directly the validity of the identity

log(cz + d) = log

(
cz + d

i sign(c(−d))

)
+ i

π

2
sign (c(−d)) .
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In showing by inspection that

log

(
j(g, hz)

i sign(cg(−dg))

)
+ log

(
j(h, z)

i sign(ch(−dh))

)
− log

(
j(gh, z)

i sign(cgh(−dg))

)

= −i
π

2
sign(cg(−dg)cτ (−dh)cgh(−dgh)),

we obtain the formula (7), from which it is easy to complete table (8). �

2. Dedekind symbols and reciprocity

2.1. Definition of Dedekind symbols. Let Γ be a cofinite Fuchsian group with
a cusp a and fix a scaling σa. The Dedekind symbol Sa is defined on non-trivial
double cosets of Γa\Γ/Γa by

Sa ([[γ]]) =
vol(Γ\H)

4π

aγ + dγ
cγ

− ρa

(
aγ bγ
cγ dγ

)
− 1

4
sign(cγ)

for
(

aγ bγ
cγ dγ

)
= σ−1

a γσa, and ρa : σ−1
a Γσa → R satisfying

ρa(γτ )− ρa(γ)− ρa(τ ) = ω(γ, τ ),(9)

where ω is the bounded 2-cocycle given by (5), and the definition does not depend on
the particular scaling σa [Bu017, Thm. 2]. We will not review here the construction
of ρa or the connection of Dedekind symbols to automorphic forms (in the form of
generalized log η-functions). Instead we will highlight the relevant features of this
definition.

The most important characteristic of this definition is that the Dedekind symbols
factor through (non-trivial) double cosets in Γa\Γ/Γa. By conjugation with σa, a
double coset representative γ of [[γ]] gets sent to

(
σ−1
a Γaσa

)(aγ bγ
cγ dγ

)(
σ−1
a Γaσa

)
= ±

(
aγ + cγZ ∗

cγ dγ + cγZ

)
.(10)

In consequence, we observe that [[γ]] is non-trivial if and only if cγ �= 0. Moreover,
one can always choose a representative γ of [[γ]] such that cγ > 0, and 0 ≤ aγ , dγ <
cγ . These two simple observations are primordial in establishing the Dedekind
symbol as the natural generalization of the Dedekind sums. (Of course, the two
definitions coincide on SL2(Z).)

2.2. Equivalent definition. We show that alternatively, and equivalently, the
Dedekind symbol Sa can be defined as a periodic function on the orbit (or cusp
set) O′ = Γ.a \ {a}. Define an equivalence relation on O that identifies x, y ∈ O if
there exists some γ ∈ Γa such that γx = y. We then write [x] = [y].

Theorem 2.1. For any γ ∈ Γ such that [[γ]] is non-trivial, Sa([γ.a]) = Sa([[γ]]).

Proof. Consider the double coset on the LHS of (10). Let
(

aγ b
cγ d

)
,
(

a′ b′

cγ dγ

)
be two

other representative of [[γ]]. Then(
aγ b
cγ d

)−1 (
aγ bγ
cγ dγ

)
,

(
aγ bγ
cγ dγ

)(
a′ b′

cγ dγ

)−1

=

(
1 ∗

1

)
∈
(
σ−1
a Γaσa

)
.
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That is, any double coset representative of [[γ]] is completely determined by ei-
ther its first column or its first row. Therefore, the double cosets [[

( aγ ∗
cγ ∗

)
]] ∈

(σ−1
a Γaσa)\(σ−1

a Γσa)/(σ
−1
a Γaσa) are in one-to-one correspondence with the cusp

points [aγ/cγ ] = aγ/cγ mod 1 in (σ−1
a Γaσa)\(σ−1

a Γσa).∞. �

2.3. Selected properties.

Lemma 2.2. For any non-trivial double coset [[γ]], Sa(−[[γ]]) = Sa([[γ]]).

Proof. Following the discussion above, we may assume that cγ > 0. Using (9),

ρa

(
−
(

aγ bγ
cγ dγ

))
− 1

4
sign(−cγ) = ρa(−I) + ρa

(
aγ bγ
cγ dγ

)
+ ω

(
−I,

(
aγ bγ
cγ dγ

))
+

1

4
.

With (8), we can check that

ρa(I) = −ω(I, I) = 0,

2ρa(−I) = ρa(I)− ω(−I,−I) = −1,

and ω
(
−I,

(
a b
c d

))
= 0,

The statement follows. �

Lemma 2.3. For any non-trivial double coset [[γ]], Sa([[γ]]) = −Sa([[γ
−1]]).

Proof. By (9), ρa(g) + ρa(g
−1) = ω(g, g−1) and (8) yields ω(g, g−1) = 0. The

statement follows. �

2.4. Reciprocity of Dedekind symbols.

Proof of Theorem 2. For cγcτ cγτ �= 0,

aγ + dγ
cγ

+
aτ + dτ

cτ
− aγτ + dγτ

cγτ

=
aγ + dγ

cγ
+

aτ + dτ
cτ

− (aγaτ + bγcτ ) + (cγbτ + dγdτ )

cγaτ + dγcτ

=
c2γ + c2τ + (cγaτ + dγcτ )

2

cγcτ (cγaτ + dγcτ )
=

c2γ + c2τ + c2γτ
cγcτcγτ

and thus, by (9),

Sa([[γ]]) + Sa([[τ ]])− Sa([[γτ ]]) =
V

4π

(
cγ

cγτ cτ
+

cτ
cγcγτ

+
cγτ
cτ cγ

)
+ ω(γ, τ )

+
1

4
(sign(cγτ )− sign(cγ)− sign(cτ ))

=
V

4π

(
cγ

cγτ cτ
+

cτ
cγcγτ

+
cγτ
cτ cγ

)
− 1

4
sign(cγcτcγτ )

by Theorem 1.2. �
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3. Explicit formulas for Hecke triangle groups

3.1. Parametrizations. Fix the scaling σ∞ =

(√
λq

1/
√

λq

)
and set

s := σ−1
∞ Sσ∞ =

(
−1/λq

λq

)
,

u := σ−1
∞ Tn

q σ∞ =

(
1 n

1

)
,

v := σ−1
∞ Sn

q σ∞ =

(
1

nλ2
q 1

)
,

γq := σ−1
∞ γσ∞ =

(
a b/λq

cλq d

)
,

for any n ∈ Z and any γ =
(
a b
c d

)
∈ Gq. We record the following formulas for

later computations. Let Vq = vol(Gq\H). Using the Gauss–Bonnet formula, Vq =
π(1− 2/q).

Lemma 3.1. For each n ∈ Z,

ρ(un) =
Vqn

4π
.

Proof. This is Lemma 4.2 in [Bu017]. �

Lemma 3.2. Let g =
(
a b
c d

)
∈ SL2(R). Then

ω(g, s) =

{
1 if c > 0 and d < 0,

0 otherwise;

ω(g, un) = 0 for all n ∈ Z;

ρ(s) = −1/4;

ρ(vn) = −ρ(un) for all n ∈ Z.

Proof. Follows from Corollary 1.3. �

3.2. Dedekind’s reciprocity law for Hecke triangle groups.

Proof of Theorem 3. Let γ = ( a ∗
c ∗ ) ∈ Gq. We note that

S
([a

c

])
− S

([ c
a

])
= S([[γ]])− S([[Sγ]]) = S([[γ]]) + S([[γ−1S]]) + S([[S]]).

The reciprocity law now follows as a corollary to Theorem 2, or can be seen directly
from

S([[γ]])− S([[Sγ]]) = Vq

4πλq

(
c

a
+

1

ac
+

c

a

)
+ ρ(s) + ω(s, γq) +

1

4
(sign(d)− sign(c))

=
1− 2

q

8 cos(πq )

(
c

a
+

1

ac
+

c

a

)
+ ρ(s) +

1

4
− 1

4
sign(ac)

=
1− 2

q

8 cos(πq )

(
c

a
+

1

ac
+

c

a

)
− 1

4
sign(ac)

by applying successively Theorem 1.2 and Lemma 3.2. �
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3.3. A formula for the Dedekind symbol attached to a Hecke triangle
group.

Proof of Theorem 4. We proceed by induction on the length n of words of the form

Sa1
q T a2

q · · ·T an−1
q San

q .

If n = 1, then, by definition,

S([[Sa1
q ]]) =

Vq

4π

a+ d

cλq
− ρ(va1)− 1

4
=

Vq

4π

a+ d

cλq
+ a1 −

1

4
,

and, we can check with Lemma 3.2 that

S([[Sa1
q T a2

q S]]) =
Vq

4π

a+ d

cλq
− ρ(va1ua2s)− 1

4
=

Vq

4π

a+ d

cλq
+ a1 − a2

for n = 2. For n ≥ 3, let

γn =

{
Sa1
q T a2

q · · ·T an−1
q San

q if n is odd,

Sa1
q T a2

q · · ·T an
q S if n is even,

and observe that

[[γn−1]] =

{
[[γnST

an
q ]] = [[γnS]] if n is odd,

[[γnST
−an
q ]] = [[γnS]] if n is even.

By the induction hypothesis,

S([[γn−1]]) =
Vq

4πλq

⎛
⎝γn−1.∞− γ−1

n−1.∞−
n−1∑
j=1

(−1)jajλq

⎞
⎠− 1− (−1)n−1

8
,

where

γn−1.∞− γ−1
n−1.∞ = (γnS).∞− (T∓an

q Sγ−1
n ).∞ = (γnS).∞± anλq − (Sγ−1

n ).∞

with +anλq if n is odd and −anλq otherwise. Together with the reciprocity law,

S([[γn]]) =
Vq

4πλq

(
d

c
+

1

cd
+ Sγ−1

n .∞
)
− 1

4
sign(cd) + S([[γn−1]])

=
Vq

4πλq

⎛
⎝d

c
+

1

cd
+ γnS.∞− λq

n∑
j=1

(−1)jaj

⎞
⎠− 1− (−1)n

8

=
Vq

4πλq

⎛
⎝d

c
+

1

cd
+

b

d
− λq

n∑
j=1

(−1)jaj

⎞
⎠− 1− (−1)n

8

=
Vq

4πλq

⎛
⎝a+ d

c
− λq

n∑
j=1

(−1)jaj

⎞
⎠− 1− (−1)n−1

8

and the identification with continued fraction expansions is immediate since a
c =

γn.∞ and d
c = −γ−1

n .∞. �
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