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FUNCTIONS OF TRIPLES OF NONCOMMUTING

SELF-ADJOINT OPERATORS UNDER PERTURBATIONS

OF CLASS Sp

V. V. PELLER

(Communicated by Stephan Ramon Garcia)

Abstract. In this paper we study properties of functions of triples of not
necessarily commuting self-adjoint operators. The main result of the paper
shows that unlike in the case of functions of pairs of self-adjoint operators
there is no Lipschitz type estimates in any Schatten–von Neumann norm Sp,
1 ≤ p ≤ ∞, for arbitrary functions in the Besov class B1

∞,1(R
3). In other

words, we prove that for p ∈ [1,∞], there is no constant K > 0 such that the
inequality

‖f(A1, B1, C1)− f(A2, B2, C2)‖Sp

≤ K‖f‖B1
∞,1

max
{
‖A1−A2‖Sp , ‖B1−B2‖Sp , ‖C1 − C2‖Sp

}

holds for an arbitrary function f in B1
∞,1(R

3) and for arbitrary finite rank

self-adjoint operators A1, B1, C1, A2, B2 and C2.

1. Introduction

The spectral theorem for commuting self-adjoint operators implies that for com-
muting self-adjoint operators A1 and A2 and for a Lipschitz function f on the real
line R the following Lipschitz type estimate holds:

‖f(A1)− f(A2)‖ ≤ ‖f ′‖L∞(R)‖A1 −A2‖.
The same inequality holds for the norms in Schatten–von Neumann classes Sp with
p ≥ 1. However, for noncommuting self-adjoint operators, the situation is quite
different. A Lipschitz function f on R does not have to be operator Lipschitz, i.e.,
the inequality

|f(x1)− f(x2)| ≤ const |x1 − x2|, x1, x2 ∈ R,

does not imply that

‖f(A1)− f(A2)‖ ≤ const ‖A1 −A2‖
for self-adjoint operators A1 and A2. This was shown by Farforovskaja in [F1].
She also proved in [F2] that there exist a Lipschitz function f on R and self-
adjoint operators A1 and A2 such that A1 − A2 belongs to trace class S1, but
f(A1)− f(A2) �∈ S1.
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Recall that a function f on R is operator Lipschitz if and only if it takes trace
class perturbations to trace class increments, i.e.,

A = A∗, B = B∗, A−B ∈ S1 =⇒ f(A)− f(A) ∈ S1

if we admit not necessarily bounded self-adjoint operators A and B; see [AP].
It was shown later in [Mc] and [Ka] that the function x �→ |x| is not operator

Lipschitz. Necessary conditions for operator Lipschitzness were obtained in [Pe2]
and [Pe3]. In particular, it was proved in [Pe2] that operator Lipschitz functions
on R must belong locally to the Besov class B1

1,1(R). Note that in [Pe3] stronger
necessary conditions were also found. Those necessary conditions were deduced
from the trace class criterion for Hankel operators; see [Pe1] and [Pe4].

On the other hand, it was proved in [Pe2] and [Pe3] that functions in the Besov
class B1

∞,1(R) are necessarily operator Lipschitz. This result was generalized in
[APPS] to functions of normal operators. It was shown in [APPS] that if f is a
function of two variables that belongs to the Besov class B1

∞,1(R
2), then f is an

operator Lipschitz function on R
2, i.e.,

‖f(N1)− f(N2)‖ ≤ const ‖f‖B1
∞,1

‖N1 −N2‖

for arbitrary normal operators N1 and N2. The same Lipschitz type inequality
holds in the Schatten–von Neumann norm Sp for p ≥ 1.

This result was generalized in [NP] to the case of functions of d-tuples of commut-
ing self-adjoint operators: if f belongs to the Besov class B1

∞,1(R
d) and (A1, · · · , Ad)

and (B1, · · · , Bd) are d-tuples of commuting self-adjoint operators, then

‖f(A1, · · · , Ad)− f(B1, · · · , Bd)‖ ≤ const ‖f‖B1
∞,1

max
1≤j≤d

‖Aj −Bj‖

and the same inequality also holds for Schatten–von Nemann norms Sp with p ≥ 1.
Let us also mention that in [KPSS] it was shown that for an arbitrary Lipschitz

function f on Rd and for p ∈ (1,∞) the following Lipschitz type inequality holds:

‖f(A1, · · · , Ad)− f(B1, · · · , Bd)‖Sp
≤ const ‖f‖Lip max

1≤j≤d
‖Aj −Bj‖Sp

for arbitrary d-tuples of commuting self-adjoint operators (A1, · · · , Ad) and
(B1, · · · , Bd); the constant on the right-hand side depends on p. Note that ear-
lier in the case d = 1 this was established in [PS].

We refer the reader to the recent survey article [AP], which is a comprehensive
study of operator Lipschitz functions.

The behavior of functions of pairs of noncommuting self-adjoint operators under
perturbation was studied in [ANP]. For a pair (A,B) of not necessarily commuting
self-adjoint operators the functions f(A,B) are defined as double operator integrals:

f(A,B) =

∫∫
f(x, y) dEA(x) dEB(y)

under the assumption that the double operator integral makes sense. Here EA and
EB stand for the spectral measures of A and B.

In the case when A and B are finite rank self-adjoint operators (or, more gener-
ally, if A and B have finite spectra), the operator f(A,B) is defined for all functions
f on R2:

f(A,B) =
∑
j,k

f(λj , μk)PjQk,
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where
A =

∑
j

λjPj and B =
∑
k

μkQk

are the spectral expansions of A and B.
It turned out that the situation in the case of noncommuting operators is dif-

ferent. It was shown in [ANP] that if f belongs to the Besov class B1
∞,1(R

2) and
1 ≤ p ≤ 2, then, as in the case of commuting operators, the following Lipschitz
type estimate holds:

‖f(A1, B1)− f(A2, B2)‖Sp
≤ const ‖f‖B1

∞,1
max

{
‖A1 −A2‖Sp

, ‖B1 −B2‖Sp

}
for arbitrary pairs (A1, B1) and (A2, B2) of not necessarily commuting self-adjoint
operators.

On the other hand, it was shown in [ANP] that unlike in the case of commuting
operators there is no Lipschitz type estimate in the norm of Sp for p > 2 as well as
in the operator norm. In other words, if p > 2, there is no constant K such that∥∥f(A1, B1)− f(A2, B2)

∥∥
Sp

≤ K‖f‖B1
∞,1

max
{
‖A1 −A2‖Sp , ‖B1 −B2‖Sp

}
for arbitrary finite rank self-adjoint operators A1,B1, A2 and B2. The same is true
in the operator norm.

In this paper we deal with functions of triples of not necessarily commuting self-
adjoint operators. For a triple (A,B,C) of not necessarily commuting self-adjoint
operators and a function f on R3, the operator f(A,B,C) is defined as the triple
operator integral

f(A,B,C) =

∫∫∫
f(x, y, z) dEA(x) dEB(y) dEC(z)

in the case when the triple operator integral is defined. Again, if A, B and C
have finite spectra, the triple operator integral on the right is well defined for all
functions f and

f(A,B,C) =
∑

λ∈σ(A), μ∈σ(B), ν∈σ(C)

f(λ, μ, ν)EA({λ})EB({μ})EC({ν}).

The main objective of this paper is to show that unlike in the case of functions
of two noncommuting self-adjoint operators, there is no Lipschitz type estimate in
the norm of Sp, 1 ≤ p ≤ ∞, for functions in the Besov class B1

∞,1(R
3). In other

words, there is no constant K > 0 such that∥∥f(A1, B1, C1)− f(A2, B2, C2)
∥∥
Sp

≤ K‖f‖B1
∞,1

max{‖A1 −A2‖Sp , ‖B1 −B2‖Sp , ‖C1 − C2‖Sp}

for arbitrary functions f in B1
∞,1(R

3) and arbitrary finite rank self-adjoint operators
A1, B1, C1, A2, B2 and C2. In the special case p = 1 a different proof was given
in [Pe7]. Note, however, that the method used in [Pe7] does not work in the case
p = 2.

The main result of this paper terminates the chain of the results of the papers
[Pe2] and [Pe3] (with Lipschitz type estimates in the operator norm and the trace
norm for self-adjoint operators and functions of Besov class B1

∞,1(R)), [APPS]
(Lipschitz type estimates in the operator norm and the trace norm for normal
operators and functions of class B1

∞,1(R
2)), [NP] (Lipschitz type estimates in the

operator norm and the trace norm for d-tuples of commuting self-adjoint operators
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and functions of class B1
∞,1(R

d)) and, finally, [ANP] (Lipschitz type estimates in
the Schatten–von Neumann norms Sp, 1 ≤ p ≤ 2, for pairs of noncommuting
self-adjoint operators and functions of class B1

∞,1(R
2)). The results of §4 of this

paper show that as soon as we admit three noncommuting self-adjoint operators, it
becomes impossible to obtain such Lipschitz type estimates for arbitrary functions
of class B1

∞,1(R
3) in the norm of Sp for any p ∈ [1,∞].

In §2 of this paper we collect necessary information on multiple operator inte-
grals, while in §3 we define the Besov classes B1

∞,1(R
d) and briefly describe their

properties.

2. Multiple operator integrals

Double operator integrals appeared in the paper [DK] by Daletskii and S.G.
Krein. Later the beautiful theory of double operator integrals was created by
Birman and Solomjak in [BS1], [BS2] and [BS3].

Let (X , E1) and (Y , E2) be spaces with spectral measures E1 and E2 on a
Hilbert space H , let T be a bounded linear operator on H and let Φ be a bounded
measurable function on X × Y . Double operator integrals are expressions of the
form ∫∫

X Y

Φ(x, y) dE1(x)T dE2(y).(2.1)

Birman and Solomjak’s starting point is the case when T belongs to the Hilbert–
Schmidt class S2. In this case they defined double operator integrals of the form
(2.1) for arbitrary bounded measurable Φ and proved that∥∥∥∥∥∥

∫∫
X Y

Φ(x, y) dE1(x)T dE2(y)

∥∥∥∥∥∥
S2

≤ ‖Φ‖L∞‖T‖S2

(see [BS1]).
To define double operator integrals for arbitrary bounded linear operators T in

the general case, restrictions on Φ must be imposed. Double operator integrals
for arbitrary bounded operators T can be defined for functions Φ that are Schur
multipliers with respect to the spectral measures E1 and E2; see [BS1], [Pe2], [Pi]
and [AP] for details.

In this paper we need double operator integrals only in the case when the spectral
measures E1 and E2 are atomic and have finitely many atoms. We say that a
spectral measure E on a set X is atomic and has finitely many atoms if all subsets
of X are measurable and there are points a1, · · · , an in X , called the atoms, such
that

E

⎛
⎝X \

n⋃
j=1

aj

⎞
⎠ = 0 and E({aj}) �= 0, 1 ≤ j ≤ n.

In the case when the spectral measures E1 and E2 are atomic with finitely
many atoms, we can define double operator integrals of the form (2.1) for arbitrary
functions Φ by∫∫

X Y

Φ(x, y) dE1(x)T dE2(y) =
∑
j,k

Φ(aj , bk)E1({aj})TE2({bk}),(2.2)
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where the aj and the bk are the atoms of E1 and E2.
Under these assumptions, the norm of the linear transformer

T �→
∫∫

Φ(x, y) dE1(x)T dE2(y)

(both in the operator norm and in the trace norm) is equal to the norm of the
matrix {Φ(aj , bk)} in the space of matrix Schur multipliers, i.e., the norm of the
matrix transformer

{γjk} �→ {Φ(aj , bk)γjk}
in the operator norm (or in the trace norm); see [AP].

Double operator integrals play an important role in perturbation theory. In
particular, a special role is played by the following formula:

f(A)− f(B) =

∫∫
R×R

f(x)− f(y)

x− y
dEA(x)(A−B) dEB(y),(2.3)

which holds for arbitrary self-adjoint operators A and B with bounded A−B and
for arbitrary operator Lipschitz functions f on R; see [BS3] and [AP].

In this paper we consider only operators with finite spectra, in which case formula
(2.3) holds for arbitrary functions f on R; moreover, the divided difference

(x, y) �→ f(x)− f(y)

(x− y)

can be extended to the diagonal {(x, x) : x ∈ R} arbitrarily, i.e., the values of the
divided difference on the diagonal do not affect the right-hand side of (2.3). This
can be verified elementarily.

Multiple operator integrals∫
· · ·

∫
︸ ︷︷ ︸

m

Φ(x1, · · · , xm) dE1(x1)T1 dE2(x2)T2 · · · dEm−1(xm−1)Tm−1 dEm(xm)

were defined for functions Φ in the (integral) projective tensor product of the spaces
L∞(Ej), j = 1, · · · , n, in [Pe5]. Later multiple operator integrals were defined in
[JTT] for functions Φ in the Haagerup tensor products of L∞ spaces. We refer the
reader to the survey article [Pe6] for detailed information about multiple operator
integrals.

Again, in this paper we consider only atomic spectral measures with finitely
many atoms, in which case multiple operator integrals can be defined for arbitrary
functions Φ. Indeed, consider for simplicity the case of triple operator integrals.
Suppose that aj , bk and cl are the atoms of E1, E2 and E3 and Φ is an arbitrary
function. Then∫∫∫

Φ(x1, x2, x3) dE1(x1)T1 dE2(x2)T2 dE3(x3)

def
=

∑
j,k,l

Φ(aj , bk, cl)E1({aj})T1E2({bk})T2E3({cl)}.
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3. Besov classes B1
∞,1(R

d)

In this paper we need only Besov classes B1
∞,1(R

d) of functions on the Euclidean

space R
d. We give here a brief introduction to such spaces and we refer the reader

to [Pee] for detailed information about Besov classes.
Let w be an infinitely differentiable function on R such that

(3.1) w ≥ 0, suppw ⊂
[
1

2
, 2

]
, and w(s) = 1− w

(s
2

)
for s ∈ [1, 2].

We define the functions Wn, n ∈ Z, on Rd by
(3.2)

(
FWn

)
(x) = w

(
‖x‖2
2n

)
, n ∈ Z, x = (x1, · · · , xd), ‖x‖2 def

=

⎛
⎝ d∑

j=1

x2
j

⎞
⎠1/2

,

where F is the Fourier transform defined on L1
(
R

d
)
by(

Ff
)
(t) =

∫
Rd

f(x)e−i(x,t) dx, x = (x1, · · · , xd),

t = (t1, · · · , td), (x, t)
def
=

d∑
j=1

xjtj .

Clearly, ∑
n∈Z

(FWn)(t) = 1, t ∈ R
d \ {0}.

With each tempered distribution f ∈S ′(Rd
)
, we associate the sequence {fn}n∈Z,

fn
def
= f ∗Wn.(3.3)

The formal series
∑

n∈Z
fn is a Littlewood–Paley type expansion of f . This series

does not necessarily converge to f .
Initially we define the (homogeneous) Besov class Ḃ1

∞,1

(
R

d
)
as the space of

f ∈ S ′(Rn) such that

{2n‖fn‖L∞}n∈Z ∈ �1(Z)(3.4)

and put

‖f‖B1
∞,1

def
=

∥∥{2n‖fn‖L∞}n∈Z

∥∥
�1(Z)

.

According to this definition, the space Ḃ1
∞,1(R

n) contains all polynomials and all
polynomials f satisfy the equality ‖f‖Bs

p,q
= 0. Moreover, the distribution f is

determined by the sequence {fn}n∈Z uniquely up to a polynomial. It is easy to
see that the series

∑
n≥0 fn converges in S ′(Rd). However, the series

∑
n<0 fn can

diverge in general. It can easily be proved that the series∑
n<0

∂fn
∂xj

, where 1 ≤ j ≤ d,(3.5)

converges uniformly on Rd.
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Now we can define the modified (homogeneous) Besov class B1
∞,1

(
Rd

)
. We say

that a tempered distribution f belongs to B1
∞,1(R

d) if (3.4) holds and

∂f

∂xj
=

∑
n∈Z

∂fn
∂xj

, 1 ≤ j ≤ d,

in the space S ′(Rd
)
(equipped with the weak-∗ topology). Now the function f is

determined uniquely by the sequence {fn}n∈Z up to a constant polynomial, and a
polynomial g belongs to B1

∞,1

(
Rd

)
if and only if g is constant.

Note that the functions fn defined by (3.3) have the following properties: fn ∈
L∞(Rd) and suppFf ⊂ {ξ ∈ Rd : ‖ξ‖ ≤ 2n+1}. Bounded continuous functions
whose Fourier transforms are supported in {ξ ∈ Rd : ‖ξ‖ ≤ σ} can be characterized
by the following Paley–Wiener–Schwartz type theorem (see [R], Theorem 7.23 and
exercise 15 of Chapter 7):

Let f be a continuous function on Rd and let M, σ > 0. The following statements
are equivalent:

(i) |f | ≤ M and suppFf ⊂ {ξ ∈ Rd : ‖ξ‖ ≤ σ};
(ii) f is a restriction to R

d of an entire function on C
d such that

|f(z)| ≤ Meσ‖ Im z‖

for all z ∈ Cd.
We need one more elementary remark on the Besov classes B1

∞,1(R
d).

Remark 1. Suppose that {gj}j≥0 is a sequence of functions in L∞(Rd) such that

suppFgj ⊂
[
− 2j+1, 2j+1

]d
and

∑
j≥0

2j‖gj‖L∞(Rd) < ∞;

then the series
∑

j≥0 gj converges uniformly on Rd, the sum of the series belongs

to B1
∞,1(R

d) and ∥∥∥∥∥∥
∑
j≥0

gj

∥∥∥∥∥∥
B1

∞,1(R
d)

≤ const
∑
j≥0

2j‖gj‖L∞(Rd).

4. The main result

To establish the main result of the paper, we introduce the classes E p
σ (R

d),
1 ≤ p ≤ ∞, σ > 0. Put

E p
σ (R

d)
def
=

{
f ∈ Lp(Rd) : suppFf ⊂ [−σ, σ]d

}
.

Theorem 4.1. Let p ∈ [1,∞]. There is no constant K > 0 such that

‖f(A1, B1, C1)− f(A2, B2, C2)‖Sp

≤ K‖f‖B1
∞,1(R

3) max
{
‖A1 − A2‖Sp

, ‖B1 −B2‖Sp
, ‖C1 − C2‖Sp

}
(4.1)

for all triples of not necessarily commuting finite rank self-adjoint operators (A1, B1,
C1) and (A2, B2, C2) and all functions f in B1

∞,1(R
3).
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We need the following elementary lemma:

Lemma 4.2. Let ψ be an infinitely differentiable function on R with compact sup-
port and such that ψ(t) = t for t ∈ [−1, 1]. Suppose that σ > 0. There exists a
positive number κ such that

‖ϕ⊗ ψ‖B1
∞,1(R

3) ≤ κ‖ϕ‖L∞(R2)

for an arbitrary function ϕ in E ∞
σ (R2), where the function ϕ⊗ ψ on R3 is defined

by

(ϕ⊗ ψ)(x, y, z)
def
= ϕ(x, y)ψ(z), (x, y, z) ∈ R

3.

Let us first deduce Theorem 4.1 from Lemma 4.2 and then prove Lemma 4.2.
We need one more lemma.

Lemma 4.3. There is no positive number K such that the inequality

‖ϕ(A,B)‖ ≤ K‖ϕ‖L∞(4.2)

for an arbitrary function ϕ in E ∞
1 (R2) and for arbitrary finite rank self-adjoint

operators A and B.

Proof of Lemma 4.3. Let us construct self-adjoint operators A and B and a func-
tion ϕ in E ∞

1 (R2). The construction is similar to the construction given in the
proof of Theorem 8.1 of [ANP].

Let {gj}1≤j≤N and {hj}1≤j≤N be orthonormal systems in Hilbert space. Con-
sider the rank one projections Pj and Qj defined by

Pjv = (v, gj)gj and Qjv = (v, hj)hj , 1 ≤ j ≤ N.

We define the function η on R by

η(x) =
2(1− cosx)

x2
, x ∈ R, x �= 0,

and extend it to R by continuity. It is well known and it is easy to verify that
η ∈ E ∞

1 (R). Clearly, η(0) = 1 and η(2kπ) = 0, k ∈ Z \ {0}. Put

ηj(x)
def
= η(x− 2πj), j ∈ Z.

Suppose that {τjk}1≤j,k≤N is a family of complex numbers. Define the function ϕ
by

ϕ(x, y) =
∑
j,k

τjkηj(x)ηk(y).(4.3)

Then ϕ ∈ E ∞
1 (R2) and

‖ϕ‖L∞(R2) ≤ constmax
j,k

|τjk|;(4.4)

see [ANP, § 8], . We define now the finite rank self-adjoint operators A and B by

A =
n∑

j=1

2πjPj and B =
N∑

k=1

2πkQk.



TRIPLES OF NONCOMMUTING SELF-ADJOINT OPERATORS 1707

It follows from (4.3) that

ϕ(A,B) =
N∑
j=1

N∑
k=1

ϕ(2πj, 2πk)PjQk

=
N∑
j=1

N∑
k=1

τjkPjQk =
N∑
j=1

N∑
k=1

τjk(hk, gj)(· , hk)gj .

In other words,

ϕ(A,B)u =

N∑
j=1

N∑
k=1

τjk(hk, gj)(u, hk)gj

for every vector u.
Clearly, for every unitary matrix {ujk}1≤j,k≤N , there exist orthonormal systems

{gj}1≤j≤N and {hj}1≤j≤N such that (hk, gj) = ujk. Put

ujk
def
=

1√
N

exp

(
2πijk

N

)
, 1 ≤ j, k ≤ N.

Obviously, {ujk}1≤j,k≤N is a unitary matrix. Hence, we may find vectors {gj}Nj=1

and {hj}Nj=1 such that (hk, gj) = ujk. Put τjk =
√
N ujk. By (4.4),

‖ϕ‖L∞(R2) ≤ const(4.5)

and

ϕ(A,B) =

N∑
j=1

N∑
k=1

|ujk|(· , hk)gj =
1√
N

(
·,

N∑
k=1

hk

)
N∑
j=1

gj ,

and so

‖ϕ(A,B)‖ =
√
N.

�

Proof of Theorem 4.1. Let ψ be a function on R that satisfies the hypotheses of
Lemma 4.2. Let ϕ be a function in E ∞

1 (R2). We define the function f on R3 by

f(x, y, z)
def
= ϕ(x, y)ψ(z), (x, y, z) ∈ R

3.

Suppose that A, B and C are finite rank self-adjoint operators. We consider the
triples (A,B,C) and (A,B,0), where 0 is the zero operator. It is easy to see that
if ‖C‖ ≤ 1, then ψ(C) = C and

f(A,B,C)− f(A,B,0) = ϕ(A,B)
(
ψ(C)− ψ(0)

)
= ϕ(A,B)

(
C − 0

)
= ϕ(A,B)C.(4.6)

It is well known that if T is a finite rank operator, then ‖T‖ is equal to the
maximum of ‖TC‖Sp over all rank one self-adjoint operators C of norm 1. Indeed,
we can tale C = (·, u)u, where u is a unit maximizing vector of T .

Now let C be a rank one self-adjoint operator of norm 1 such that

‖ϕ(A,B)C‖Sp = ‖ϕ(A,B)‖.
Then

‖f(A,B,C)− f(A,B,0)‖Sp
= ‖ϕ(A,B)C‖Sp

= ‖ϕ(A,B)‖.(4.7)
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Now suppose that inequality (4.1) holds for a positive number K. Then (4.7)
implies inequality (4.2) which contradicts Lemma 4.3. �

Remark 2. Clearly, we can multiply the operator C constructed above by εn, n ≥ 1,
where {εn} is a sequence of positive numbers such that εn ≤ 1 and εn → 0 as

n → ∞. This allows us to say that there are sequences {An}, {Bn},
{
C

(1)
n

}
and{

C
(2)
n

}
of finite rank self-adjoint operators and a sequence {fn} of functions in

B1
∞,1(R

3) such that

‖fn‖B∞
∞,1

≤ const,

lim
n→∞

∥∥C(1)
n − C(2)

n

∥∥
Sp

= 0,

but

lim
n→∞

∥∥fn(An, Bn, C
(1)
n

)
− fn

(
An, Bn, C

(2)
n

)∥∥
Sp

= ∞.

Proof of Lemma 4.2. It is well known that such functions ψ belong to all Besov

classes; see [Pee]. Let ψn
def
= ψ ∗ Wn, where the Wn are defined in (3.2). Since

ψ ∈ B1
∞,1(R), we have ∑

n∈Z

2n‖ψn‖L∞(R) < ∞,

and so ∑
n≥0

‖ψn‖L∞(R) < ∞.

Now put

ψ� def
= ψ −

∑
n≥0

ψn.

Clearly, ψ� ∈ L∞(R).
It is easy to see that

supp(ϕ⊗ ψ�) ⊂ [−1, 1]3 and supp(ϕ⊗ ψn) ⊂
[
− 2n+1, 2n+1

]3
, n ≥ 0.

By the remark at the end of §3, we have

‖ϕ⊗ ψ‖B1
∞,1(R

3) ≤
∥∥ϕ⊗ ψ�

∥∥
B1

∞,1(R
3)
+

∥∥∥∥∥∥ϕ⊗
∑
n≥0

ψn

∥∥∥∥∥∥
B1

∞,1(R
3)

≤ const ‖ϕ‖L∞(R2)

⎛
⎝∥∥ψ�

∥∥
L∞(R)

+
∑
n≥0

2n‖ψn‖L∞(R)

⎞
⎠

which completes the proof. �

5. Lipschitz type estimates in terms of the rank of the operators

In this section we consider the problem of obtaining a Lipschitz type estimate
for functions of finite rank noncommuting self-adjoint operators in terms of their
rank.
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Let us first consider the case of pairs of finite rank self-adjoint operators. Recall
that it was proved in [ANP] that for p ∈ [1, 2], we have the following Lipschitz type
estimate:

‖f(A1, B1)− f(A2, B2)‖Sp
≤ const ‖f‖B1

∞,1(R
2) max

{
‖A1 −A2‖Sp

, ‖A1 −A2‖Sp

}
for arbitrary pairs (A1, B1) and (A2, B2) of self-adjoint operators and for arbitrary
functions f in B1

∞,1(R
2). On the other hand, the reasoning given in the proof

of Theorem 8.1 of [ANP] shows that for p ∈ [2,∞], there exist a sequence {fN}
of functions in E ∞

2 (R2), sequences
{
A

(N)
1

}
,
{
A

(N)
2

}
and

{
B(N)

}
of self-adjoint

operators of rank at most N such that

‖fN‖L∞(R2) ≤ const,

and∥∥(f(A(N)
1 , B(N)

)
−
(
f(A

(N)
2 , B(N)

)∥∥
Sp

≥ constN1/2−1/p
∥∥A(N)

1 −A
(N)
2

∥∥
Sp

.

The following result shows that this estimate is sharp.

Theorem 5.1. Let (A1, B1) and (A2, B2) be pairs of self-adjoint operators of rank
at most N and let p ∈ [2,∞]. Then∥∥(f(A1, B1

)
−
(
f(A2, B2

)∥∥
Sp

≤ constN1/2−1/p ‖f‖B1
∞,1

max
{
‖A1 −A2‖Sp

, ‖B1 − B2‖Sp

}
for every function f in B1

∞,1(R
2).

Proof. By Theorem 7.2 of [ANP],∥∥(f(A1, B1

)
−
(
f(A2, B2

)∥∥
S2

≤ const ‖f‖B1
∞,1

max
{
‖A1 −A2‖S2

, ‖B1 −B2‖S2

}
.

Obviously,∥∥(f(A1, B1

)
−
(
f(A2, B2

)∥∥
Sp

≤
∥∥(f(A1, B1

)
−
(
f(A2, B2

)∥∥
S2

.

The result follows from the well-known inequalities for finite rank operators:

‖A1 −A2‖S2
≤ constN1/2−1/p‖A1 −A2‖Sp

and

‖B1 −B2‖S2
≤ constN1/2−1/p‖B1 −B2‖Sp

. �

A similar problem can be posed in the case of functions of triples of not neces-
sarily commuting self-adjoint operators of finite rank. The reasoning given in the
proof of Theorem 4.1 shows that for p ∈ [1,∞], there exist a sequence {fN} of func-

tions in B1
∞,1(R

3), sequences
{
A(N)

}
,
{
B(N)

}
,
{
C

(N)
1

}
, and

{
C

(N)
2

}
of self-adjoint

operators of rank at most N such that

‖fN‖B1
∞,1

≤ const,

and∥∥(f(A(N), B(N), C
(N)
1

)
−
(
f(A

(N)
2 , B

(N)
2 , C

(N)
2

)∥∥
Sp

≥ constN1/2‖C1 − C2‖Sp
.
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We do not know whether this lower estimate is sharp. To obtain a trivial upper
estimate, we need the following elementary formula:

f(A1, B, C)− f(A2, B, C)

(5.1)

=
∑ f(λ1, μ, ν)− f(λ2, μ, ν)

λ1 − λ2
EA1

({λ1})(A1 − A2)EA2
({λ2})EB({μ})EC({ν})

for an arbitrary function f on R3 and arbitrary finite rank self-adjoint operators
A1, A2, B and C, where EA1

, EA2
, EB and EC are the spectral projections of

A1, A2, B and C and the sum is taken over λ1, λ2, μ, ν in R such that λ1 �= λ2.
Formula (5.1) can be proved elementarily.

Similar formulae hold for the differences f(A,B1, C)−f(A,B2, C) and f(A,B,C1)
−f(A,B,C2).

Such formulae imply the following trivial upper estimate for arbitrary Lipschitz
functions on R3:

Theorem 5.2. Let f be a Lipschitz function on R
3. Suppose that A1, B1, C1, A2,

B2 and C2 are self-adjoint operators of rank at most N . Then for p ∈ [1,∞], the
following estimate holds:

‖f(A1, B1, C1)− f(A2, B2, C2)‖Sp

≤ 3N4‖f‖Lip
(
‖A1 −A2‖Sp

+ ‖B1 −B2‖Sp
+ ‖C1 − C2‖Sp

)
.

Proof. It follows immediately from formula (5.1) that

‖f(A1, B1, C1)− f(A2, B1, C1)‖Sp
≤ N4‖f‖Lip‖A1 −A2‖Sp

.

In the same way one can establish the inequalities:

‖f(A2, B1, C1)− f(A2, B2, C1)‖Sp
≤ N4‖f‖Lip‖B1 −B2‖Sp

and

‖f(A2, B2, C1)− f(A2, B2, C2)‖Sp
≤ N4‖f‖Lip‖C1 − C2‖Sp

which proves the result. �
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