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ON THE SEMISIMPLICITY OF THE CYCLOTOMIC QUIVER

HECKE ALGEBRA OF TYPE C

LIRON SPEYER

(Communicated by Kailash C. Misra)

Abstract. We provide criteria for the cyclotomic quiver Hecke algebras of
type C to be semisimple. In the semisimple case, we construct the irreducible
modules.

1. Introduction

The quiver Hecke algebras Rn were introduced by Khovanov and Lauda [KL09]
and Rouquier [Rou08] to categorify the negative half of quantum groups. Kang
and Kashiwara [KK12] later showed that cyclotomic quotients RΛ

n of Rn cate-
gorify irreducible highest weight modules with dominant integral highest weight Λ.
Motivated and propelled by an isomorphism theorem of Brundan and Kleshchev
[BK09], these cyclotomic quotients have received a lot of attention in types A∞
and A

(1)
� . However, in other types relatively little is known about the cyclotomic

quiver Hecke algebras. Among the few results here are Ariki and Park’s results on
the representation type of their blocks when Λ = Λ0 [AP14,AP16b,AP16a].

One of the first questions one should ask when studying a finite-dimensional al-
gebra is whether or not it is semisimple. In this short note, we will prove semisim-
plicity criteria for the cyclotomic quiver Hecke algebras RΛ

n in type C, over a field,
building on previous work [APS17], in which we developed a Specht module the-

ory in types C∞ and C
(1)
� . Our result is a fundamental step in gaining a better

understanding of these algebras.
Now we state our main result – see Section 2 for definitions of the notation used.

Theorem 1.1 (Main Theorem). Over a field, RΛ
n is semisimple if and only if the

following two conditions are satisfied:

(i) For all i ∈ I, 〈Λ, α∨
i,n〉 � 1.

(ii) For all 1 � j � l, n−1
2 � κj � �− n−1

2 .

Our proof that RΛ
n is semisimple when the above two conditions hold is inspired

by an argument from Mathas’s survey [Mat15] in type A. In the other direction,
when the conditions fail, we explicitly construct modules that have one-dimensional
submodules, which we show have no complement, thus concluding that RΛ

n is not
semisimple. In most cases, the modules we construct are in fact Specht modules,
and our previous work with Ariki and Park [APS17] is crucial to our proof.
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2. Background

We begin by providing a brief summary of the necessary definitions. Throughout,
we let O denote an arbitrary integral domain. All our modules are left modules.

2.1. The quiver Hecke algebras. Let � ∈ {2, 3, . . . } ∪ {∞}, and set I :=
Z/(� + 1)Z if � < ∞ or I = Z�0 if � = ∞. If � < ∞, we identify I with the
set {0, 1, 2, . . . , �}. We adopt standard notation from [Kac90] for the root datum of

type C
(1)
� or C∞. In particular, we have simple roots {αi | i ∈ I}, simple coroots

{α∨
i | i ∈ I}, and we have fundamental weights {Λi | i ∈ I} in the weight lat-

tice P. We let Q+ :=
⊕

i∈I Z�0αi be the positive cone of the root lattice and

P+ := {Λ ∈ P | 〈Λ, α∨
i 〉 � 0 for all i ∈ I} the positive weight lattice, where

〈−,−〉 is the natural pairing 〈Λi, α
∨
j 〉 = δi,j . We say that β =

∑
i∈I aiαi ∈ Q+

has height ht(β) =
∑

i∈I ai, and Λ =
∑

i∈I biΛi ∈ P+ has level
∑

i∈I bi. Set
Q+

n := {β ∈ Q+ | ht(β) = n}.
For any β ∈ Q+

n , we set Iβ = {i ∈ In | αi1 + · · · + αin = β}. The symmetric
group Sn acts on elements of In by place permutation.

The quiver Hecke algebra Rβ is the unital associative O-algebra with generators

{e(i) | i ∈ Iβ} ∪ {x1, . . . , xn} ∪ {ψ1, . . . , ψn−1},
subject to the following relations:

e(i)e(j) = δi,je(i); xre(i) = e(i)xr;∑
i∈Iβ

e(i) = 1; xrxs = xsxr;

ψre(i) = e(sri)ψr; ψrxs = xsψr if s �= r, r + 1;

xrψre(i) = (ψrxr+1 − δir,ir+1
)e(i); ψrψs = ψsψr if |r − s| > 1;

xr+1ψre(i) = (ψrxr + δir,ir+1
)e(i);

ψ2
re(i) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(xr + x2
r+1)e(i) if (ir, ir+1) = (0, 1) or if (�, �− 1);

(x2
r + xr+1)e(i) if (ir, ir+1) = (1, 0) or if (�− 1, �);

(xr+xr+1)e(i) if ir+1= ir±1, ir �=0 �= ir+1, ir �=� �= ir+1;

0 if ir = ir+1;

e(i) otherwise.

ψr+1ψrψr+1e(i) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ψrψr+1ψr + xr + xr+2)e(i) if (ir, ir+2, ir+1) = (1, 0, 1)

or (�− 1, �, �− 1);

(ψrψr+1ψr + 1)e(i) if ir = ir+2 = ir+1 ± 1,

and ir+1 �= 0, �;

ψrψr+1ψre(i) otherwise.
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The quiver Hecke algebra Rn is defined to be
⊕

β∈Q+
n

Rβ. These algebras have
cyclotomic quotients, which are our primary interest here. The cyclotomic quiver
Hecke algebra RΛ

β is the quotient of Rβ by the additional cyclotomic relations

x
〈Λ,α∨

i1
〉

1 e(i) = 0 for all i ∈ Iβ .

The cyclotomic quiver Hecke algebra RΛ
n is defined to be

⊕
β∈Q+

n
RΛ

β .

The quiver Hecke algebras and their cyclotomic quotients may be (Z-)graded by

deg e(i) = 0, deg xre(i) = (αir , αir ), degψre(i) = (αir , αir+1
),

where (−,−) is the invariant symmetric bilinear form on P.

Remark. Technically, we have made a choice of certain polynomials in our defini-
tion of the quiver Hecke algebras. See [APS17, §2.1–2.2] for discussion of these
polynomials and the choice we have made.

2.2. Multipartitions and tableaux. A partition λ of n is a weakly decreasing
sequence of non-negative integers λ = (λ1, λ2, . . . ) such that

∑
λi = n. We write

∅ for the unique partition of 0. For any l � 1, an l-multipartition of n is an l-tuple
λ = (λ(1), . . . , λ(l)). We denote the set of all l-multipartitions of n by P l

n. For
λ, μ ∈ P l

n, we say that λ dominates μ, and write λ � μ or μ � λ, if for all 1 � t � l
and r � 0,

|λ(1)|+ · · ·+ |λ(t−1)|+
r∑

j=1

λ(t)
r � |μ(1)|+ · · ·+ |μ(t−1)|+

r∑
j=1

μ(t)
r .

For λ ∈ P l
n, we define the Young diagram [λ] to be the set

{(r, c, t) ∈ Z>0 × Z>0 × {1, . . . , l} | c � λ(t)
r }.

We call elements of [λ] nodes. We draw the Young diagram of a partition using
the English convention (where the first coordinate increases down the page and the
second coordinate increases from left to right), and of a multipartition as a column
vector of Young diagrams for each component. We say that A /∈ [λ] is an addable
node (for λ) if [λ] ∪ A is a valid Young diagram of a multipartition.

Let p be the natural projection p : Z → Z/2�Z if � < ∞, and p = id if � = ∞. If
� = ∞, we define f� : Z → I by k 	→ |k|. If � < ∞, we define f� : Z/2�Z → I by
f�(0) = 0, f�(�) = �, and f�(k) = f�(2�− k) = k for 1 � k � �− 1. Then we define
: f� ◦ p : Z → I.
Given a multicharge κ = (κ1, . . . , κl) ∈ Z

l, we define Λκ ∈ P+ by Λκ = Λκ1
+

· · ·+Λκl
. The residue of a node A = (r, c, t) ∈ [λ] is resA = κt + c− r. If resA = i,

we call A an i-node.

Example. Let � = 3, κ = (1, 4) and λ = ((8, 3, 2), (5, 3, 1)). Then the Young
diagram [λ], along with the residue pattern, is depicted below.

1 2 3 2 1 0 1 2

0 1 2

1 0

2 1 0 1 2

3 2 1

2



1848 LIRON SPEYER

A λ-tableau is a bijection T : [λ] → {1, . . . , n}. We depict T by filling each node
(r, c, t) with T(r, c, t). We say that a λ-tableau is standard if in each component,
the entries increase along each row and down each column. We denote by Std(P l

n)
the set of all standard tableaux whose shape is an l-multipartition of n, and by
Std2(P l

n) the subset of Std(P l
n) × Std(P l

n) consisting of all pairs of standard
tableaux of the same shape.

The distinguished tableau Tλ is obtained by filling nodes in order along rows,
starting with the first row of [λ(1)] and working down the rows of this component
before moving on to successive components.

A Garnir node A = (r, c, t) ∈ [λ] is a node for which (r + 1, c, t) ∈ [λ]. The
corresponding Garnir belt BA is the set of nodes

{(r, c, t), (r, c+ 1, t), . . . , (r, λ(t)
r , t)} ∪ {(r + 1, 1, t), (r + 1, 2, t), . . . , (r + 1, c, t)}.

We define the Garnir tableau GA to be the λ-tableau which agrees with Tλ outside
of BA, with the entries in BA in order from left to right along row r+ 1, and then
row r. See [APS17, §1.4] for examples.

The residue sequence of a λ-tableau T is the sequence iT = (i1, . . . , in), where

ir = res T−1(r). We define iλ = iT
λ

.
We denote by Shp(T) the shape of T – i.e. T is a Shp(T)-tableau. We let T↓m

denote the tableau obtained from T by deleting all entries greater than m. Finally,
we define the dominance order on tableaux by S � T if Shp(S↓m

) � Shp(T↓m
) for

all 1 � m � n.
For each w ∈ Sn, we fix a preferred reduced expression w = si1 . . . sir . For T a

λ-tableau, we define wT ∈ Sn to be the permutation such that wTTλ = T, where Sn

acts on tableaux by permuting entries. If wT = si1 . . . sir is our preferred reduced
expression for wT, we define the element ψwT = ψi1 . . . ψir ∈ Rn.

2.3. Specht modules. We will briefly recall the definition of the (graded) Specht
modules from [APS17]. The reader should refer to [APS17] for a more thorough
treatment of Specht modules, and of the graded module categories of RΛ

n .
Fix a multicharge κ ∈ Z

l and let λ ∈ P l
n. For each Garnir node A ∈ [λ] we may

define the Garnir element gA ∈ Rn. See [APS17, §3.2] for the definition of gA.
The graded Specht module Sλ

κ is the unital Rn-module with generator zλ of
degree deg Tλ (see [APS17, §1.3]) subject to the relations

(i) e(i)zλ = zλ;
(ii) xrz

λ = 0 for all 1 � r � n;
(iii) ψrz

λ = 0 whenever r and r + 1 lie in the same row of Tλ;
(iv) gAzλ = 0 for all Garnir nodes A ∈ [λ].

For each λ-tableau T, we define vT = ψwTzλ ∈ Sλ
κ .

Theorem 2.1 ([APS17, Theorem 3.12]). The Specht module Sλ
κ is a graded RΛ

n -
module and is generated by {vT | T ∈ Std(λ)} as an O-module.

In type C∞, [APS17, Theorem 3.19] tells us that the generating set in Theo-
rem 2.1 is in fact a (homogeneous) basis, and we conjectured in [APS17, Conjec-

ture 5.3] that the same is true in type C
(1)
� .

For us, it will suffice to note that gA = ψwGA for all Specht modules we will
consider. Indeed, we have [APS17, Equation 3.3]:

gA = ψwGA +
∑
w

awψw for some aw ∈ O,
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where the sum is taken over {w ∈ Sn | w < wGA , iwTλ = iG
A

, wTλ is row-strict}. In
every Specht module we will consider in this paper, there is no row-strict λ-tableau
which dominates GA and has the same residue sequence as GA, for any Garnir node
A. In general, however, gA will also include these terms indexed by more dominant
tableaux with the same residue sequence.

The following lemma will be useful to us later.

Lemma 2.2. Let λ ∈ P l
n. Then we have the following actions of the generators

of Rn on the O-generating set for Sλ in Theorem 2.1.

(i) Let T ∈ Std(λ) and 1 � r � n. Then

xrv
T =

∑
S∈Std(λ)

iS=iT
S�T

aSv
S for some aS ∈ O.

(ii) Let T ∈ Std(λ) and 1 � r < n. Then

ψrv
T =

∑
S∈Std(λ)

iS=isrT

S�T

aSv
S for some aS ∈ O,

unless srT ∈ Std(λ) and srw
T is a reduced expression of length �(wT) + 1.

Proof. This is identical to [BKW11, Lemmas 4.8 and 4.9] and [FS16, Lemma 2.14].
�

3. Semisimplicity of RΛ
n

Let � ∈ {2, 3, . . . } ∪ {∞}, Λ ∈ P+ be a dominant weight of level l ∈ Z>0 and
n ∈ Z>1 so that we have the cyclotomic quiver Hecke algebra RΛ

n . Let κ ∈ Z
l be

any multicharge such that Λ = Λκ.
For i ∈ I and k ∈ Z>0, we set α

∨
i,k = α∨

i +α∨
i+1+ · · ·+α∨

i+k−1, where the indices
are taken modulo �+ 1.

The following two conditions will be key in our semisimplicity arguments, and
we will refer back to them frequently:

(SS1) For all i ∈ I, 〈Λ, α∨
i,n〉 � 1.

(SS2) For all 1 � j � l, n−1
2 � κj � �− n−1

2 .

Remark. The following observations are the driving force for this paper, and will
be used frequently:

(1) Suppose that (SS1) holds, and let λ ∈ P l
m for some 0 � m < n. Then for

any i ∈ I, μ has at most one component with addable i-nodes. Informally,
we may think of (SS1) as ensuring that for any λ ∈ P l

n, nodes in distinct
components of [λ] must have distinct residues.

(2) Suppose that (SS2) holds, and let λ ∈ P l
n. For a given residue i ∈ I, there

is either only one possible diagonal of residue i which may appear in the
Young diagram of some partition, or there are two diagonals which, in any
multipartition, may contain at most a single node each (in which case both
nodes lie in the same row or the same column of the multipartition, and
the residue is either 1 or �− 1).
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3.1. The semisimple case. First, we will handle the case when RΛ
n is semisimple.

This subsection mirrors the corresponding type A arguments of [Mat15, §2.4], which
we have adapted to fit the type C case.

Lemma 3.1. Suppose that conditions (SS1) and (SS2) hold, and let T, S∈Std(P l
n).

Then T = S if and only if iT = iS.

Proof. If i ∈ I and λ ∈ P l
m for some 0 � m < n, then by the above remark, [λ]

has at most one addable i-node, and the result follows by induction on n. �

Let InΛ = {iT | T ∈ Std(P l
n)}.

Corollary 3.2. Suppose that conditions (SS1) and (SS2) hold, and let i ∈ InΛ such
that ir+1 = ir ± 1. Then sri /∈ InΛ.

Proof. By the above remark, if i = iT for some T ∈ Std(P l
n), and ir+1 = ir ± 1,

then r and r+1 must lie in adjacent diagonals of T. In particular, they must lie in
either the same row or the same column of T. Given that the number of residues is
equal to ir and ir+1 in (i1, . . . , ir−1) is unchanged, we deduce that r and r+1 must
occupy the same two pair of nodes in T as in any standard tableau with residue
sequence sri. But this is a contradiction, as such a tableau cannot be standard. �

Recall that we have fixed a multicharge κ ∈ Z
l such that Λ = Λκ.

Theorem 3.3. Suppose that O = F is a field, and that conditions (SS1) and (SS2)

hold. Then for each λ ∈ P l
n there is an irreducible graded RΛ

n -module Sλκ with
homogeneous basis {vT | T ∈ Std(λ)} such that deg vT = 0 for all T ∈ Std(λ), and
the RΛ

n -action is given by

e(i)vT = δi,iTv
T, xrv

T = 0, ψrv
T = vsrT,

where we set vsrT = 0 if srT is not standard.

Proof. We first check that the relations above really define an RΛ
n -module. Al-

most all the defining relations for RΛ
n are trivially satisfied, thanks to Lemma 3.1

and Corollary 3.2. We must check that the ψ generators satisfy the braid relations
and the quadratic relations when acting on basis elements. Let λ ∈ P l

n, T ∈ Std(λ)
and set i = iT = (i1, . . . , in).

For the braid relations, (SS1) and (SS2) ensure that we never have ir = ir+2 =
ir+1 ± 1 with ir+1 �= 0, �. To see this, we again invoke our remark made after
introducing conditions (SS1) and (SS2). Since we can only have a single diagonal
of any residue besides 1 and �, it is not possible for the (arbitrarily chosen) standard
tableau T to have consecutive residues i, i±1, i, except for (1, 0, 1) and (�−1, �, �−1).
Finally, if (ir, ir+1, ir+2) = (1, 0, 1) or (�−1, �, �−1), then we have ψr+1ψrψr+1v

T =
ψrψr+1ψrv

T = 0.
Since ir+1 �= ir for any r and ir+1 = ir ± 1 if and only if r and r + 1 are in

the same row or column of T, it follows from Corollary 3.2 that ψ2
rv

T = 0 when
ir+1 = ir ± 1.

These residue conditions also tell us that degψre(i) = 0 whenever srT ∈ Std(λ)
(and if srT /∈ Std(λ), ψre(i) = 0 by Corollary 3.2). Thus setting deg vT = 0 gives a

grading on Sλκ.



THE CYCLOTOMIC QUIVER HECKE ALGEBRA OF TYPE C 1851

Finally, we show that Sλκ is irreducible. If S, T ∈ Std(λ), then S = wSTλ =
wS(wT)−1T. So vS = ψwSψ(wT)−1vT. Take a non-zero element v =

∑
T∈Std(λ) aTv

T ∈
Sλκ. If aT �= 0, then, by Lemma 3.1, vT = 1

aT
e(iT)v, and therefore for any S ∈ Std(λ),

vS ∈ RΛ
n v. It follows that S

λ
κ is irreducible. �

Remark. The modules Sλκ are easily seen to be isomorphic to the Specht modules
Sλ
κ constructed in Subsection 2.3, providing evidence for the importance of the

Specht modules constructed in [APS17]. Indeed, as remarked after Theorem 2.1,
we know that gA = ψwGA , and this is sufficient to prove that Sλ

κ has a basis in-
dexed by standard tableaux (the elements constructed in [APS17, Theorem 3.12
and Corollary 3.13]), showing that the dimensions match. By the definition of Sλ

κ ,

the cyclic generator zλ satisfies the same relations as the element vT
λ

constructed

in Theorem 3.3, so that we have an isomorphism Sλκ → Sλ
κ determined by vT

λ 	→ zλ.

If i = (i1, . . . , in) ∈ In, we set i↓r
= (i1, . . . , ir).

Lemma 3.4. Suppose that conditions (SS1) and (SS2) hold, and let i ∈ In. Then
i ∈ InΛ if and only if i satisfies the following three conditions:

(i) 〈Λ, α∨
i1
〉 �= 0.

(ii) If 1 < r � n and 〈Λ, α∨
ir
〉 = 0, then {ir − 1, ir + 1} ∩ {i1, . . . , ir−1} �= ∅.

(iii) Let 1 � s < r � n. If ir = is �= 1, � − 1, then {ir − 1, ir + 1} ⊆
{is+1, . . . , ir−1}. If ir = is = 1, then 0 ∈ {is+1, . . . , ir−1}. If ir = is = �−1,
then � ∈ {is+1, . . . , ir−1}.

Proof. Let T ∈ Std(P l
n) with iT = i. We prove by induction on r that i↓r

∈ IrΛ
satisfies all three conditions as claimed. By definition, i1 = κj for some j, so (i)
holds. By induction, we assume that i↓r−1

satisfies (i)–(iii). If 〈Λ, α∨
ir
〉 = 0, then

r is not in the (1, 1) node of any component of T, so T has an entry directly above
or to the left of r, so (ii) holds. Now suppose that ir = is �= 1, � − 1 are as in the
first part of (iii). Condition (SS1) ensures that residues in different components
are distinct, so that r and s must be in the same component of T. Condition (SS2)
ensures that r and s are on the same diagonal, so that r is not in the first row or
first column of the component, so (iii) holds. Finally, suppose that ir = is = 1 or
�− 1. Then we have r and s both appearing in the first row or both appearing in
the first column of T, so that {is+1, . . . , ir−1} contains 0 if ir = 1, or � if ir = �− 1,
proving the second and third statements in (iii).

Conversely, suppose that i ∈ In satisfies conditions (i)–(iii). We show by in-
duction on r that i↓r

∈ IrΛ for 1 � r � n. If r = 1, (i) implies that i↓r
∈ IrΛ. So

suppose by the induction hypothesis that for some 1 < r < n, i↓r
= iS for some

S ∈ Std(P l
r). Let λ = Shp(S). From the proof of Lemma 3.1, we know that for

any i ∈ I, [λ] has at most one addable i-node.
If 〈Λ, α∨

ir+1
〉 = 0, then by (ii), λ contains either an (ir+1 − 1)-node or (ir+1 + 1)-

node (or both). Thus either there is an addable ir+1-node in the first row or first
column of the corresponding component of λ, or else there is some 1 � s < r + 1
such that is = ir+1. By (SS2), if there is no addable ir+1-node in the first row or
column, then 1 < ir+1 < �− 1 in this case, and condition (iii) tells us that there is
again an addable ir+1-node.

If 〈Λ, α∨
ir+1

〉 = 1, then either the (1, 1) node of some component of [λ] is an

addable ir+1-node, or [λ] already contains a (1, 1) node which has residue ir+1. In
the latter case, (iii) implies that [λ] has an addable ir+1-node.
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Thus we know that [λ] has precisely one addable ir+1-node, which we shall denote
by A. Then i↓r+1

= iT where T is the unique standard tableau satisfying T↓r
= S

and T(A) = r + 1. Hence i↓r+1
∈ Ir+1

Λ and the proof is complete. �

The following lemma follows easily from the rank formula for e(i)RΛ
n e(i) given

in [APS17, Theorem 2.5], and does not require that (SS1) and (SS2) are satisfied.

Lemma 3.5. If i ∈ In \ InΛ, then e(i) = 0 in RΛ
n .

Lemma 3.6. Let 1 � m < n and suppose that (SS1) and (SS2) hold if n is replaced
with m. Then x1 = · · · = xm = 0.

Proof. Using the defining relations of RΛ
n , we will prove by induction on r that

xre(i) = 0 for all i ∈ InΛ and 1 � r � m, from which the result will follow by
Lemma 3.5.

When r = 1, the result follows immediately from the cyclotomic relations. So we
will assume that x1 = · · · = xr−1 = 0, and show that xre(i) = 0 whenever i↓r

∈ IrΛ.
If ir−1 = ir ± 1 and neither ir−1 nor ir are 0 or �, then by induction we have

xre(i) = (xr + xr−1)e(i) = ψ2
r−1e(i) = ψr−1e(sr−1i)ψr−1 = 0,

where the last equality follows from Corollary 3.2. Similarly, if (ir−1, ir) = (1, 0) or
(�− 1, �), then

xre(i) = (xr + x2
r−1)e(i) = ψ2

r−1e(i) = ψr−1e(sr−1i)ψr−1 = 0.

If (ir−1, ir) = (0, 1) or (�, � − 1), then by (SS2) and Lemma 3.1, i is the residue
sequence of some standard tableau T of shape λ, and [λ] has exactly one other 1-node
(resp. (�−1)-node) besides T−1(r), and T−1(r−1) is the only 0-node (resp. �-node)
of [λ]. Moreover, the other 1-node (resp. (�−1)-node) is T−1(u) for some 1 � u < r,
and T−1(v) �= 2 (resp. �− 2) for any u < v < r. Thus we have

e(i) = ψ2
ue(i) = ψue(sui)ψu = ψuψu+1e(su+1sui)ψu+1ψu

= · · · = ψuψu+1 . . . ψr−3e(sr−3 . . . sui)ψr−3 . . . ψu,

so that ((sr−3 . . . sui)r−2, (sr−3 . . . sui)r−1, (sr−3 . . . sui)r) = (1, 0, 1) or (�− 1, �, �−
1) and

xre(i)

= ψuψu+1 . . . ψr−3xre(sr−3 . . . sui)ψr−3 . . . ψu

= ψuψu+1 . . .

ψr−3(ψr−1ψr−2ψr−1−ψr−2ψr−1ψr−2−xr−2)e(sr−3 . . . sui)ψr−3 . . . ψu

= 0

by the induction hypothesis and the fact that sr−2sr−3 . . . sui, sr−1sr−3 . . . sui /∈ InΛ
by Corollary 3.2.

Finally, if ir−1 �= ir ± 1, then since we know that ir−1 �= ir by Lemma 3.4,

xre(i) = xrψ
2
r−1e(i) = xrψr−1e(sr−1i)ψr−1 = 0,

which completes the proof. �
Definition 3.7. Let (S, T) ∈ Std2(P l

n). Then we define the element eST ∈ RΛ
n to

be eST = ψ(wS)−1e(iλ)ψwT .

By Lemma 3.1, the elements eST do not depend on the choice of reduced expres-
sion.
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Theorem 3.8. Suppose that conditions (SS1) and (SS2) hold. Then RΛ
n is a graded

cellular algebra with graded cellular basis

B = {eST | (S, T) ∈ Std2(P l
n)}

with deg eST = 0 for all S, T.

Proof. By Lemma 3.4, if i ∈ InΛ, i cannot contain a subsequence of the form
(i, i ± 1, i) for any i ∈ I, except possibly (1, 0, 1) or (� − 1, �, � − 1). Lemmas 3.5
and 3.6 imply that (even in the degenerate cases above) the ψ generators satisfy
the braid relations for Sn. Therefore RΛ

n is spanned by the elements {ψve(i)ψw |
v, w ∈ Sn, i ∈ InΛ}. Since ψve(i)ψw = e(vi)ψve(i)ψw = 0 if vi /∈ InΛ, RΛ

n it is in
fact spanned by the elements of B. It follows from the rank formula [APS17, The-
orem 2.5] that B is a basis for RΛ

n .
The orthogonality relations on the idempotents e(i) imply that eSTeUV = δT,UeSV,

so that B is in fact a basis of matrix units, and

RΛ
n =

⊕
λ∈Pl

n

MatdimSλ
κ
(O).

It follows that this basis is a cellular basis. As in the proof of Theorem 3.3, we
have that degψre(i) = 0 for all 1 � r < n and i ∈ InΛ, so all elements of B are
homogeneous of degree 0. �

In the proof of the above theorem, we showed that if conditions (SS1) and (SS2)
hold, RΛ

n is a direct sum of matrix algebras. We obtain the main result of this
subsection as a corollary of this fact.

Corollary 3.9. Suppose that O = F is a field and that conditions (SS1) and (SS2)
hold. Then RΛ

n is semisimple.

3.2. The non-semisimple case. In this section, we will assume throughout that
O = F is a field and prove the following converse to Corollary 3.9.

Theorem 3.10. Suppose that O = F is a field, and that at least one of the condi-
tions (SS1) and (SS2) fails. Then RΛ

n is not semisimple.

We break the proof into several lemmas. First we will look at the case where
(SS2) fails. We begin with separate treatment of the case where κj = 0 or � for
some 1 � j � l.

Lemma 3.11. Suppose κj = 0 or � for some 1 � j � l. If n > 1, then RΛ
n is not

semisimple.

Proof. For any n > 1 we construct an explicit two-dimensional uniserial RΛ
n -

module. Let λ ∈ P l
n be the multipartition such that every component is empty

except for component j, with λ(j) = (n), andlet i = iλ.
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Define M to be the RΛ
n -module with generators u, v subject to the following

relations:

e(i)u = u,

e(i)v = v,

ψru = ψrv = 0 for all r,

xru = 0 for all r,

xrv = 0 if r ≡ 1 mod �,

x2k�+rv = (−1)ru for all k and all 2 � r � �,

x2k�+rv = (−1)r+1u for all k and all �+ 2 � r � 2�.

Then M is a two-dimensional vector space over F, and we must show it is an
RΛ

n -module, whence the result follows since u generates a proper submodule of M ,
while v generates the whole of M . So we must check that the defining relations
of RΛ

n hold when acting on M . For most of the relations, the result is trivial – if
ψ generators appear in every term or for the idempotent relations, or the product
of two x generators. By definition of i, there are no error terms in the relations
pushing x generators past ψ generators, so these are also trivial. This leaves the
quadratic and braid relations.

First, we deal with the quadratic relations. If r ≡ 1 mod �, then (ir, ir+1) =
(0, 1) or (�, � − 1), so that ψ2

re(i) = (xr + x2
r+1)e(i). In both cases, ψr, xr and

x2
r+1 each kill both u and v, so the relation holds. If (ir, ir+1) = (1, 0) or (�− 1, �),

then ψ2
re(i) = (x2

r + xr+1)e(i), and again each of ψr, x
2
r and xr+1 kills both u and

v, so the relation holds. Finally, suppose that ir, ir+1 �= 0 or �. Then ψ2
re(i) =

(xr + xr+1)e(i), with the left-hand side killing u and v, xr and xr+1 each killing u,
and xrv = −xr+1v, so that this relation always holds.

Next, we check the braid relations. Since ψru = ψrv = 0 for all r, we only have
to worry about the braid relations which yield error terms. With our chosen i, this
only happens for the relations (ψr+1ψrψr+1 − ψrψr+1ψr)e(i) = (xr + xr+2)e(i) for
r ≡ 0 mod �. Now we have that xrv = −xr+2v by the final two defining relations
for M . �

Next, we will handle the case where (SS2) fails and κj �= 0, � for any 1 � j � l.
Recall that we have fixed a multicharge κ = (κ1, . . . , κl) ∈ Z

l such that Λ = Λκ.
Define κ = (κ1, . . . , κl) ∈ I l and κ̂ = (2�− κ1, . . . , 2�− κl) ∈ I l.

Lemma 3.12. Suppose that κj �= 0, � for all 1 � j � l, and (SS2) fails. Then RΛ
n

is not semisimple.

Proof. We fix 1 � j � l such that either n−1
2 > κj or � − n−1

2 < κj . Set μ ∈ P l
n

to be the multipartition such that every component is empty except component j,
with μ(j) = (1n).

If n−1
2 > κj , we set λ ∈ P l

n to be the multipartition such that every component

is empty except component j, with λ(j) = (n− 2κj , 1
2κj ). We will show that for T

the least dominant standard λ-tableau, the homogeneous basis element vT = ψwTzλ

generates a one-dimensional submodule of Sλ
κ isomorphic to Sμ

κ .
If � − n−1

2 < κj , we may instead set λ ∈ P l
n to be the multipartition such

that every component is empty except λ(j) = (2(� − κj), 1
n−2(�−κj )). A similar

argument shows that for T the least dominant standard λ-tableau, vT generates a
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one-dimensional submodule of Sλ
κ̂ isomorphic to Sμ

κ̂ , so we will focus on the former
case, leaving the latter as an exercise.

We have that e(iT)vT = vT, where iT = (κj , κj − 1, . . . , 1, 0, 1, . . . , κj , κj + 1, . . . ).
We will show that all x and ψ generators of RΛ

n annihilate vT. First, let 1 � r � n.
Then by Lemma 2.2(i),

xrv
T =

∑
S∈Std(λ)

iS=iT
S�T

aSv
S.

However, it is clear that T is the only standard λ-tableau with residue sequence i,
so that xrv

T = 0. Now suppose that 1 � r < n. Then since T is the least dominant
standard λ-tableau, we see by Lemma 2.2(ii) that

ψrv
T =

∑
S∈Std(λ)

iS=sri
T

S�T

aSv
S.

However, there is no standard λ-tableau with residue sequence sri
T, so that ψrv

T =
0.

To see that Sμ
κ has no complement in Sλ

κ (i.e. is not a direct summand), it suffices
to note that the residue sequence of the unique standard μ-tableau is different from
the residue sequence iλ of the initial λ-tableau Tλ, so that there is no non-zero
homomorphism Sλ

κ → Sμ
κ . �

Remark. Our choice of multicharge defining the Specht modules in Lemma 3.12
ensures (since κj �= �) that res(1, 2, j) = κj + 1. Similarly, in the case left as
an exercise, res(2, 1, j) = κj + 1. Thanks to the symmetry in the type C residue
pattern, this suffices to prove that RΛ

n is not semisimple. A different choice of
multicharge κ′ satisfying Λ = Λκ′ would also do the trick, but would need a slightly
different choice of multipartition λ.

We now turn our attention to the case where condition (SS1) fails.

Lemma 3.13. Suppose that condition (SS2) holds, but κj = κj′ for some 1 � j �=
j′ � l. Then RΛ

n is not semisimple.

Proof. The proof is similar to the proof of Lemma 3.11. We let λ ∈ P l
n be the

multipartition such that every component is empty except for component j, with
λ(j) = (n), and let i = iλ.

Define M to be the RΛ
n -module with generators u, v subject to the following

relations:

e(i)u = u,

e(i)v = v,

ψru = ψrv = 0 for all r,

xru = 0 for all r,

x�−κj+1v = 0,

(−1)r+1xrv = u for all 1 � r < �− κj + 1,

(−1)rxrv = u for all �− κj + 1 < r � n.
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Then M is a two-dimensional vector space over F, and we proceed to show that
it is an RΛ

n -module. For most of the relations, the result is trivial, so we check
the quadratic and braid relations. We note that since (SS2) holds, i is a prefix of
(κj , κj +1, . . . , �− 1, �, �− 1, . . . , κj), so that there is only a single non-trivial braid
relation to check, corresponding to (i�−κj

, i�−κj+1, i�−κj+2) = (�− 1, �, �− 1).

First, we deal with the quadratic relations. For 1 � r < �−κj , we have ψ
2
re(i) =

(xr+xr+1)e(i), and both sides kill u and v. Next, ψ2
�−κj

e(i) = (x2
�−κj

+x�−κj+1)e(i),

and both sides again kill u and v. Similarly, both sides of ψ2
�−κj+1e(i) = (x�−κj+1+

x2
�−κj+2)e(i) kill u and v. Finally, for � − κj + 1 < r < n, we have ψ2

re(i) =

(xr + xr+1)e(i) and both sides kill u and v.
Finally, we check the non-trivial braid relation, which is only present if n >

�− κj + 2. We have

(ψ�−κj+1ψ�−κj
ψ�−κj+1 − ψ�−κj

ψ�−κj+1ψ�−κj
)e(i) = (x�−κj

+ x�−κj+2)e(i).

Both sides of the above equation kill u and v, which completes our proof, as M is
uniserial. �
Lemma 3.14. Suppose that condition (SS2) holds, κj are distinct, but for some
i ∈ I, 〈Λ, α∨

i,n〉 > 1. Then RΛ
n is not semisimple.

Proof. In spirit, the proof is the same as that of Lemma 3.12. Since we have
assumed that condition (SS2) holds, � � n− 1 and we may assume that i = κj for
some 1 � j � l, and for some 1 � j′ � l and 1 � k � �− i− n−1

2 , κj′ = i+ k.
We consider two cases – either j < j′ or j > j′. As in the proof of Lemma 3.12,

we will in each case define a multipartition λ ∈ P l
n and let T denote the least

dominant standard λ-tableau, and will show that vT = ψwTzλ = ψ1ψ2 . . . ψn−1z
λ

generates a one-dimensional submodule of Sλ
κ .

First suppose that j < j′. Then we define λ ∈ P l
n to be the multipartition

with all components empty except components j and j′, with λ(j) = (1n−k) and

λ(j′) = (1k). Note that the standard λ-tableaux are uniquely determined by their
residue sequences, by Lemma 3.1. Now it follows from Lemma 2.2 that all x and ψ
generators except possibly ψk annihilate vT. We note that ψwT is fully commutative,
and has an expression starting with ψk. Let S denote the tableau skT, so that
vT = ψkψwSzλ. Then

ψkv
T = ψ2

kψwSzλ = (xk + xk+1)ψwSzλ = 0,

where the last equality follows from Lemma 2.2(i). We have proved that vT gener-
ates a one-dimensional submodule of Sλ

κ . As in the proof of Lemma 3.12, examining
residues yields that this module is not a direct summand of Sλ

κ .
Finally, if k > 0 and j > j′, we define λ ∈ P l

n to be the multipartition with all

components empty except components j and j′, with λ(j) = (k) and λ(j′) = (n−k).
This case is almost identical to the other, and we leave the details to the reader. �

Combining Corollary 3.9 and Lemmas 3.11 to 3.14, we have proved our Main
Theorem, Theorem 1.1.
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