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Abstract. In this paper, we study the isolation phenomena of Einstein man-

ifolds from the viewpoint of submanifolds theory. First, for locally strongly
convex Einstein affine hyperspheres we prove a rigidity theorem and as its di-
rect consequence we establish a unified affine differential geometric characteri-
zation of the noncompact symmetric spaces E6(−26)/F4 and SL(m,R)/SO(m),

SL(m,C)/SU(m), SU∗(2m)/Sp(m) for each m ≥ 3. Second and analogously,
for Einstein Lagrangian minimal submanifolds of the complex projective space
CPn(4) with constant holomorphic sectional curvature 4, we prove a similar
rigidity theorem and as its direct consequence we establish a unified differen-
tial geometric characterization of the compact symmetric spaces E6/F4 and
SU(m)/SO(m), SU(m), SU(2m)/Sp(m) for each m ≥ 3.

1. Introduction

In this paper we study Einstein manifolds which appear as hypersurfaces or
generally the submanifolds of some ambient spaces. Recall that there are plenty
of investigations about the rigidity phenomena for Einstein manifolds; for related
references we refer to [1, 3, 9, 10, 15, 18, 21, 28, 29, 31], among many others. For ex-
ample, in [3], S. Brendle proved that compact Einstein manifolds with nonnegative
isotropic curvature are locally symmetric, which generalizes Tachibana’s result in
[29]: compact Einstein manifolds with nonnegative curvature operator are locally
symmetric. In [28], Singer also proved a rigidity theorem about positive Einstein
metric with small Ln/2-norm of the Weyl tensor for dimension n = 2m ≥ 4 and
some additional assumptions. Itoh and Satoh [15] then generalized the result of [28],
in particular, it is proved that for a closed connected oriented Einstein manifold
(Mn, g) with positive scalar curvature R and of unit volume Vol(M) = 1, there is a
constant C(n), depending only on n such that if the Ln/2-norm ‖W‖Ln/2 < C(n)R,
thenW = 0 so that (Mn, g) is a finite isometric quotient of the standard n-sphere of
unit volume, whereas in [9] and [31], the various very interesting rigidity theorems
are derived for Einstein 4-manifolds with positive curvature.

The aim of this paper is to establish two theorems, both of which state that if an
Einstein submanifold is located in a special ambient space, then its Weyl conformal
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curvature tensor has an optimal pointwise estimation. To present the results more
precisely, we will consider compact and/or noncompact Einstein manifolds which
can be realized as the submanifolds of one of the two ambient spaces. Our proof
of the results are strongly dependent on the two remarkable achievements in local
differential geometry. The first one is in affine differential geometry about the
finally complete classification of locally strongly convex affine hypersurfaces with
parallel cubic form (also named Fubini-Pick form) by Hu, Li and Vrancken [13] (cf.
also [11, 12] for its preparatory stage). The second one is the updated complete
classification of Lagrangian submanifolds in complex projective space with parallel
second fundamental form by Dillen, Li, Vrancken and Wang [6] and [20]. We point
out that Lagrangian submanifolds in complex projective space with parallel second
fundamental form and without the Euclidean factor were classified in the 1980s by
H. Naitoh and M. Takeuchi in a series of papers [23–26], but their original proof
relies heavily on the theory of Lie groups and symmetric spaces.

Now, we first consider locally strongly convex affine hyperspheres in a unimodular
(n + 1)-dimensional affine space R

n+1 such that their affine metrics are Einstein.
As the main result we will prove:

Theorem 1.1. Let x : Mn → R
n+1 (n ≥ 4) be a locally strongly convex affine

hypersphere with affine mean curvature L1 such that its affine metric is Einstein.
Then we have JR ≤ 0 and the Weyl conformal curvature tensor W of Mn satisfies

(1.1)
∑

(Wijkl)
2 ≤ −(n+ 1)JR,

where J and R denote the Pick invariant and scalar curvature of Mn, respectively.
Moreover, the equality holds identically if and only if one of the following cases
occurs:

(i) J = 0 and Mn is affinely equivalent to a hyperquadric;
(ii) R = 0, J �= 0 and Mn is affinely equivalent to the flat hyperbolic affine

hypersphere Q(1, n) : x1x2 · · ·xn+1 = 1 in Rn+1;
(iii) n = 1

2m(m+ 1)− 1, m ≥ 3, and Mn is affinely equivalent to the standard

embedding of the noncompact symmetric space SL(m,R)/SO(m) into Rn+1;
(iv) n = m2−1, m ≥ 3, and Mn is affinely equivalent to the standard embedding

of the noncompact symmetric space SL(m,C)/SU(m) into R
n+1;

(v) n = 2m2 − m − 1, m ≥ 3, and Mn is affinely equivalent to the standard
embedding of the noncompact symmetric space SU∗(2m)/Sp(m) into Rn+1;

(vi) n = 26, and Mn is affinely equivalent to the standard embedding of the
noncompact symmetric space E6(−26)/F4 into R

27.

Accordingly, if the equality sign in (1.1) holds, then hypersurfaces as stated in (iii),
(iv), (v) and (vi) give all Einstein affine hyperspheres whose affine metrics are not
of constant sectional curvatures.

Remark 1.1. It is well known from [30] (see also [17]) that a locally strongly convex
affine hypersphere with constant affine sectional curvature is affinely equivalent
to either a hyperquadric or the flat Q(1, n). Moreover, our recent result in [14]
shows that up to dimension 4 the cases (i) and (ii) of Theorem 1.1 exhaust all
Einstein hyperspheres, i.e., an Einstein hypersphere for n ≤ 4 must be of constant
affine sectional curvature. Therefore, related to Theorem 1.1, we would raise an
interesting problem of how to classify all locally strongly convex Einstein affine
hyperspheres in Rn+1. At the moment the problem for n ≥ 5 remains open.
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To introduce our second result, we denote by CPn(4) the complex projective
space that is equipped with the Fubuni-Study metric of constant holomorphic sec-
tional curvature 4. We will consider Lagrangian minimal submanifolds of CPn(4)
such that their induced metrics are Einstein. As the main result we will prove:

Theorem 1.2. Let x : Mn → CPn(4) (n ≥ 4) be a Lagrangian minimal submani-
fold with Einstein induced metric; then the Weyl conformal curvature tensor W of
Mn satisfies

(1.2)
∑

(Wijkl)
2 ≥ n+1

n(n−1)SR,

where S and R denote the squared-norm of the second fundamental form and the
scalar curvature of Mn, respectively. Moreover, the equality holds identically if and
only if one of the following cases occurs:

(i) R = n(n− 1) and Mn is congruent with the totally geodesic standard em-
bedding of the real projective space RPn into CPn(4);

(ii) R = 0 and Mn is congruent with the standard embedding of the flat Clifford
torus Tn into CPn(4);

(iii) n = 1
2m(m + 1) − 1, m ≥ 3, and Mn is congruent with the standard

embedding of the compact symmetric space SU(m)/SO(m) into CPn(4);
(iv) n = m2 − 1, m ≥ 3, and Mn is congruent with the standard embedding of

the compact symmetric space SU(m) into CPn(4);
(v) n = 2m2−m−1, m ≥ 3, and Mn is congruent with the standard embedding

of the compact symmetric space SU(2m)/Sp(m) into CPn(4);
(vi) n = 26, and Mn is congruent with the standard embedding of the compact

symmetric space E6/F4 into CP 26(4).

Accordingly, if the equality sign in (1.2) holds, then submanifolds as stated in (iii),
(iv), (v) and (vi) give all Einstein Lagrangian minimal submanifolds which are not
of constant sectional curvature.

Remark 1.2. It is known from Ejiri [8] and then more rigorously by Li-Zhao [19] (see
also Chen and Ogiue [5]) that, for each n ≥ 2, a Lagrangian, minimal submanifold
with constant sectional curvature c in CPn(4) is totally geodesic or flat (c = 0),
so that it is congruent to either RPn or Tn. Trying to generalize this result, from
Theorem 1.2 and similar to that in Remark 1.1, we would raise the problem: How
do we classify all Lagrangian minimal Einstein submanifolds in CPn(4)?

2. Einstein affine hyperspheres and proof of Theorem 1.1

2.1. Basic facts of equiaffine hypersurfaces.
In this section, we briefly review the theory of local equiaffine hypersurfaces; for

details we refer to Chapter 2 of [17] (cf. also [27]). Let Rn+1 be the equiaffine
space equipped with its canonical flat connection and a parallel volume element,
defined by the determinant det. Let Mn be a connected and smooth n-dimensional
manifold, and x : Mn → R

n+1 be a locally strongly convex hypersurface immersion.
We choose an equiaffine frame field {x; e1, e2, . . . , en, en+1} on Mn, such that

det [e1, e2, . . . , en, en+1] = 1,

e1, e2, . . . , en ∈ TxM, Gij := G(ei, ej) = δij , en+1 = Y,

where G and Y denote the (Blaschke-Berwald) affine metric and the equiaffine
normal vector field of Mn, respectively.
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Denote by B the equiaffine Weingarten form of x : Mn → Rn+1. The eigenvalues
of B relative toG are called the affine principal curvatures of x(M), and are denoted
by λ1, . . . , λn. Then the equiaffine mean curvature is defined by L1 = 1

n

∑n
i=1 λi.

An affine hypersurface is an affine hypersphere if and only if λ1 = · · · = λn = const.
Denote by Rijkl, Rij the components of Riemannian curvature tensor and Ricci

tensor with respect to the affine metric, respectively, and by R the affine scalar
curvature. Let Aijk and Aijk,l be the components of the Fubini-Pick form A and
its covariant derivative with respect to the Levi-Civita connection of the affine
metric. Then, we have the following structural equations (cf. Section 2.5 of [17]):

(2.1) Aijk,l −Aijl,k = 1
2 (δikBjl + δjkBil − δilBjk − δjlBik),

(2.2) Rijkl =
∑
m

(AimlAjmk −AimkAjml) +
1
2 (δikBjl + δjlBik − δilBjk − δjkBil),

(2.3) Rij =
∑
k,l

AiklAjkl +
n−2
2 Bij +

n
2L1δij ,

(2.4)
∑
i

Aiij = 0, 1 ≤ j ≤ n,

(2.5) J = 1
n(n−1)

∑
(Aijk)

2, χ = J + L1, χ = 1
n(n−1)R,

where J and χ are called the Pick invariant and normalized affine scalar curvature,
respectively.

2.2. Affine hyperspheres with constant scalar curvature.
In this section, we consider n-dimensional locally strongly convex affine hyper-

spheres with constant affine mean curvature L1 and constant affine scalar curvature
R. Since our concern is the case that the affine metric is Einstein, and that locally
strongly convex affine hyperspheres with constant affine sectional curvature have
been classified in [30], we will assume that n ≥ 4.

First of all, we prove the following result which modifies the statement in [16].

Lemma 2.1. Let x : Mn → Rn+1 be a locally strongly convex affine hypersphere
with constant affine scalar curvature R; then we have

(2.6)
∑

(Aijk,l)
2 +

∑
(Wijkl)

2 + (n+ 1)JR ≤ 0,

where the equality holds identically if and only if (Mn, G) is Einstein.

Proof. Choose as in Section 2.1 a local equiaffine frame field {x; e1, . . . , en+1} along
Mn. Since x(M) is an affine hypersphere, (2.1) - (2.3) yield immediately that

(2.7) Aijk,l = Aijl,k,

(2.8) Rijkl =
∑
m

(AimlAjmk −AimkAjml) + L1(δikδjl − δilδjk),

(2.9) Rij =
∑
k,l

AiklAjkl + (n− 1)L1δij .
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From (2.4) and (2.7), and applying the Ricci identity, we calculate the Laplacian
of the Fubini-Pick form A to get

(2.10)

ΔAijk =
∑
l

Aijk,ll =
∑
l

Aijl,kl

=
∑
l

Aijl,lk +
∑
l

AijrRrlkl +
∑
l

AirlRrjkl +
∑
l

ArjlRrikl

=
∑
l

AijrRrlkl +
∑
l

AirlRrjkl +
∑
l

ArjlRrikl.

It follows that the Laplacian of the Pick invariant J can be calculated by

(2.11)

ΔJ = 1
n(n−1)Δ

(∑
(Aijk)

2
)

= 2
n(n−1)

[∑
(Aijk,l)

2 +
∑

AijkAijk,ll

]

= 2
n(n−1)

[∑
(Aijk,l)

2 +
∑

AijkAijrRrlkl

+
∑

(AijkAirl −AijlAirk)Rrjkl

]
.

Following [16], we substitute (2.8) and (2.9) into (2.11) to get

(2.12) 1
2n(n− 1)ΔJ =

∑
(Aijk,l)

2 +
∑

(Rij)
2 +

∑
(Rijkl)

2 − (n+ 1)RL1.

Using the decomposition

(2.13)
Rijkl = Wijkl +

1
n−2 (δikRjl + δjlRik − δilRjk − δjkRil)

− R
(n−1)(n−2) (δikδjl − δilδjk),

and the computations

(2.14)
∑

(Rijkl)
2 =

∑
(Wijkl)

2 + 4
n−2

∑
(Rij)

2 − 2R2

(n−1)(n−2) ,

we can rewrite (2.12) as

(2.15)

1
2n(n− 1)ΔJ =

∑
(Aijk,l)

2 +
∑

(Wijkl)
2 + n+2

n−2

∑
(Rij)

2

− 2R2

(n−1)(n−2) − (n+ 1)RL1.

This, combining with R = n(n− 1)(J + L1) and the inequality

(2.16)
∑

(Rij)
2 ≥ 1

nR
2,

where the equality holds if and only if the affine metric is Einstein, gives that

(2.17) 1
2n(n− 1)ΔJ ≥

∑
(Aijk,l)

2 +
∑

(Wijkl)
2 + (n+ 1)JR.

Then, noting that R = const. implies that J = const., the assertion (2.6) follows
immediately. �

As an immediately consequence of Lemma 2.1, we have

Theorem 2.1. Let x : Mn → Rn+1 be a locally strongly convex affine hypersphere
with nonnegative constant affine scalar curvature; then it is locally affinely equiva-
lent to an open part of either one of the hyperquadrics, or the flat hyperbolic affine
hypersphere Q(1, n) : x1x2 · · ·xn+1 = 1, where (x1, . . . , xn+1) is the coordinate of
Rn+1.
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Proof. If R = const. is nonnegative, then from (2.6) we have either J = 0, or that
J �= 0, R = 0 and Mn is a hyperbolic affine hypersphere. If J = 0, the Maschke-
Pick-Berwald theorem (cf. Theorem 2.13 in [17]) shows that Mn is locally affinely
equivalent to one of the hyperquadrics. In the latter case, from [16] (cf. Theorem
3.8 of [17]), Mn is locally affinely equivalent to Q(1, n). �

2.3. Proof of Theorem 1.1.
Assume that x : Mn → Rn+1 is a locally strongly convex Einstein affine hyper-

sphere; then from Lemma 2.1, we have

(2.18)
∑

(Aijk,l)
2 +

∑
(Wijkl)

2 + (n+ 1)JR = 0.

Therefore, we have the inequality

(2.19)
∑

(Wijkl)
2 ≤ −(n+ 1)JR,

and the equality sign in (2.19) holds identically if and only if

(2.20) Aijk,l = 0, 1 ≤ i, j, k, l ≤ n,

namely that x : Mn → Rn+1 has parallel Fubini-Pick (cubic) form. If it is the
latter case, then we can apply the Classification Theorem of [13] to see that only
the following three cases can occur:

(1) J = 0 and Mn are affinely equivalent to a hyperquadric.
(2)Mn is obtained either as the Calabi product of a lower dimensional hyperbolic

affine hypersphere with parallel cubic form and a point, or the Calabi product of
two lower dimensional hyperbolic affine hyperspheres both with parallel cubic form.

In this case, according to the results of [12] (cf. [4,7]), (Mn, G) is a Riemannian
manifold with Euclidean factor, i.e., it can be regarded either as (I ×M1, c1dt

2 +
c2h1) or (I ×M1 ×M2, c1dt

2 + c2h1 + c3h2), where c1, c2, c3 are constant, thus the
Ricci curvature Ric( ∂

∂t ,
∂
∂t ) = 0. Then, the Einstein condition implies that R = 0

and Mn is locally affinely equivalent to Q(1, n).
(3) Mn is affinely equivalent to one of the standard embeddings of the noncom-

pact symmetric spaces: SL(m,R)/SO(m), SL(m,C)/SU(m), SU∗(2m)/Sp(m) for
eachm ≥ 3 and E6(−26)/F4, with dimensions 1

2m(m+1)−1,m2−1, 2m2−m−1 and
26, respectively. We claim that these hyperbolic affine hypersurfaces are all of Ein-
stein affine metrics. Indeed, from [2] and its proof of Proposition 4.1, we see that
the standard embeddings of SL(3,R)/SO(3), SL(3,C)/SU(3), SU∗(6)/Sp(3) and
E6(−26)/F4 produce Einstein affine hyperspheres. Generally, the Einstein property
of these examples corresponding to m ≥ 4 can be verified directly by using (2.9)
and the computations of {Aijk}, i.e., components of the difference tensor K in [13].

This completes the proof of Theorem 1.1. �

3. Lagrangian minimal submanifolds in CPn(4) and proof

of Theorem 1.2

3.1. CPn(4) and its Lagrangian minimal submanifolds.
In this section, we briefly review the theory of Lagrangian submanifolds in the

complex projective space; for details we refer to [5] and [19]. Let CPn(4) denote the
n-dimensional complex projective space that is equipped with the canonical Fubini-
Study metric g of constant holomorphic sectional curvature 4, and J denotes its
almost complex structure.
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Now, we suppose that Mn is a Lagrangian submanifold of CPn(4). That means
that the almost complex structure J of CPn(4) carries each tangent space of Mn

into its corresponding normal space. We choose a local orthonormal frame field
{e1, e2, . . . , e2n} for CPn(4) such that, restricted to Mn, the vectors e1, e2, . . . , en
are tangent to Mn and en+i = Jei for 1 ≤ i ≤ n. In follows we shall make use of
the indices convention: 1 ≤ i, j, k, . . . ≤ n.

Let hk
ij denote the components of the second fundamental form h of Mn ↪→

CPn(4) with respect to the frame field {e1, . . . , en, Je1, . . . , Jen}, namely we assume
that h(ei, ej) =

∑
hk
ijJek. Then we have the totally symmetric

(3.1) hk
ij = hj

ik = hi
kj .

From now on we further suppose that Mn is minimal; then

(3.2)
∑
i

hk
ii = 0.

Denote by Rijkl, Rij , h
l
ij,k respectively the components of Riemannian curvature

tensor, Ricci tensor and the covariant derivative ∇h of the second fundamental
form of Mn. Then, we have the following equations:

(3.3) hl
ij,k = hl

ik,j ,

(3.4) Rijkl = δikδjl − δilδjk +
∑

(hm
ikh

m
jl − hm

il h
m
jk),

(3.5) Rij = (n− 1)δij −
∑

hl
ikh

l
jk,

(3.6) R = n(n− 1)− S, S =
∑

(hk
ij)

2,

where S and R denote the squared-norm of the second fundamental form and the
scalar curvature of Mn, respectively.

3.2. Proof of Theorem 1.2.
We begin with the following result.

Lemma 3.1. Let x : Mn → CPn(4) (n ≥ 4) be a Lagrangian minimal submanifold
with Einstein induced metric; then we have

(3.7)
∑

(hl
ij,k)

2 −
∑

(Wijkl)
2 + n+1

n(n−1)SR = 0.

Proof. Using (3.1)– (3.3) and the Ricci identity, we have

(3.8)

Δhk
ij =

∑
l

hk
ij,ll =

∑
l

hk
il,jl

=
∑
l

hk
il,lj +

∑
l,r

hk
irRrljl +

∑
l,r

hk
rlRrijl +

∑
l,r

hr
ilRrkjl

=
∑
l,r

hk
irRrljl +

∑
l,r

hk
rlRrijl +

∑
l,r

hr
ilRrkjl.
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From the computation of the Laplacian of 1
2S, with using (3.1), (3.4)– (3.6), (3.8)

and (2.14), we obtain

(3.9)

1
2ΔS =

∑
(hk

ij,l)
2 +

∑
(hi

rjh
i
kl − hk

ijh
r
il)Rkrjl +

∑
hk
ijh

k
irRrj

=
∑

(hk
ij,l)

2 −
∑

(Rij)
2 −

∑
(Rijkl)

2 + (n+ 1)R

=
∑

(hk
ij,l)

2 −
∑

(Wijkl)
2 + n+1

n(n−1)SR.

Noting that R = const. implies that S = const., then the assertion (3.7) follows. �

Next, from (3.7) we have

(3.10)
∑

(Wijkl)
2 = n+1

n(n−1)SR+
∑

(hk
ij,l)

2 ≥ n+1
n(n−1)SR,

and the equality sign in (3.10) holds identically if and only if

(3.11) hk
ij,l = 0, 1 ≤ i, j, k, l ≤ n,

namely that x : Mn → CPn(4) has parallel second fundamental form.
If it is the latter case, then we can apply the Classification Theorem of [6] to see

that only the following three cases can occur:
(1) Mn is totally geodesic. In this case, according to the result of [5, 8, 19], Mn

is congruent to RPn, which has constant sectional curvature 1.
(2) Mn is obtained as the Calabi product of a lower dimensional Lagrangian

submanifold with parallel second fundamental form and a point, or the Calabi
product of two lower dimensional Lagrangian submanifolds with parallel second
fundamental form. In this case, according to [20], Mn has a Euclidean factor
so that its Ricci curvature Ric = 0 and therefore we have R = 0. It follows
that

∑
(Wijkl)

2 = 0 and Mn becomes a minimal Lagrangian submanifold with
constant sectional curvature 0. Then, according to Ejiri [8], Li and Zhao [19], Mn

is congruent to the flat Clifford torus Tn in CPn(4).
(3) Mn is congruent to one of the standard embeddings of the following com-

pact symmetric spaces: SU(m)/SO(m), SU(m), SU(2m)/Sp(m) for each m ≥ 3
and E6/F4, with dimensions 1

2m(m + 1) − 1, m2 − 1, 2m2 − m − 1 and 26, re-
spectively. We claim that these Lagragian submanifolds are indeed minimal and
are all of Einstein induced metrics. In fact, from [22] and the statement after its
proof of Theorem 1 there, we see that the standard embeddings of SU(3)/SO(3),
SU(3), SU(6)/Sp(3) and E6/F4 into CPn(4) produce Einstein Lagrangian minimal
submanifolds. Generally, the Einstein property of these examples corresponding to
m ≥ 4 can be verified directly by using (3.5) and the computation of {hk

ij}. We

remark that the computation of {hk
ij} is tedious and a little complicated, which

however can be carried just following the procedure outlined in Section 10 of [6].
We have completed the proof of Theorem 1.2. �
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