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BESSEL BRIDGE REPRESENTATION FOR THE HEAT KERNEL

IN HYPERBOLIC SPACE

XUE CHENG AND TAI-HO WANG

(Communicated by Zhen-Qing Chen)

Abstract. This article shows a Bessel bridge representation for the transition
density of Brownian motion on the Poincaré space. This transition density
is also referred to as the heat kernel on the hyperbolic space in differential
geometry literature. The representation recovers the well-known closed form
expression for the heat kernel on hyperbolic space in dimension three. However,
the newly derived bridge representation is different from the McKean kernel

in dimension two and from the Gruet’s formula in higher dimensions. The
methodology is also applicable to the derivation of an analogous Bessel bridge
representation for the heat kernel on a Cartan-Hadamard radially symmetric
space and for the transition density of the hyperbolic Bessel process.

1. Introduction

The heat kernel, also known as the fundamental solution for the heat operator,
plays a crucial role in various branches of mathematics including analysis, differ-
ential geometry, and probability theory. On Euclidean spaces, heat kernels have
closed form expression given by the Gaussian kernels, which also serve as the tran-
sition density of Euclidean Brownian motions. Deriving, to some extent, analytical
expression of the heat kernel on general curved space is more involved if not com-
pletely impossible. Symmetry of the underlying space plays an important role.
Hyperbolic space is one of the symmetry spaces with constant negative curvature
that has an expression for the heat kernel in analytic form. As we shall see through-
out the article, due to symmetry, expressions for heat kernels on hyperbolic space
depend solely on geodesic distance.

Derivations of the heat kernel on hyperbolic space in closed or quasi-closed forms
have been done by various authors. We list a notable few as follows. McKean in
[11] presented a quasi-closed form expression (up to an integral), nowadays known
as the McKean kernel, for the heat kernel on two dimensional hyperbolic space; see
(2.1) below. A detailed derivation of the McKean kernel using Fourier transform,
isometries, and eigenvalues and eigenfunctions of the Laplace-Beltrami operator can
be found in [1] (Section 2 in Chapter X). The closed form expression for the heat
kernel on three dimensional hyperbolic space, see (2.2) below, and the Millson’s
recursion formula for the higher dimensional hyperbolic heat kernel were reported
in [2]. A different proof of Millson’s recursion formula based on the relationship
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between the heat kernel and the wave kernel and the explicit formula for the wave
kernel on symmetry space was given in [3]. The following expression obtained in
[4] for the n-dimensional hyperbolic heat kernel is known as the Gruet’s formula

pHn(t, z, w) =
e−(n−1)2t/8

π(2π)n/2
√
t
Γ

(
n+ 1

2

)∫ ∞

0

e(π
2−b2)/2t sinh(b) sin(πb/t)

[cosh(b) + cosh(r)](n+1)/2
db,

where r = d(z, w) is the geodesic distance between z, w ∈ Hn. We refer the inter-
ested reader to [10] for a derivation of the Gruet’s formula and its relationship to
the pricing of Asian options. A probabilistic approach, which is different from the
one employed in the current article, of deriving the heat kernel on two dimensional
hyperbolic space can also be found in [7]. As closed form expression is concerned,
[9] obtained expressions for heat kernels on symmetric spaces of rank 1. Finally, it
is worth mentioning that a nice application of the McKean kernel in quantitative
finance can be found in [5].

In this article, we prove yet another representation for the heat kernel on hy-
perbolic space: the Bessel bridge representation in Theorem 1. By working under
geodesic polar coordinates, Brownian motion in hyperbolic space is decomposed
into a one dimensional process in the radial part and a process on the unit sphere
of codimension one. The radial part, also known as the hyperbolic Bessel process,
is indeed a Brownian motion with drift. Due to symmetry of hyperbolic space, the
drift in the radial part depends only on the geodesic distance. Girsanov’s theorem
allows us to define an equivalent probability measure on the underlying probability
space through a Radon-Nikodym derivative so that, in the new probability measure,
the radial process becomes a Bessel process of order n. We then substitute the sto-
chastic integral that results from the Radon-Nikodym derivative with a Riemann
integral by applying Ito’s formula. The bridge representation of the hyperbolic
heat kernel is thus obtained by conditioning on the terminal point of the radial
process in the new probability measure. The whole procedure is implemented in
the proof of Theorem 1. Similar representation for the transition density of the
hyperbolic Bessel process is shown in Theorem 2. With minor modifications, the
same procedure is also applicable to the case of general Cartan-Hadamard radially
symmetric spaces and the result is summarized in Theorem 3. We remark that, in
the one dimensional case, the idea of bridge representation for transition density
of a diffusion first appeared, to our knowledge, in [13]; see also [14] for further
discussions.

2. The heat kernel on hyperbolic space

Throughout the text, stochastic processes and random variables are assumed
defined on the complete filtered probability space (Ω,F ,P, {Ft}t∈[0,∞)) satisfying
the usual conditions. We shall denote the n-dimensional hyperbolic space by Hn

and the associated heat kernel on Hn between z, w ∈ Hn at time t by pHn(t, z, w).

2.1. The hyperbolic space. Conventionally, hyperbolic spaces are parametrized
by two isometrically equivalent models: the half-space model and the ball model.
The underlying space in the half-space model is the half plane Rn

+ = {(x1, · · · , xn) :
xn > 0}, while the underlying space in the ball model is the open ball Bn = {y =
(y1, · · · , yn) : ‖y‖ < 1}. The transformation between the two models can be found
for instance in [1] (p. 264). In particular, for n = 2, the transformation between
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the two models is given by the Möbius transform, T : C+ → B2,

w = T (z) =
z − i

z + i
.

In the half-space model, the metric ds2 and the Laplace-Beltrami are given respec-
tively by

ds2 =
dx2

1 + · · ·+ dx2
n

x2
n

,

ΔM = x2
n

(
∂2
x1

+ · · ·+ ∂2
xn

)
+ (2− n)xn∂n;

whereas in the ball model, the metric is given, in polar coordinates (ρ, θ), θ ∈ Sn−1,
by

ds2 =
4

(1− ρ2)2
(
dρ2 + ρ2dθ2

)
,

ΔM =
(1− ρ2)2

4

(
∂2
ρ +

1

ρ
∂ρ +

1

ρ2
ΔSn−1

)
,

where dθ2 is the Riemann metric and ΔSn−1 the Laplace-Beltrami operator on the
standard unit sphere Sn−1. Moreover, if we make the transformation ρ = tanh

(
r
2

)
,

then (r, θ) becomes the geodesic polar coordinates for Hn. We shall be working
primarily in the geodesic polar coordinates (r, θ) ∈ [0,∞)× Sn−1 under which the
Riemann metric and the Laplace-Beltrami operator of Hn are given respectively as

ds2 = dr2 + sinh2 rdθ2,

ΔHn = ∂2
r + (n− 1) coth r∂r +

1

sinh2 r
ΔSn−1 .

We remark that the geodesic polar coordinate on Hn is a global diffeomorphism,
henceforth defined as a global coordinate, since hyperbolic space is Cartan-Hada-
mard.

2.2. The heat kernel. Generally speaking, the heat kernel on a differentiable
manifoldM is a fundamental solution to the (probabilist’s) heat operator ∂t− 1

2ΔM ,
where ΔM is the Laplace-Beltrami operator on M . The minimal heat kernel also
serves as the transition density of Brownian motion on M . We refer the reader to
[6] for expositions of Brownian motions on manifolds and their relationship to the
heat kernel. For the reader’s reference, we reproduce the heat kernel on the two
and three dimensional hyperbolic spaces as follows:

pH2(z, w, t) =

√
2e−t/8

(2πt)3/2

∫ ∞

d(z,w)

ξe−
ξ2

2t√
cosh ξ − cosh d(z, w)

dξ(2.1)

and

(2.2) pH3(z, w, t) =
e−

r2

2t

(2πt)3/2
e−

t
2

r

sinh(r)
,

where r = d(z, w) is the geodesic distance between z and w. Note that the heat
kernels given in (2.1) and (2.2) are densities with respect to the volume form.

In the following, we apply Girsanov’s theorem to derive an expression for the
heat kernel over Hn, for n ≥ 2, in which the closed form expression (2.2) for H3

is recovered. Note that since the Laplace-Beltrami operator on Hn is rotationally
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invariant, the heat kernel, or equivalently the transition density for the Brownian
motion on hyperbolic space, is also rotationally invariant, hence a radial function.

Consider the processes (Rt,Θt) governed by the SDEs

dRt = dWt +
n− 1

2
coth(Rt) dt,(2.3)

dΘt =
1

sinh(Rt)
dZt,(2.4)

where Wt is a standard one dimensional Brownian motion and Zt is a Brownian
motion on the standard sphere Sn−1, independent of Wt. The infinitesimal gen-
erator of the process (Rt,Θt) is

1
2ΔHn . Thus, it represents a Brownian motion on

Hn in geodesic polar coordinates. We set the initial condition Θ0 to be a random
variable uniformly distributed on Sn−1 so that the distribution of Θt remains uni-
formly distributed on Sn−1 for all t. The main result of the article is given in the
following theorem.

Theorem 1 (Bessel bridge representation). Let z, w ∈ Hn. The heat kernel
pHn(T, z, w) on the hyperbolic space H

n has the following representation:
(2.5)

pHn(T, z, w) = e−
(n−1)2T

8

( r

sinh r

)n−1
2 e−

r2

2T

(2πT )
n
2
Ẽr

[
e
− (n−1)(n−3)

8

∫ T
0

[
1

sinh2(Rt)
− 1

R2
t

]
dt

]
,

where r = r(z, w) is the geodesic distance between z and w. Ẽr[·] denotes the

conditional expectation Ẽ[·|RT = r], where Rt is a Bessel process of order n in the

P̃-measure.

Proof. Let (Rt,Θt) be the process satisfying (2.3):(2.4) with initial conditions R0 =
0 and Θ0 being uniformly distributed on Sn−1. We start with calculating the
expectation of an arbitrary bounded measurable radial function f as

E[f(RT )] =

∫
Sn−1

∫ ∞

0

f(r)p(T, r) sinhn−1 rdrdω,

where dω is the volume form on Sn−1 and p(T, r) = pHn(T, z, w), r = r(z, w)
denotes the geodesic distance between z and w. For the radial process Rt, define
the new measure P̃ by the Radon-Nikodym derivative

(2.6)
dP̃

dP
= e

∫ T
0

h(Rt)dWt− 1
2

∫ T
0

h2(Rt)dt,

where h(r) = n−1
2

[
1
r − coth(r)

]
. Note that h is a bounded function, in fact, |h(r)| ≤

n−1
2 for all r ≥ 0. Thus (2.6) is a well-defined change of probability measure.

Therefore, Girsanov’s theorem implies that, under the measure P̃, Wt is a Brownian
motion with drift h. Moreover, in the P̃-measure, the SDE for the radial process
Rt becomes

dRt = dW̃t +
n− 1

2

dt

Rt
,

which is a Bessel process of order n. Therefore, we have

E[f(RT )] = Ẽ

[
f(RT )

dP

dP̃

]
= Ẽ

[
f(RT )e

−
∫ T
0

h(Rt)dWt+
1
2

∫ T
0

h2(Rt)dt
]

= Ẽ

[
f(RT )e

−
∫ T
0

h(Rt)dW̃t− 1
2

∫ T
0

h2(Rt)dt
]
.(2.7)
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We substitute the stochastic integral in (2.7) with a Riemann integral by applying
Ito’s formula as follows. Let H be an antiderivative of h, i.e., H ′ = h. Apparently,
H(r) = n−1

2 ln
(

r
sinh r

)
. Then by applying Ito’s formula we have∫ T

0

h(Rt)dW̃t = H(RT )−H(0)−
∫ T

0

[
h′(Rt)

2
+

n− 1

2

h(Rt)

Rt

]
dt.

It follows that the exponent of the exponential term in (2.7) becomes

−
∫ T

0

h(Rt)dW̃t −
1

2

∫ T

0

h2(Rt)dt

= −H(RT ) +H(0) +

∫ T

0

[
h′(Rt)

2
+

n− 1

2

h(Rt)

Rt
− h2(Rt)

2

]
dt

= ln

[
sinh(RT )

RT

]n−1
2

− (n− 1)2

8
T − (n− 1)(n− 3)

8

∫ T

0

[
1

sinh2(Rt)
− 1

R2
t

]
dt.

Hence, we have

E[f(RT )]

= e−
(n−1)2T

8 Ẽ

[
f(RT )

{
sinh(RT )

RT

}n−1
2

e
− (n−1)(n−3)

8

∫ T
0

[
1

sinh2(Rt)
− 1

R2
t

]
dt

]
.

In particular, when n = 3, the last expression has a much simpler form:

E[f(RT )] = e−
T
2 Ẽ

[
f(RT )

sinh(RT )

RT

]
.

Finally, since Rt in P̃ measure is a Bessel process of order n, we end up with∫
Sn−1

∫ ∞

0

f(r)p(T, r) sinhn−1 rdrdω = E[f(RT )]

= e−
(n−1)2T

8 Ẽ

[
f(RT )

{
sinh(RT )

RT

}n−1
2

e
− (n−1)(n−3)

8

∫ T
0

[
1

sinh2(Rt)
− 1

R2
t

]
dt

]

= e−
(n−1)2T

8
Γ
(
n
2

)
2π

n
2

∫
Sn−1

∫ ∞

0

f(r)

(
sinh r

r

)n−1
2

× Ẽr

[
e
− (n−1)(n−3)

8

∫ T
0

[
1

sinh2(Rt)
− 1

R2
t

]
dt

]
2rn−1e−

r2

2T

(2T )
n
2 Γ
(
n
2

)drdω
= e−

(n−1)2T
8

∫
Sn−1

∫ ∞

0

f(r)
( r

sinh r

)n−1
2 e−

r2

2T

(2πT )
n
2

× Ẽr

[
e
− (n−1)(n−3)

8

∫ T
0

[
1

sinh2(Rt)
− 1

R2
t

]
dt

]
sinhn−1 rdrdω,

where in passing to the penultimate equality we used the probability density pB of
the Bessel process Rt given by

pB(t, r) =
2rn−1e−

r2

2t

(2t)
n
2 Γ
(
n
2

)
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which satisfies the Fokker-Planck equation

∂tu =
1

2
∂2
ru− n− 1

2
∂r

(u
r

)
with initial condition u(r, 0) = δ(r), the Dirac delta function centered at 0. Also

note that the normalizing constant 2π
n
2

Γ(n
2 )

comes from the volume of Sn−1. Thus,

we obtain the bridge representation (2.5) for the transition density of hyperbolic
Brownian motion. �

Remark 1. Note that when n = 3 the representation (2.5) reduces to

pH3(T, z, w) = e−
T
2

r

sinh r

e−
r2

2T

(2πT )
3
2

which coincides with the closed form expression (2.2). However, for n = 2, (2.5)
reads

pH2(T, z, w) = e−
T
8

√
r

sinh r

e−
r2

2T

2πT
Ẽr

[
e

1
8

∫ T
0

{
1

sinh2(Rt)
− 1

R2
t

}
dt

]
.

Notice that

(1) This expression is different from the McKean kernel (2.1) or the Gruet’s
formula in the sense that a) the power of 2πT is in the correct dimension

(n2 = 1) and b) the “Gaussian” term e−
r2

2T is factored outfront naturally.

(2) The integrand in the exponential term, i.e., the function φ(x) := 1
sinh2 x

− 1
x2

is increasing in [0,∞) with limx→0+ φ(x) = − 1
3 and limx→∞ φ(x) = 0.

Therefore, φ is bounded above by 0 and below by − 1
3 .

As applications of the bridge representation (2.5), a series expansion and an as-
ymptotic expansion in small time for the hyperbolic heat kernel are almost straight-
forward. For notational simplicity, hereafter in this subsection we shall denote it
by

g(r) = − (n− 1)(n− 3)

8

[
1

sinh2(r)
− 1

r2

]
.

Note that g is strictly decreasing and |g(r)| ≤ (n−1)(n−3)
24 for all r > 0.

Corollary 1. The hyperbolic heat kernel pHn has the following series expansion:

pHn(T, z, w)

(2.8)

=e−
(n−1)2T

8

( r

sinh r

)
n−1
2

e−
r2

2T

(2πT )
n
2
e
∫ T
0

g(rt)dt
∞∑
k=0

T k

k!
Ẽr

[(∫ 1

0

g(RTs)−g(rTs)ds

)k
]
,

where rt, for t ∈ [0, T ], is defined by

rt = g−1
(
Ẽr[g(Rt)]

)
.(2.9)

In other words, g(rt) is an unbiased estimator for g(Rt) in the Bessel bridge mea-
sure.
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Proof. It suffices to deal with the conditional expectation term in (2.5)

Ẽr

[
e
− (n−1)(n−3)

8

∫ T
0

{
1

sinh2(Rt)
− 1

R2
t

}
dt

]

= e
∫ T
0

g(rt)dtẼr

[
e
∫ T
0

{g(Rt)−g(rt)}dt
]

= e
∫ T
0

g(rt)dt Ẽr

⎡
⎣ ∞∑
k=0

1

k!

(∫ T

0

{g(Rt)− g(rt)} dt
)k
⎤
⎦

= e
∫ T
0

g(rt)dt
∞∑
k=0

1

k!
Ẽr

⎡
⎣
(∫ T

0

{g(Rt)− g(rt)} dt
)k
⎤
⎦

by the dominating convergence theorem since the random variable∫ T

0

{g(Rt)− g(rt)} dt

is bounded. In fact,∣∣∣∣∣
∫ T

0

{g(Rt)− g(rt)} dt
∣∣∣∣∣ ≤ (n− 1)(n− 3)

12
T almost surely.

Finally, by making the change of variable t = Ts we obtain the series expansion
(2.8). �

We remark that in fact we have the freedom of selecting the deterministic path
rt in the series expansion (2.8). We choose the path as such since it serves as a first
order “unbiased estimator” in the small time asymptotic expansion in the corollary
that follows.

Corollary 2. As T → 0+, the hyperbolic heat kernel pHn has the following small
time asymptotic expansion up to second order:

pHn(T, z, w)(2.10)

= e−
(n−1)2T

8

( r

sinh r

)n−1
2 e−

r2

2T

(2πT )
n
2
e
∫ T
0

g(rt)dt
{
1 +O(T 2)

}
,

where rt is given in (2.9).

Proof. Consider the infinite series on the right hand side of (2.8),

∞∑
k=0

T k

k!
Ẽr

[(∫ 1

0

g(RTs)− g(rTs)ds

)k
]

= 1 + T Ẽr

[∫ 1

0

{g(RTu)− g(rTu)} du
]
+O(T 2)

= 1 +O(T 2)

by the definition of the path rt. �
Note that if we choose a different path rt from (2.9), then the asymptotic ex-

pansion in (2.10) is of order T only.
Last, by näıvely choosing rt as the straight line connecting 0 and r as well as

the unbiased estimator (2.9), in Figure 1 we illustrate numerically the accuracy of
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the asymptotic expansion (2.10), compared with the Gruet’s formula. As shown
in the plots, the unbiased estimator does a pretty decent job; whereas the straight
line approximation is off for high dimensions.
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Figure 1. Plots of the hyperbolic heat kernel at time 1 in various
dimensions. Approximation of rt in (2.10) is shown by a straight
line in green and by the unbiased estimator (2.9) in blue. Gruet’s
formula is shown in red.

2.3. Transition density of hyperbolic Bessel process. The radial part Rt of
hyperbolic Brownian motion satisfying (2.3) is also referred to as the hyperbolic
Bessel process. Hyperbolic Bessel processes and the calculations of their related
moments are extensively explored in recent papers [8] and [12]. By the same token
as in Theorem 1, we may as well derive a Bessel bridge representation for the
hyperbolic Bessel process. The advantage of the bridge representation is that the
expression is consistent across dimensions. However, formulas given in [12] (see
Theorem 3.3), obtained by applying the Millson’s recursion formula, become more
and more intractable as the dimension goes higher.

Theorem 2. The transition density pHB(T, x, y) of the hyperbolic Bessel process
Rt of order n from x to y has the following Bessel bridge representation. For T > 0
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and x ≥ 0, y > 0,

pHB(T, x, y)(2.11)

= e−
(n−1)2T

8

{
sinh(y)

sinh(x)

}n−1
2

Ẽx

[
e
− (n−1)(n−3)

8

∫ T
0

[
1

sinh2(Rt)
− 1

R2
t

]
dt

∣∣∣∣∣RT = y

]

×e−
x2+y2

2T

√
2πT

(xy
T

)n−1
2 1

2
n−1
2 Γ(n−1

2 )

∫ π

0

e
xy
T cos(ξ) sinn−2(ξ)dξ.

Proof. As in the proof of Theorem 1, for any bounded measurable function f , the
expectation of f(Rt) conditioned on R0 can be written as

E[f(RT )|R0]

=e−
(n−1)2T

8 ẼR0

[
f(RT )

{
sinh(RT )

RT

R0

sinh(R0)

}n−1
2

e
− (n−1)(n−3)

8

∫ T
0

[
1

sinh2(Rt)
− 1

R2
t

]
dt

]
,

where Ẽ[·] is the expectation in the P̃-measure defined in (2.6), under which Rt is a
Bessel process of order n. Recall that the transition density pB(t, x, y) of the Bessel
process of order n from x to y in time t is given by

pB(t, x, y) =

⎧⎪⎪⎨
⎪⎪⎩

1
t

(
y
x

)ν
ye−

x2+y2

2t Iν
(
xy
t

)
if x 	= 0;

2yn−1e−
y2

2t

(2t)
n
2 Γ(n

2 )
if x = 0,

where ν = n
2 − 1. Hence, the transition density pHB(t, x, y) (from x to y in time t)

for the hyperbolic Bessel process (i.e., Rt in the P-measure) has the representation

pHB(T, x, y)

= e−
(n−1)2T

8

{
sinh(y)

y

x

sinh(x)

}n−1
2

Ẽx

[
e
− (n−1)(n−3)

8

∫ T
0

[
1

sinh2(Rt)
− 1

R2
t

]
dt

∣∣∣∣∣RT = y

]

× 1

T

(y
x

)ν
ye−

x2+y2

2T Iν

(xy
T

)

= e−
(n−1)2T

8

{
sinh(y)

sinh(x)

}n−1
2

Ẽx

[
e
− (n−1)(n−3)

8

∫ T
0

[
1

sinh2(Rt)
− 1

R2
t

]
dt

∣∣∣∣∣RT = y

]

× e−
x2+y2

2T

√
2πT

(xy
T

)n−1
2 1

2
n−1
2 Γ(n−1

2 )

∫ π

0

e
xy
T cos(ξ) sinn−2(ξ)dξ,

where in the last equality we used the following integral representation for the
modified Bessel function Iν

Iν(z) =
zν

2ν
√
π Γ(ν + 1

2 )

∫ π

0

ez cos(ξ) sin2ν(ξ)dξ.

�
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In particular, when n = 3, (2.11) can be expressed in elementary functions as

pHB(t, x, y)

= e−
t
2
sinh(y)

sinh(x)

e−
x2+y2

2t

√
2πt

xy

t

1

2

∫ π

0

e
xy
t cos(ξ) sin(ξ)dξ

=
e−

t
2

√
2πt

sinh(y)

sinh(x)
e−

x2+y2

2t

(
e

xy
t − e−

xy
t

)

=
e−

t
2

√
2πt

sinh(y)

sinh(x)

(
e−

(x−y)2

2t − e−
(x+y)2

2t

)
which coincides with the formula in [12]. We summarize the result in the following
corollary.

Corollary 3. The transition density pHB of the hyperbolic Bessel process Rt of
order 3 has the following closed form expression. For t > 0 and x ≥ 0, y > 0,

pHB(t, x, y) =
e−

t
2

√
2πt

sinh(y)

sinh(x)

(
e−

(x−y)2

2t − e−
(x+y)2

2t

)
.

Notice that, since the conditional expectation term in (2.11) is exactly the same
as the one in (2.5), one can easily derive series and small time asymptotic expansions
for the transition density of the hyperbolic Bessel process, similarly as the ones in
Corollaries 1 and 2. For example, we have

Corollary 4. As T → 0+, the transition density pHB of the hyperbolic Bessel
process has the following small time asymptotic expansion up to second order:

pHB(T, x, y)

= e−
(n−1)2T

8

{
sinh(y)

sinh(x)

}n−1
2

e
− (n−1)(n−3)

8

∫ T
0

[
1

sinh2(rt)
− 1

r2t

]
dt

×e−
x2+y2

2T

√
2πT

(xy
T

)n−1
2 1

2
n−1
2 Γ(n−1

2 )

∫ π

0

e
xy
T cos(ξ) sinn−2(ξ)dξ

{
1 +O(T 2)

}
,

where rt is given in (2.9).

3. Bridge representation in radially symmetric spaces

Let M be a radially symmetric space that is also Cartan-Hadamard. We recall
that a Cartan-Hadamard manifold is a negatively curved, complete and simply
connected Riemannian manifold whose exponential map at any given point defines
a global diffeomorphism. Consequently, the geodesic polar coordinates at pole are
globally defined for such manifolds. We refer the reader to [6] and the references
therein for more detailed discussions. In geodesic polar coordinates, the Riemann
metric ds2 and the Laplace-Beltrami operator ΔM onM can be written respectively
as

ds2 = dr2 +G2(r)dθ2,(3.1)

ΔM = ∂2
r + (n− 1)

G′(r)

G(r)
∂r +

1

G2(r)
ΔSn−1 ,(3.2)

where r is the geodesic distance and, as before, dθ2 denotes the standard Riemann
metric over the unit sphere Sn−1. The radial function G is nonnegative and satisfies
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G(0) = 0 and G′(0) = 1. Conceivably due to symmetry, the heat kernel on such
spaces has analogous Bessel bridge representation as for the hyperbolic space with
minor modifications. We present the representation in the following theorem but
omit its proof since it is almost identical with the proof of Theorem 1.

Theorem 3 (Bessel bridge representation in radially symmetric space). Let M be
an n-dimensional Cartan-Hadamard radial symmetric space with Riemann metric
and Laplace-Beltrami operator given by (3.1) and (3.2) respectively at its pole z ∈
M . Further assume that G satifies the regularity condition

∣∣∣ ddr ln G(r)
r

∣∣∣ ≤ C for

some C > 0. Then, for w ∈ M , the heat kernel pM (T, z, w) has the following
representation:

pM (T, z, w)

=

{
r

G(r)

}n−1
2 e−

r2

2T

(2πT )
n
2
Er

[
e

∫ T
0

(
(n−1)(n−3)

8

{
1

R2
t
−

(
G′(Rt)
G(Rt)

)2
}
−n−1

4
G′′(Rt)
G(Rt)

)
dt

]
,(3.3)

where r = r(z, w) is the geodesic distance between z and w. Er[·] denotes the Bessel
bridge measure, i.e., the conditional expectation E[·|RT = r].

Remark 2. Similarly, in three dimensional case, n = 3, the representation (3.3) has
the following slightly simpler form:

p(T, z, w) =
r

G(r)

e−
r2

2T

(2πT )
3
2

Ẽr

[
e−

1
2

∫ T
0

G′′(Rt)
G(Rt)

dt

]
,

where again Er[·] denotes the expectation under Bessel bridge measure. Apparently,
it recovers pH3 in (2.2) by setting G(r) = sinh r.

Finally, a direct application of (3.3) is the following expansion in small time of
the heat kernel on radially symmetry space:

Corollary 5. As T → 0+,

pM (T, z, w) =

{
r

G(r)

}n−1
2 e−

r2

2T

(2πT )
n
2

×
{
1+

∫ T

0

(
(n−1)(n−3)

8
Er

[
1

R2
t

−
(
G′(Rt)

G(Rt)

)2
]
− n−1

4
Er

[
G′′(Rt)

G(Rt)

])
dt+O(T 2)

}
,

where Rt is a Bessel bridge of order n connecting 0 and r in time T .
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[8] Jacek Jakubowski and Maciej Wísniewolski, On hyperbolic Bessel processes and beyond,
Bernoulli 19 (2013), no. 5B, 2437–2454, DOI 10.3150/12-BEJ458. MR3160560

[9] Hiroyuki Matsumoto, Closed form formulae for the heat kernels and the Green functions for
the Laplacians on the symmetric spaces of rank one, Bull. Sci. Math. 125 (2001), no. 6-7,
553–581, DOI 10.1016/S0007-4497(01)01099-5. Rencontre Franco-Japonaise de Probabilités
(Paris, 2000). MR1869991

[10] Hiroyuki Matsumoto and Marc Yor, Exponential functionals of Brownian mo-
tion. II. Some related diffusion processes, Probab. Surv. 2 (2005), 348–384, DOI
10.1214/154957805100000168. MR2203676

[11] H. P. McKean, An upper bound to the spectrum of Δ on a manifold of negative curvature,
J. Differential Geometry 4 (1970), 359–366. MR0266100
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