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THE GROMOV-HAUSDORFF HYPERSPACE

OF NONNEGATIVELY CURVED 2-SPHERES

IGOR BELEGRADEK

(Communicated by Lei Ni)

Abstract. We study topological properties of the Gromov-Hausdorff metric
on the set of isometry classes of nonnegatively curved 2-spheres.

1. Introduction

The Gromov-Hausdorff (GH) distance is ubiquitous in studying families of Rie-
mannian metrics with lower curvature bounds. The simplest scenario is when all
the metrics in the family live on the same manifold. We call any set of isometry
classes of metrics on closed C∞ manifold N equipped with the GH distance a GH
hyperspace of N .

A metric is intrinsic if the distance between any two points is the infimum of
lengths of curves joining the points. Any C∞ Riemannian metric is intrinsic, and
this property is preserved under GH limits. For κ ∈ R let MGH

curv≥κ(N) be the GH
hyperspace of intrinsic metrics of curvature ≥ κ on N . Let MGH

sec≥κ(N), MGH
sec>κ(N)

be the GH hyperspaces of C∞ Riemannian metrics on N of sectional curvatures
≥ κ, > κ, respectively. Topological properties of these GH hyperspaces are largely
a mystery which is why it is more common to give MGH

sec>κ(N) the C∞ topology
resulting in a stratified space whose strata are Hilbert manifolds [8].

Our starting point is that for N = S2 and κ = 0 the above GH hyperspaces can
be identified with the O(3)-quotients of certain hyperspaces of R3; see Theorem 1.1
below. This is made possible by the convex surface theory.

A hyperspace of R
3 is a set of compacta of R

3 equipped with the Hausdorff
metric. A convex body is a compact convex set with nonempty interior. The
boundary of any convex body in R

3 inherits an intrinsic metric of nonnegative
curvature, which we call the boundary metric. A metric that is isometric to the
distance function of a C∞Riemannian metric is intrinsically C∞. The Steiner point
is a way to assign a center to any convex compactum in R

3 that is continuous,
Iso(R3)-invariant, and Minkowski linear, and in fact, these properties characterize
the Steiner point [18, Theorem 3.3.3]. We shall work with the following hyperspaces
of R3:

K = {convex compacta in R
3},

Ks = {convex compacta in R
3 with Steiner point at the origin},
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Kk≤l
s = {D ∈ Ks with k ≤ dim(D) ≤ l},

Bp = {convex bodies D ∈ Ks with C∞ boundary of sec > 0},

Bd = {convex bodies D ∈ Ks with intrinsically C∞ boundary metrics},

Bk,α = {Ck,α convex bodies in Ks} and Bk = Bk,0.

One purpose of this paper is to give an exposition of fundamental (but not widely
known) results of convex surface theory, which easily imply the following.

Theorem 1.1. The map K2≤3
s /O(3) → MGH

curv≥0(S
2) that assigns to the congru-

ence class of a convex compactum the isometry class of its boundary surface is a
homeomorphism which restricts to homeomorphisms Bd/O(3) → MGH

sec≥0(S
2) and

Bp/O(3) → MGH
sec>0(S

2).

Here the boundary surface of a 2-dimensional convex compactum K is the double
of K along the boundary with the induced intrinsic metric.

Consider the Hilbert cube Q = [−1, 1]ω and its radial interior

Σ = {(ti)i∈ω in Q : sup
i∈ω

|ti| < 1}.

Here ω is the set of nonnegative integers, and the superscript ω refers to the product
of countably many copies of a space. We have a canonical inclusion Σω ⊂ Qω. Note
that Qω and Q are homeomorphic.

This paper is a sequel to [6] where the author used convex geometry and infinite
dimensional topology to determine the homeomorphism types of Ks, K2≤3

s , Bp, and
also derive a number of properties of their O(3)-quotients. In particular, in [6,
Section 6] we isolated some conditions on a hyperspace D with Bp ⊆ D ⊂ B1,1 that
give the conclusion of Theorem 1.2 below with Bd replaced by D. The conditions
hold, e.g., if D \ Bp is σ-compact, which includes the case D = Bp. Here we verify
the conditions for D = Bd.

Theorem 1.2. If E is a subset of Qω \ Σω homeomorphic to suspension of the
real projective plane, then there is a homeomorphism h : K2≤3

s → Qω \ E with
h(Bd) = Σω.

The new ingredient, stated in Theorem 1.3 below, follows from a version of the
Cheeger-Gromov compactness theorem.

Theorem 1.3. MGH
sec≥0(S

2) \MGH
sec>0(S

2) is an Fσ subset of MGH
sec≥0(S

2) and also is
a countable intersection of σ-compact sets.

Theorem 1.2 together with results in [6] yield a number of topological properties
for the quotients Ks/O(3), Bp/O(3), Bd/O(3), and hence for the corresponding GH
hyperspaces, as summarized below.

Theorem 1.4. Let M = MGH
curv≥0(S

2) and M0 be the GH hyperspace of the isom-
etry classes in M represented by metrics with trivial isometry groups. Let X be
MGH

sec≥0(S
2) or MGH

sec>0(S
2), and let X0 = X ∩M0. Then

(1) M is a locally compact Polish absolute retract.
(2) X is an absolute retract that is neither Polish nor locally compact.
(3) Any σ-compact subset of X has empty interior.
(4) X is homotopy dense in M , i.e., any continuous map Q → M can be

uniformly approximated by a continuous map with image in X.
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(5) M0 is open in M .
(6) If L is the product of [0, 1) and any locally finite simplicial complex that

is homotopy equivalent to BO(3), then there is a homeomorphism M0 →
L×Qω that takes X0 onto L× Σω.

(7) The pairs (M0, X0) and (Qω,Σω) are locally homeomorphic, i.e., each point
of M0 has a neighborhood U ⊂ M0 such that some open embedding h : U →
Qω takes U ∩X0 onto h(U) ∩ Σω.

(8) M0, X0 are dense but not homotopy dense in M , X, respectively.
(9) MGH

sec≥κ(S
2) and MGH

sec>κ(S
2) are weakly contractible for every κ > 0.

Let us supply some context for various items in Theorem 1.4 :
(1)–(2) We refer to [7] for background on absolute retracts (AR) and absolute

neighborhood retracts (ANR), and only mention here some basic facts. Any open
subset of an ANR is an ANR. Being an AR is equivalent to being a contractible
ANR. Any ANR is locally contractible, i.e., any neighborhood U of every point
contains a neighborhood V of the same point such that the inclusion V → U is
null-homotopic. Any ANR is homotopy equivalent to a CW complex.

(4) Another definition of a homotopy dense subset A ⊂ B is that there is a
homotopy h : B × [0, 1] → B with h(b, 0) = b and h(b, t) ∈ A for t > 0. The two
definitions are equivalent when B is an ANR [5, Exercise 10 in Section 1.2].

(5)–(7) The Slice Theorem for compact Lie group actions [9, Corollary II.5.5] im-
plies that M0 is open in M and the restriction of the orbit map K2≤3

s → K2≤3
s /O(3)

to the principal orbit
◦
K2≤3

s is a principal O(3)-bundle whose base is homeomorphic
to M0. Similarly, X0 is the base of a principal O(3)-bundle. By [6, Lemma 8.2] the

principal orbit
◦
Bp for the O(3)-action on Ks is homotopy dense in Ks, and hence

the total spaces of the above principal bundles are contractible. Thus M0, X0 are
homotopy equivalent to BO(3), the Grassmanian of 3-planes in R

ω. The claims
(6)–(7) follow from the main results of [6] and Theorem 1.2.

(8) has a curious interpretation that there is no continuous “destroy the symme-
try map” that would instantly push M into M0, or X into X0.

(9) The contractibility of these GH hyperspaces follow from the contractibility
of MGH

sec>0(S
2) and a rescaling argument.

In [6] the reader can find a number of open questions about the above GH
hyperspaces, disguised as O(3)-orbit spaces of hyperspaces of R3. For example, it is
unknown whether MGH

curv≥0(S
2) is a Q-manifold, which by Theorem 1.4 is equivalent

to the following.

Question 1.5. Is MGH
curv≥0(S

2) topologically homogeneous?

A space is topologically homogeneous if its homeomorphism group acts transi-
tively.

Theorem 1.1 is proven in Section 2 while the other main results are justified
in Section 3. In Section 4 we offer some remarks about the hyperspace Bd whose
structure is still quite mysterious.

2. Spaces on convex surfaces

In this section we review some fundamental properties of convex surfaces and
prove Theorem 1.1.
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Two subsets of R
3 are δ-congruent if some isometry of R

3 takes one subset
within the δ-neighborhood of the other one; if δ = 0 we call the subsets congru-
ent. A homeomorphism f : (A, dA) → (B, dB) of metric spaces is a δ-isometry if
|dB(f(x), f(y)) − dA(x, y)| < δ for any x, y ∈ A. If δ is small we use the terms
nearly congruent and nearly isometric.

A convex surface is either the boundary of a convex body B ⊂ R
3 or the double

DK of a 2-dimensional convex compactum K ⊂ R
3 along the identity map of ∂K,

each with the induced intrinsic metric. We refer to these two alternatives as the
nondegenerate and the degenerate convex surfaces, call their intrinsic metrics the
boundary metrics, and say that they bound B, K, respectively. With this definition
any convex surface is homeomorphic to S2.

The intrinsic metric on a degenerate surface DK can be canonically approxi-
mated by the boundary metric of the right cylinder with base K and small height.

Each convex surface bounds a unique convex compactum in R
3 which has dimen-

sion 2 if the surface is degenerate and dimension 3 otherwise. If two such convex
compacta K1, K2 are Hausdorff close, then the corresponding convex surfaces are
nearly isometric. (For nondegenerate convex surfaces this is proved in [10, Lemma
10.2.7] and the degenerate case reduces to the nondegenerate one by approximating
DK with the cylinder as above.)

Alexandrov, see [1] or [3, pp. 112 and 399] showed that an intrinsic metric
isometric to a 2-sphere of nonnegative curvature if and only if it is isometric to a
convex surface. Pogorelov proved in [17] that any two isometric convex surfaces are
congruent, even though his argument is commonly described as very complicated,
and we hesitate to rely on it. An easier proof of this result was found by Volkov [20],
see [3, Section 12.1] for a reprint and [11, Section 5.2] for an exposition of Volkov’s
stability theorem which we discuss below.

Each nondegenerate convex surface has another metric obtained by restricting
the distance function on R

3; we call the metric extrinsic. If Σ1, Σ2 are nondegener-
ate convex surfaces with intrinsic metrics ρ1, ρ2, and extrinsic metrics d1, d2, and
if f : (Σ1, ρ1) → (Σ2, ρ2) is an ε-isometry, then Volkov stability theorem states that
f : (Σ1, d1) → (Σ2, d2) is a C1ε

β-isometry where C1 depends onto on diameters
of ρ1, ρ2 and β is a positive universal constant. This easily implies that Σ1, Σ2

are nearly congruent, e.g., according to [2, Theorem 2.2] any δ-isometry between
compacta in R

n can be approximated by the restriction of an isometry of Rn with
the additive error at most C2

√
δ where C2 depends only on n and the diameters of

the compacta.
To extend the result to the case of a degenerate surface DK we replace it with

a nearby right cylinder with base K, and then apply Volkov’s theorem.
If the isometry classes of two convex surfaces are GH close, then the surfaces are

nearly isometric, e.g., by the Perelman stability theorem [16]. (A less heavy-handed
argument is as follows. For a convex surface Σ we denote its isometry class by [Σ].
If Σi, Σ are convex surfaces such that the sequence [Σi] → [Σ] in the GH metric,
then up to congruence

⋃
i Σi has compact closure in R

3 and any limit point of the
sequence Σi with respect to the Hausdorff metric is congruent to Σ, which by the
above gives the desired near isometry of Σ and Σi for large i.)

The map r : K → Ks given by r(D) = D − s(D) where s is the Steiner point
descends to a homeomorphism of orbit spaces K/Iso(R3) → Ks/O(3); see [6, Section
4]. Note that the homeomorphism is dimension preserving.
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A Ck,α convex body is a convex body whose boundary is a Ck,α submanifold of
R

n. A function is Ck,α if its kth partial derivatives are α-Hölder for α ∈ (0, 1] and
continuous for α = 0. As usual Ck means Ck,0.

Lemma 2.1. Any convex body D ∈ Bd has C1,1 boundary, that is, C∞ at points of
intrinsically positive curvature. In particular, if the boundary metric is intrinsically
C∞ of positive sectional curvature, then D ∈ Bp.

Proof. The last statement was proved much earlier by Pogorelov and Nirenberg
(independently). The boundary ∂D is the image of an isometric embedding of
the distance function of a C∞ nonnegatively curved metric g on S2. Improving on
Nirenberg’s method Guan-Li [13] and Hong-Zuily [14] independently proved that
any C∞ nonnegatively curved metric of S2 admits a C1,1 isometric embedding into
R

3 that is C∞ at points of positive curvature, and moreover the embedding is the
limit of a sequence of C∞ isometric embeddings of positively curved metrics on
S2. By the Hadamard theorem, see e.g., [19, Chapter 2], the image of an isometric
embedding of positively curved sphere bounds a convex body, and hence the same
is true for the limiting C1,1 isometric embedding that induces g. The limiting
convex body is congruent to D by the above mentioned results of Pogorelov and
Volkov. �

The above discussion proves Theorem 1.1.

3. Proofs of main results

Proof of Theorem 1.3. For integers k ≥ 2, l ≥ 1 let Qk
l ⊂ MGH

sec≥0(S
2) be the subset

consisting of isometry classes of metrics whose sectional curvature vanishes some-
where, the diameter is in [0, l], the injectivity radius is at least 1/l, and the C0

norms of the curvature tensor and of every covariant derivative of the curvature
tensor of orders 1, . . . , k is at most l. Its closure Q̄k

l in MGH
curv≥0(S

2) is compact and

disjoint from MGH
sec>0(S

2) because for each α ∈ (0, 1) any sequence in Qk
l subcon-

verges in the Ck,α topology to an isometry class of a Ck+1,α Riemannian manifold,
see e.g. [4, Theorem 2.2], and since k ≥ 2 the sectional curvature must vanish in
the limit. For each k we clearly have

MGH
sec≥0(S

2) \MGH
sec>0(S

2) =
⋃

l≥1

Q̄k
l ∩MGH

sec≥0(S
2)

which is Fσ in MGH
sec≥0(S

2). The σ-compact set
⋃

l∈ω
Q̄k

l in MGH
curv≥0(S

2)

• consists of the isometry classes of Ck+1,α Riemannian manifolds,
• contains MGH

sec≥0(S
2) \MGH

sec>0(S
2),

• and is disjoint from MGH
sec>0

(S2).

Thus MGH
sec≥0(S

2) \MGH
sec>0(S

2) equals
⋂

k≥2

⋃
l≥1

Q̄k
l as claimed. �

Now the results of [6] can be put together to yield what we claimed in the
introduction. To justify this we are going to use some infinite dimensional topology
terminology that can be found in [6, Section 3].

Proof of Theorem 1.2. First we show that Bd is homeomorphic to Σω. By Lemma
2.1 we have Bp ⊂ Bd ⊂ B1,1, hence [6, Lemmas 6.1–6.3] show that Bd is an AR
with SDAP and also σZ.
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The O(3)-orbit maps from Bd and Bp onto the sets of congruence classes are
continuous and proper. Taking preimage of a proper continuous map preserves
being Fσ and being σ-compact so preimages Bp \ Bp is Fσ in Bd and also is a
countable intersection of σ-compact sets. Hence [6, Lemmas 6.6 and 6.9] imply
that Bd ∈ M2 and Bd is strongly M2-universal. These properties imply that Bd is
homeomorphic to Σω.

Then the pair (K2≤3
s ,Bd) is (M0,Ms)-absorbing by [6, Lemma 7.1].

Also [6, Lemma 5.2] shows that K2≤3
s is homeomorphic to the complement in Qω

of a Z-set homeomorphic to the suspension SRP 2 over RP 2. Since Σω is convex
and dense in Qω, it is also homotopy dense in Qω; see [5, Exercise 13 in 1.2].
Hence every compact subset of Qω \ Σω is a Z-set. If E is as in the statement of
Theorem 1.2, then by the knotting of Z-sets in Q-manifolds [5, Theorem 1.1.25]
the set Qω \ E can be taken to K2≤3

s by some homeomorphism of Qω. The pair
(Qω \ E,Σω) is (M0,Ms)-absorbing by [6, Lemma 7.2]. Now the uniqueness of
absorbing pairs [6, Lemma 7.2] proves Theorem 1.2 for Bd. The same argument
works for Bp. �
Proof of Theorem 1.4. The statements (1)-(8) of Theorem 1.4 were proved in [6,
Section 8–9] for the O(3)-quotients of an arbitrary O(3)-invariant hyperspace X
that is locally homeomorphic to Σω and such that Bp ⊂ X ⊂ Ks. The statement
(9) was explained in [6, Question (g) of Section 1]. �

4. Remarks on the structure of Bd

The hyperspace Bd, which is the main object of his paper, is not well understood,
e.g., we suspect that Bd is not convex but cannot yet prove it. This section is to
shed some light on the properties of Bd.

The moral of Theorem 1.3 is that the awkward features of Bd disappear in
Bd/O(3), as they should because the condition of being intrinsically C∞ makes
much more sense in MGH

sec≥0(S
2).

Recall that Bp ⊂ B∞ ⊂ Bd ⊂ B1,1. It turns that Bd \ B∞ is quite large.

Lemma 4.1. Bd \ B2 is dense in Ks.

Proof. The convex surface x3 = f(x1, x2) = r3, where r =
√
x2
1 + x2

2, is C1,1 but
not C2. Its boundary metric is intrinsically C∞ because the components of the
metric tensor induced on the graph of f : R

n → R are gij = δij +
∂f
∂xi

∂f
∂xj

and for f

as above we have ∂f
∂xi

= 3rxi.

A small neighborhood of the origin in this surface can be patched as in [12] at any
point of positive curvature of every C∞ convex surface to produce a convex surface
that has positive curvature everywhere except near one point where the surface is
a portion of the graph of f near the origin. The conditions of Ghomi’s patching
theorem are satisfied because in the x1, x2 local coordinates any positively curved
surface lies above the graph of g(x1, x2) = kr2 for some k > 0, and hence kr2 > r3

for small r. Thus Bp lies in the closure of Bd \ B2 in Ks, and the claim follows
by noting that by Schneider’s regularization Bd is dense in Ks, see e.g. [6, Section
4]. �

In Theorem 1.2 we show that Bd is homeomorphic to Σω. The same is true
for any hyperspace Bp ⊆ D ⊂ B1,1 such that D \ Bp is σ-compact [6, Theorem
6.10]. Perhaps this conclusion holds for any naturally occurring hyperspace D with
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Bp ⊆ D ⊂ B1, and while thinking on this problem one wants an example of a
hyperspace that is not homeomorphic to Σω.

In [6, Theorem 6.11] one finds a hyperspace D with Bp ⊂ D ⊂ B1,1 such that
D \Bp embeds into the Cantor set, Bp is open in D, and D is not topologically ho-
mogeneous, and in particular, not homeomorphic to Σω. We improve this example
as follows.

Proposition 4.2. There is a hyperspace D with Bp ⊂ D ⊂ Bd ∩ B2,1 such that
D \ Bp embeds into the Cantor set, Bp is open in D, and D is not topologically
homogeneous.

Proof. A slight modification of an example in [15] gives a 3-dimensional convex
body whose boundary is C∞ except at one point p where it is C2,1 but not C3,
and such that the boundary metric is intrinsically C∞. The curvature vanishes at
p and is positive elsewhere. Any slight smooth perturbation at a boundary point of
positive curvature gives a body with the same properties, and in particular, there
is a path of such metrics, so by the proof of [6, Theorem 6.11] we can pick D \ Bp

to be a subset of a Cantor set inside this path. �
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