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A NOTE ON GROTHENDIECK’S

STANDARD CONJECTURES OF TYPE C+ AND D

GONÇALO TABUADA

(Communicated by Jerzy Weyman)

Abstract. Grothendieck conjectured in the sixties that the even Künneth
projector (with respect to a Weil cohomology theory) is algebraic and that
the homological equivalence relation on algebraic cycles coincides with the nu-
merical equivalence relation. In this note we extend these celebrated conjec-
tures from smooth projective schemes to the broad setting of smooth proper
dg categories. As an application, we prove that Grothendieck’s conjectures
are invariant under homological projective duality. This leads to a proof of
Grothendieck’s original conjectures in the case of intersections of quadrics and
linear sections of determinantal varieties. Along the way, we also prove the
case of quadric fibrations and intersections of bilinear divisors.

1. Introduction and statement of results

Let k be a base field of characteristic zero. Given a smooth projective k-scheme
X and aWeil cohomology theoryH∗, let us denote by πi

X : H∗(X) → H∗(X) the ith
Künneth projector, by Z∗(X)Q the Q-vector space of algebraic cycles on X, and by
Z∗(X)Q/∼hom and Z∗(X)Q/∼num the quotients with respect to the homological and
numerical equivalence relations, respectively. Following Grothendieck [4] (see also
Kleiman [6,7]), the standard conjecture1 of type C+, denote by C+(X), asserts that
the even Künneth projector π+

X :=
∑

i π
2i
X is algebraic, and the standard conjecture

of type D, denoted by D(X), asserts that Z∗(X)Q/∼hom = Z∗(X)Q/∼num. Thanks
to the work of Kleiman [7] and Lieberman [15], and to the fact that D(X ×X) ⇒
C+(X) (see [1, Thm. 5.4.2.1]), the conjecture C+(X), resp. D(X), holds in the case
where X is of dimension ≤ 2, resp., ≤ 4, and also for abelian varieties. In addition
to these cases, the aforementioned important conjectures remain wide open.

A dg categoryA is a category enriched over complexes of k-vector spaces; see §2.1.
Every (dg) k-algebra A naturally gives rise to a dg category with a single object.
Another source of example is provided by schemes since the category of perfect
complexes perf(X) of every quasi-compact quasi-separated k-scheme X admits a
canonical dg enhancement2 perfdg(X). As explained in §§2.3-2.4, given a smooth
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Künneth projector is algebraic, then the odd Künneth projector π−
X :=

∑
i π

2i+1
X is also algebraic.

2When X is quasi-projective this dg enhancement is unique; see Lunts–Orlov [16, Thm. 2.12].
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proper dg category A in the sense of Kontsevich (see §2.1), the standard conjectures
of type C+ and D admit noncommutative analogues C+

nc(A) and Dnc(A).

Theorem 1.1. Given a smooth projective k-scheme X, we have the following equiv-
alences3 of conjectures C+(X) ⇔ C+

nc(perfdg(X)) and D(X) ⇔ Dnc(perfdg(X)).

Theorem 1.1 extends Grothendieck’s standard conjectures of type C+ and D
from schemes to dg categories. Making use of this noncommutative viewpoint, we
now prove Grothendieck’s original conjectures in the case of quadric fibrations.

Theorem 1.2 (Quadric fibrations). Let q : Q → S be a flat quadric fibration of rel-
ative dimension d, with Q a smooth projective k-scheme. Whenever the dimension
of S is ≤ 2, resp., ≤ 4, d is even, and the discriminant divisor of q is smooth, the
conjecture C+(Q), resp., D(Q), holds.

Remark 1.3. A “geometric” proof of Theorem 1.2 can be obtained by combining
the aforementioned work of Kleiman and Lieberman, with Vial’s computation (see
[21, Thm. 4.2 and Cor. 4.4]) of the rational Chow motive of Q.

Making use of Theorem 1.1, we now prove that Grothendieck’s conjectures are
invariant under homological projective duality (=HPD). Let X be a smooth pro-
jective k-scheme equipped with a line bundle OX(1); we write X → P(V ) for the
associated morphism, where V := H0(X,OX(1))∗. Assume that the triangulated
category perf(X) admits a Lefschetz decomposition 〈A0,A1(1), . . . ,Ai−1(i−1)〉 with
respect to OX(1) in the sense of Kuznetsov [13, Def. 4.1]. Following [13, Def. 6.1]
and [11, §2.4], let (Y ;F) be the HP-dual of X (Y stands for a projective k-scheme
and F for a coherent sheaf of OY -algebras), let OY (1) be the HP-dual line bundle,
and let Y → P(V ∗) be the morphism associated to OY (1). Given a generic linear
subspace L ⊂ V ∗, consider the linear sections XL := X ×P(V ) P(L

⊥) and (YL;FL),
where YL := Y ×P(V ∗) P(L) and FL stands for the restriction of F to YL.

Theorem 1.4 (HPD-invariance). Let X and (Y ;F) be as above. Assume that
XL is smooth, that the dg category perfdg(YL;FL) is smooth, that dim(XL) =

dim(X) − dim(L), that dim(YL) = dim(Y ) − dim(L⊥), and that the conjecture

C+
nc(A

dg
0 ), resp., Dnc(A

dg
0 ), holds, where Adg

0 stands for the dg enhancement of
A0 induced from perfdg(X). Under these assumptions, we have the equivalence

C+(XL) ⇔ C+
nc(perfdg(YL;FL)), resp., D(XL) ⇔ Dnc(perfdg(YL;FL)).

Remark 1.5.

(i) Conjectures C+
nc(A

dg
0 ) and Dnc(A

dg
0 ) hold, in particular, whenever the tri-

angulated category A0 admits a full exceptional collection.
(ii) When F = OY , we write Y and YL instead of (Y ;OY ) and (YL;OYL

); see
Example 1.10, Theorem 1.11 and Remark 1.12 below. In this case, thanks
to Theorem 1.1, the conjectures C+

nc(perfdg(YL;OYL
)) = C+

nc(perfdg(YL))

andDnc(perfdg(YL;OYL
)) = Dnc(perfdg(YL)) are equivalent to C

+(YL) and
D(YL).

To the best of the author’s knowledge, Theorem 1.4 is new in the literature. As a
first application, it provides us with an alternative (noncommutative) formulation
of Grothendieck’s original conjectures. Here are two “antipodal” examples; many
more can be found in the survey [11].

3Thanks to Theorem 1.1, the assumption that Grothendieck’s standard conjectures of type C+

and D hold for every smooth projective k-scheme can now be removed from [17, Thm. 1.7].
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Example 1.6 (Veronese–Clifford duality). Let W be a k-vector space of dimen-
sion d, and let X be the associated projective space P(W ) equipped with the
double Veronese embedding P(W ) → P(S2W ). By construction, we have a flat
quadric fibration q : Q → P(S2W ∗), where Q stands for the universal quadric
in P(W ). As proved in [12, Thm. 5.4], the HP-dual (Y ;F) of X is given by
(P(S2W ∗);F), where F stands for the sheaf of even Clifford algebras associated
to q. Moreover, given a generic linear subspace L ⊂ S2W ∗, the linear section
XL corresponds to the (smooth) intersection of the dim(L) quadric hypersurfaces
in P(W ) parametrized by L, and (YL;FL) is given by (P(L);FL). Making use
of Theorem 1.4, we hence conclude that C+(XL) ⇔ C+

nc(perfdg(P(L);FL)) and
D(XL) ⇔ Dnc(perfdg(P(L);FL)).

By solving the preceding noncommutative standard conjectures, we hence prove
Grothendieck’s original standard conjectures in the case of intersections of quadrics.

Theorem 1.7 (Intersections of quadrics). Whenever the dimension of L is ≤ 3,
resp., ≤ 5, d is even, and the discriminant division of q is smooth, the con-
jecture C+

nc(perfdg(P(L);FL)), resp., Dnc(perfdg(P(L);FL)), holds. Consequently,

Grothendieck’s original standard conjecture C+(XL), resp., D(XL), also holds.

Remark 1.8. As mentioned by Grothendieck in [4, page 197], the standard conjec-
ture of Lefschetz type B(X) holds for smooth complete intersections. Since this
conjecture implies the standard conjectures of type C+ and D (the implication
B(X) ⇒ D(X) uses in an essential way the Hodge index theorem; see [6, Thm. 4.1
and Prop. 5.1]), we hence obtain an alternative “geometric” proof of Theorem 1.7.

Example 1.9 (Grassmannian–Pfaffian duality). Let W be a k-vector space of di-
mension 6, and let X be the associated Grassmannian Gr(2,W ) equipped with the

Plücker embedding Gr(2,W ) → P(
∧2 W ). As proved in [14, Thm. 1], the HP-dual

(Y ;F) ofX is given by (Pf(4,W ∗);F), where Pf(4,W ∗) ⊂ P(
∧2

W ∗) is the singular
Pfaffian variety and F a certain coherent sheaf of OPf(4,W∗)-algebras.

4 Moreover,

given a generic linear subspace L ⊂
∧2 W ∗ of dimension 7, the linear section XL

corresponds to a curve of genus 8, and (YL;FL) is given by (Pf(4,W ∗)L;FL), where
Pf(4,W ∗)L is a (singular) cubic 5-fold; see [14, §10]. Making use of Theorem 1.4, we
hence obtain equivalences of conjectures C+(XL) ⇔ C+

nc(perfdg(Pf(4,W
∗)L;FL))

and D(XL) ⇔ Dnc(perfdg(Pf(4,W
∗)L;FL)). Since Grothendieck’s standard con-

jectures of type C+ and D are well known in the case of curves, we then conclude
that the preceding noncommutative standard conjectures also hold.

As a second application, Theorem 1.4 with F = OY (see Remark 1.5(ii)) shows
us that whenever XL, resp., YL, is of dimension ≤ 2, the conjecture C+(YL),
resp., C+(XL), holds. Similarly, whenever XL, resp., YL, is of dimension ≤ 4, the
conjecture D(YL), resp., D(XL), holds. Here is an illustrative example; many more
can be found in the survey [11].

Example 1.10 (Determinantal duality). Let U and V be two k-vector spaces of
dimensions m and n, respectively, with m ≤ n, W the tensor product U ⊗ V , and

4The sheaf F is isomorphic to a matrix algebra on the smooth locus of Pf(4,W ∗). Conse-
quently, whenever Pf(4,W ∗)L is contained in the smooth locus of Pf(4,W ∗), we conclude from

Theorem 1.1 that the conjectures C+
nc(perfdg(Pf(4,W

∗)L;FL)) and Dnc(perfdg(Pf(4,W
∗)L;FL))

are equivalent to C+(Pf(4,W ∗)L) and D(Pf(4,W ∗)L), respectively.
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0 < r < m an integer. Following Bernardara–Bolognesi–Faenzi [3, §3], consider the
determinantal variety Zr

m,n ⊂ P(W ), resp., Wr
m,n ⊂ P(W ∗), defined as the locus of

those matrices V → U∗, resp., V ∗ → U , with rank at most r, resp., with corank
at least r. For example, Z1

m,n are the classical Segre varieties. As explained in loc.
cit., Zr

m,n and Wr
m,n admit (Springer) resolutions of singularities X := X r

m,n and
Y := Yr

m,n, respectively. Moreover, as proved in [3, Thm. 3.5], Y is the HP-dual of

X. Making use of Theorem 1.4, we hence conclude that C+(XL) ⇔ C+(YL) and
D(XL) ⇔ D(YL) for every generic linear subspace L ⊂ W of codimension c.

The linear section XL has dimension r(m+n−r)−c−1 and the linear section YL

has dimension r(m−n−r)+c−1. Therefore, by combining the aforementioned work
of Kleiman and Lieberman with Example 1.10, we prove Grothendieck’s standard
conjectures in the case of linear sections of determinantal varieties.

Theorem 1.11 (Linear sections of determinantal varieties). Let XL and YL be as
in Example 1.10. Whenever r(m+ n− r)− c− 1 is ≤ 2, resp., ≤ 4, the conjecture
C+(YL), resp., D(YL), holds. Whenever r(m − n − r) + c − 1 is ≤ 2, resp., ≤ 4,
the conjecture C+(XL), resp., D(XL), holds.

Remark 1.12 (Dimension). Note that Theorem 1.11 infinitely furnishes us with
many examples of smooth projective k-schemes of arbitrary (high) dimension which
satisfy Grothendieck’s standard conjectures. For example, consider the case of
square matrices, i.e., m = n. Choose integers n, r, and c (as above) such that
c < nr and −r2 + c− 1 = 2. Under these choices, YL has dimension 2 and XL has
dimension 2rn−(r2+c+1) > 2. Moreover, thanks to Theorem 1.11, the conjectures
C+(XL) and D(XL) hold. Now, note that if we replace n by n′ > n and keep r
and c, we obtain a higher-dimensional k-scheme X ′

L of dimension 2rn′− (r2+c+1)
for which the conjectures C+(X ′

L) and D(X ′
L) still hold.

Theorem 1.1 allows us to easily extend Grothendieck’s original conjectures from
schemes X to (smooth proper) stacks X by setting C+(X ) := C+

nc(perfdg(X )) and
D(X ) := Dnc(perfdg(X )). We now prove these extended conjectures in the case
of bilinear divisors. Let W be a k-vector space of dimension d, and let X be the
associated smooth proper Deligne–Mumford stack (P(W ) × P(W ))/μ2 equipped
with the map X → P(S2W ), ([w1], [w2]) 
→ [w1 ⊗ w2 + w2 ⊗ w1]. Given a generic
linear subspace L ⊂ S2W ∗, the linear section XL corresponds to the intersection of
the dim(L) bilinear divisors in X parametrized by L.

Theorem 1.13 (Intersections of bilinear divisors). Assume that XL has the ex-
pected dimension, i.e., that the codimension of XL in X is equal to the codimension
of L⊥ in S2W . Assume also that the dimension of L is ≤ 3, resp., ≤ 5, and that
d is odd or that the dimension of L is ≤ 3 and that d is even. In these cases, the
conjecture C+(XL), resp., D(XL), holds.

Remark 1.14. Voevodsky conjectured that the smash-nilpotence equivalence rela-
tion coincides with the numerical equivalence relation. The corresponding analogues
of Theorems 1.1-1.2, 1.4, 1.7, and 1.11 were established in [2].

2. Preliminaries

2.1. Dg categories. For a survey on dg categories consult Keller’s ICM talk [5].
Let C(k) be the category of complexes of k-vector spaces. A dg category A is a cate-
gory enriched over C(k), and a dg functor F : A → B is a functor enriched over C(k).
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Let dgcat(k) be the category of (small) dg categories and dg functors. Recall from
[5, §3.8] that a derived Morita equivalence is a dg functor which induces an equiva-
lence on derived categories. Following Kontsevich [8–10], a dg category A is called
smooth if it is perfect as a bimodule over itself and proper if

∑
i dimHiA(x, y) < ∞

for any pair of objects (x, y). Examples include the dg categories of perfect com-
plexes perfdg(X) associated to smooth proper k-schemes X.

2.2. Noncommutative motives. For a book on noncommutative motives con-
sult [19]. Recall from [19, §4.1] the construction of the category of noncommuta-
tive Chow motives NChow(k)Q. By construction, this rigid symmetric monoidal
category comes equipped with a ⊗-functor U(−)Q : dgcatsp(k) → NChow(k)Q de-
fined on smooth proper dg categories. Moreover, HomNChow(k)Q(U(A)Q, U(B)Q) =
K0(Aop ⊗ B)Q. Recall from [17, Thm. 9.2] that periodic cyclic homology gives
rise to a Q-linear ⊗-functor HP± : NChow(k)Q → VectZ/2(k) with values in finite-
dimensional Z/2-graded k-vector spaces. The category of noncommutative homo-
logical motives NHom(k)Q is defined as the idempotent completion of the quotient
NChow(k)Q/Ker(HP±). Given a rigid symmetric monoidal category C, its N -ideal
is defined as follows (tr(g ◦ f) stands for the categorical trace of g ◦ f):

N (a, b) := {f ∈ HomC(a, b) | ∀g ∈ HomC(b, a) we have tr(g ◦ f) = 0} .
Under this notation, the category of noncommutative numerical motives NNum(k)Q
is defined as the idempotent completion of the quotient NChow(k)Q/N .

2.3. Noncommutative standard conjecture of type C+. Given a smooth
proper dg category A, consider the Künneth projector π+

A : HP±(A) → HP±(A).

Following5 [17], the conjecture C+
nc(A) asserts that π+

A is algebraic, i.e., that there

exists an endomorphism π+
A ∈ EndNChow(k)Q(U(A)Q) such that HP±(π+

A) = π+
A.

2.4. Noncommutative standard conjecture of type D. Given a smooth
proper dg categoryA, consider theQ-vector spacesK0(A)Q/∼hom andK0(A)Q/∼num

defined as HomNHom(k)Q(U(k)Q, U(A)Q) and HomNNum(k)Q(U(k)Q, U(A)Q). Follow-
ing [17], the conjecture D(A) asserts that K0(A)Q/∼hom = K0(A)Q/∼num.

2.5. Orbit categories. Let (C,⊗,1) be a Q-linear symmetric monoidal additive
category and let O ∈ C be a ⊗-invertible object. The orbit category C/−⊗O has
the same objects as C and morphisms HomC/−⊗O(a, b) :=

⊕
n∈Z HomC(a, b⊗O⊗n).

Given objects a, b, c and morphisms f = {fn}n∈Z and g = {gn}n∈Z, the ith compo-

nent of g◦f is defined as
∑

n(gi−n⊗O⊗n)◦fn. The canonical functor ι : C → C/−⊗O,
given by a 
→ a and f 
→ f = {fn}n∈Z, where f0 = f and fn = 0 if n �= 0, is en-
dowed with an isomorphism ι ◦ (− ⊗ O) ⇒ ι and is 2-universal among all such
functors. Finally, the category C/−⊗O is Q-linear, additive, and inherits from C a
symmetric monoidal structure making ι symmetric monoidal.

3. Proof of Theorem 1.1

We start by proving the equivalence C+(X) ⇔ C+
nc(perfdg(X)). The implication

C+(X) ⇒ C+
nc(perfdg(X)) was proved in [17, Thm. 1.3]. Hence, we will prove solely

the converse implication. Since k is of characteristic zero, all the (classical) Weil
cohomology theories H∗ are equivalent; see [1, §3.4.2]. Therefore, in the proof we
can (and will) make use solely of de Rham cohomology theory H∗

dR.

5In loc. cit. we used the notation Cnc(A) instead of C+
nc(A).
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Let us denote by Chow(k)Q the classical category of Chow motives. By construc-
tion, this rigid symmetric monoidal category comes equipped with a (contravari-
ant) ⊗-functor h(−)Q : SmProj(k)op → Chow(k)Q defined on smooth projective
k-schemes. As explained in [19, Thm. 4.3], there exists a Q-linear, fully faithful,
⊗-functor Φ making the following diagram commute:

SmProj(k)op
X �→perfdg(X)

��

h(−)Q

��

dgcatsp(k)

U(−)Q

��

Chow(k)Q

ι

��
Chow(k)Q/−⊗Q(1) Φ

�� NChow(k)Q

where Chow(k)Q/−⊗Q(1) stands for the orbit category with respect to the Tate
motive Q(1). Consider the following composition:

(3.1) Chow(k)Q
ι−→ Chow(k)Q/−⊗Q(1)

Φ−→ NChow(k)Q
HP±
−→ VectZ/2(k) .

Consider also the category VectZ(k) of finite-dimensional Z-graded k-vector spaces
and the associated “2-perioditization” ⊗-functor:

VectZ(k) −→ VectZ/2(k) {Vi}i∈Z 
→
( ⊕

i even

Vi,
⊕
i odd

Vi

)
.(3.2)

Given any smooth (projective) k-scheme X, the Hochschild–Kostant–Rosenberg
theorem identifies HP+(perfdg(X)) and HP−(perfdg(X)) with

⊕
i even H

i
dR(X)

and
⊕

i odd H
i
dR(X), respectively. Consequently, (3.1) reduces to the composition of

H∗
dR : Chow(k)Q −→ VectZ(k) h(X)Q 
→

2dim(X)⊕
i=0

Hi
dR(X)(3.3)

with the above functor (3.2). Assume now the conjecture C+
nc(perfdg(X)). Since Φ

is an equivalence of categories, there then exists an endomorphism π+ = {π+
n }n∈Z of

ι(h(X)Q) in the orbit category Chow(k)Q/−⊗Q(1) whose image under the composed

functor HP± ◦ Φ agrees with the homomorphism of Z/2-graded k-vector spaces:

π+ :

( ⊕
i even

Hi
dR(X),

⊕
i odd

Hi
dR(X)

)
(id,0)−→

( ⊕
i even

Hi
dR(X),

⊕
i odd

Hi
dR(X)

)
.

Note that π+ is the image of the even Künneth projector π+
X :=

∑
i π

2i
X under (3.2).

Note also that H∗
dR(π

+
n ) is an homomorphism of degree −2n. The preceding consid-

erations, combined with the construction of the orbit category Chow(k)Q/−⊗Q(1),

then allows us to conclude that H∗
dR(π

+
0 ) = π+

X and H∗
dR(π

+
n ) = 0 if n �= 0. Conse-

quently, the even Künneth projector π+
X is algebraic and conjecture C+(X) holds.

Let us now prove the equivalence D(X) ⇔ Dnc(perfdg(X)). The implication
D(X) ⇒ Dnc(perfdg(X)) was proved in [17, Thm. 1.5]. Hence, we will prove
solely the converse implication. Recall from [17, page 645] the construction of the
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following commutative square:

(3.4) Z∗(X)Q/∼hom
�� ��

����

K0(perfdg(X))Q/∼hom

����
Z∗(X)Q/∼num 


�� K0(perfdg(X))Q/∼num

Note that the conjecture D(X), resp., Dnc(perfdg(X)), is equivalent to the injec-
tivity of the vertical left-hand side, resp., right-hand side, homomorphism. Assume
now conjecture Dnc(perfdg(X)), i.e., that the vertical right-hand side homomor-
phism in (3.4) is injective. By construction, the vertical left-hand side homomor-
phism in (3.4) is a diagonal (matrix) homomorphism:

Z∗(X)Q/∼hom =

dim(X)⊕
n=0

Zn(X)Q/∼hom →
dim(X)⊕
n=0

Zn(X)Q/∼num = Z∗(X)Q/∼num .

Therefore, in order to prove conjecture D(X) it suffices to show that the following
homomorphisms are injective:

Zn(X)Q/∼hom −→ K0(perfdg(X))Q/∼hom, 0 ≤ n ≤ dim(X) .(3.5)

As explained above, we have (3.1) = (3.2) ◦ (3.3). This implies that the classical
category of homological motives Hom(k)Q agrees with the idempotent completion
of the quotient Chow(k)Q/Ker((3.1)). Moreover, the induced functor Hom(k)Q →
NHom(k)Q is faithful. Under the identifications

HomHom(k)Q(h(Spec(k))Q, h(X)Q(n)) � Zn(X)Q/∼hom ,

HomNHom(k)Q(U(k)Q, U(perfdg(X))Q � K0(perfdg(X))Q/∼hom ,

where h(X)Q(n) stands for h(X)Q ⊗Q(1)⊗n, the homomorphisms (3.5) correspond
to the homomorphisms induced by the functor Hom(k)Q → NHom(k)Q:

HomHom(k)Q(h(Spec(k))Q, h(X)Q(n)) −→ HomNHom(k)Q(U(k)Q, U(perfdg(X))Q) .

Since these latter homomorphisms are injective, we hence conclude that the con-
jecture D(X) holds. This finishes the proof.

4. Proof of Theorem 1.2

As proved in [12, Thm. 4.2], the category perf(Q) admits a semiorthogonal de-
composition 〈perf(S;F), perf(S)1, . . . , perf(S)d〉, where F stands for the sheaf of
even Clifford algebras associated to q and perf(S)i := q∗perf(S) ⊗ OQ/S(i). Note
that perf(S)i � perf(S). As explained in [19, §2.4.1], this semiorthogonal decom-
position gives rise to a direct sum decomposition in the category NChow(k)Q:

U(perfdg(Q))Q � U(perfdg(S;F))Q ⊕ U(perfdg(S))Q ⊕ · · · ⊕ U(perfdg(S))Q .

Making use of the definition of the noncommutative standard conjectures of type
C+ and D, we hence obtain the following equivalence of conjectures:

(4.1) C+
nc(perfdg(Q)) ⇔ C+

nc(perfdg(S;F)) + C+
nc(perfdg(S)),

(4.2) Dnc(perfdg(Q)) ⇔ Dnc(perfdg(S;F)) +Dnc(perfdg(S)) .
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Since d is even and the discriminant division of q is smooth, the category perf(S;F)

is equivalent (via a Fourier–Mukai functor) to perf(S̃; F̃), where S̃ is the dis-

criminant double cover of S and F̃ is a sheaf of Azumaya algebras over S̃; see
[12, Prop. 3.13]. This implies that perfdg(S;F) is derived Morita equivalent to

perfdg(S̃; F̃). Using the fact that U(−)Q inverts Morita equivalences and also

the isomorphism between U(perfdg(S̃; F̃))Q and U(perfdg(S̃))Q established in [20,
Thm. 2.1], we hence conclude that the right-hand side of (4.1), resp., (4.2), reduces

to C+
nc(perfdg(S̃))+C+

nc(perfdg(S)), resp., to Dnc(perfdg(S̃))+Dnc(perfdg(S)). Fi-
nally, since the dimension of S is ≤ 2, resp., ≤ 4, the aforementioned work of
Kleiman and Lieberman, combined with Theorem 1.1, implies conjecture C+(Q),
resp., D(Q).

5. Proof of Theorem 1.4

The proof is similar for the noncommutative standard conjectures of type C+

and type D. Therefore, we will prove solely the first case.
By definition of the Lefschetz decomposition 〈A0,A1(1), . . . ,Ai−1(i − 1)〉, we

have a chain of admissible triangulated subcategories Ai−1 ⊆ · · · ⊆ A1 ⊆ A0 and
Ar(r) := Ar ⊗ OX(r). Note that Ar(r) � Ar. Let ar be the right orthogonal
complement to Ar+1 in Ar; these are called the primitive subcategories in [13, §4].
Note that we have semiorthogonal decompositions:

Ar = 〈ar, ar+1, . . . , ai−1〉, 0 ≤ r ≤ i− 1 .(5.1)

As proved in [13, Thm. 6.3] and [11, §2.4], the category perf(Y ;F) admits an
HP-dual Lefschetz decomposition 〈Bj−1(1− j),Bj−2(2− j), . . . ,B0〉 with respect to
OY (1). As above, we have a chain of admissible subcategories Bj−1 ⊆ Bj−2 ⊆ · · · ⊆
B0. Moreover, the primitive subcategories coincide (via a Fourier–Mukai functor)
with those of perf(X) and we have semiorthogonal decompositions:

Br = 〈a0, a1, . . . , adim(V )−r−2〉, 0 ≤ r ≤ j − 1 .(5.2)

Furthermore, the assumptions dim(XL) = dim(X)−dim(L) and dim(YL) = dim(Y )
−dim(L⊥) imply the existence of semiorthogonal decompositions

(5.3) perf(XL) = 〈CL,Adim(V )(1), . . . ,Ai−1(i− dim(V ))〉 ,

(5.4) perf(YL;FL) = 〈Bj−1(dim(L⊥)− j), . . . ,Bdim(L⊥)(−1),CL〉 ,

where CL is a common triangulated category. Let us denote by Cdg
L , Adg

r , and
adgr the dg enhancement of CL, Ar, and ar induced from perfdg(XL). Similarly,

let us denote by Cdg′

L and Bdg
r the dg enhancement of CL and Br induced from

perfdg(YL;FL). Note that sinceXL is a smooth proper k-scheme and perfdg(YL;FL)
a smooth proper dg category, all the preceding dg categories are smooth and proper;
see [2, Lem. 2.1]. As explained in [19, §2.4.1], the above semiorthogonal decom-
positions (5.3)–(5.4) give rise to the direct sums decompositions in the category
NChow(k)Q:

U(perfdg(XL))Q � U(Cdg
L )Q ⊕ U(Adg

dim(V ))Q ⊕ · · · ⊕ U(Adg
i−1)Q ,

U(perfdg(YL;FL))Q � U(Bdg
j−1)Q ⊕ · · · ⊕ U(Bdg

dim(L⊥)
)Q ⊕ U(Cdg′

L )Q .
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Making use of the definition of the noncommutative standard conjecture of type
C+, we hence obtain the following equivalences of conjectures:

(5.5) C+
nc(perfdg(XL)) ⇔ C+

nc(C
dg
L ) + C+

nc(A
dg
dim(V )) + · · ·+ C+

nc(A
dg
i−1) ,

(5.6) C+
nc(perfdg(YL;FL)) ⇔ C+

nc(B
dg
j−1) + · · ·+ C+

nc(B
dg
dim(L⊥)

) + C+
nc(C

dg′

L ) .

On the one hand, since the conjecture C+
nc(A

dg
0 ) holds, we conclude from the semi-

orthogonal decompositions (5.1)–(5.2) that the conjectures C+
nc(A

dg
r ) and C+

nc(B
dg
r )

hold for every r. This implies that the right-hand side of (5.5), resp., (5.6), reduces

to C+
nc(C

dg
L ), resp., C+

nc(C
dg′

L ). On the other hand, since the composed functor

perf(XL) → CL → perf(YL;FL) is of Fourier–Mukai type, the dg categories Cdg
L and

Cdg′

L are derived Morita equivalent. Using the fact that the functor U(−)Q inverts

derived Morita equivalences, this implies that C+
nc(C

dg
L ) ⇔ C+

nc(C
dg′

L ). Finally, since
XL is a smooth projective k-scheme, the proof now follows from the equivalence
C+(XL) ⇔ C+

nc(perfdg(XL)) of Theorem 1.1.

6. Proof of Theorem 1.7

Similarly to the proof of Theorem 1.2, since the fibration q : Q → P(S2W ∗) is of
relative dimension d− 2, d is even, and the discriminant divisor of q is smooth, the
conjecture C+

nc(perfdg(P(L);FL)), resp., Dnc(perfdg(P(L);FL)), reduces to conjec-

ture C+
nc(perfdg(P̃(L))), resp., Dnc(perfdg(P̃(L))). The proof then follows from the

assumption that the dimension of L is ≤ 3, resp., ≤ 5, from the aforementioned
work of Kleiman and Lieberman, and from Theorem 1.1.

7. Proof of Theorem 1.13

The proof is similar for the noncommutative standard conjectures of type C+

and type D. Therefore, we will prove solely the first case.
Let us assume first that dim(L) ≤ 3 and that d is odd. Recall from [18, §8]

the construction of a certain smooth projective double cover Y of P(L). Since by
assumption dim(L) ≤ 3, the conjecture C+(Y ) ⇔ C+

nc(perfdg(Y )) holds.

(i) When codim(XL) > d, we have a semiorthogonal decomposition

perf(Y ) = 〈perf(XL),
⊥perf(XL)〉 ,

where ⊥perf(XL) stands for the left orthogonal to perf(XL) in perf(Y ); see
[18, Thm. 1.1 and Prop. 1.2]. Similarly to the proof of Theorem 1.4, we then
conclude that the noncommutative Chow motive U(perfdg(XL))Q is a direct
summand of U(perfdg(Y ))Q. By definition of the noncommutative standard

conjecture of type C+, this implies that the conjecture C+(XL) holds.
(ii) When codim(XL) = d, the category perf(XL) is equivalent (via a Fourier-

Mukai functor) to perf(Y ); see [18, Thm. 1.1 and Prop. 1.2]. Similarly
to the proof of Theorem 1.4, we then conclude that U(perfdg(XL))Q �
U(perfdg(Y ))Q. This implies that the conjecture C+(XL) ⇔ C+(Y ) holds.

(iii) When codim(XL) < d, we have a semiorthogonal decomposition

perf(XL) = 〈perf(Y ), E1, . . . , En〉 ,



1398 GONÇALO TABUADA

where E1, . . . , En are certain exceptional objects; see [18, Thm. 1.1 and
Props. 1.2 and 5.16]. Similarly to the proof of Theorem 1.4, we then con-
clude that U(perfdg(XL))Q � U(perfdg(Y ))Q ⊕ U(k)⊕n

Q . This implies that

C+(XL) ⇔ C+(Y ). In particular, the conjecture C+(XL) holds.

Let us now assume that dim(L) ≤ 3 and that d is even. Recall from [18, §9]
the construction of a certain smooth projective double cover Y of P(L). Since by
assumption dim(L) ≤ 3, the conjecture C+(Y ) holds.

(i) When codim(XL) > d, we have a semiorthogonal decomposition

perf(Y ) = 〈perf(XL),
⊥perf(XL)〉 ;

see [18, Thm. 1.1 and Prop. 1.3]. Similarly to the above item (i), this
implies that the conjecture C+(XL) holds.

(ii) When d/2 < codim(XL) ≤ d, we have semiorthogonal decompositions

perf(XL) = 〈CL, E1, . . . , En〉, perf(Y ) = 〈CL,
⊥CL〉 ,

where CL is a common triangulated category; see [18, Thm. 1.1 and Props.
1.3 and 5.16]. Similarly to the proof of Theorem 1.4, we then conclude

that U(perfdg(XL))Q � U(Cdg
L )Q ⊕ U(k)⊕n

Q and that U(Cdg
L )Q is a direct

summand of U(perfdg(Y ))Q. This implies that C+(XL) ⇔ C+
nc(C

dg
L ) and

that the conjecture C+
nc(C

dg
L ) holds. Consequently, the conjecture C+(XL)

also holds.
(iii) When codim(XL) ≤ d/2, we have a semiorthogonal decomposition

perf(XL) = 〈perf(Y ), E1, . . . , En〉 ,
where E1, . . . , En are certain exceptional objects; see [18, Thm. 1.1 and
Props. 1.3 and 5.16]. Similarly to the above item (iii), this implies conjec-
ture C+(XL).

Acknowledgments

I thank Bruno Kahn for reminding me that Grothendieck’s standard conjecture
of Lefschetz type is stable under hyperplane sections, and also the anonymous
referee for his or her comments.

References

[1] Yves André, Une introduction aux motifs (motifs purs, motifs mixtes, périodes) (French,

with English and French summaries), Panoramas et Synthèses [Panoramas and Syntheses],
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