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A DIRECT SOLUTION TO THE GENERIC POINT PROBLEM

ANDY ZUCKER

(Communicated by Ken Ono)

Abstract. We provide a new proof of a recent theorem of Ben Yaacov,
Melleray, and Tsankov. If G is a Polish group and X is a minimal, metrizable
G-flow with all orbits meager, then the universal minimal flow M(G) is non-
metrizable. In particular, we show that given X as above, the universal highly
proximal extension of X is nonmetrizable.

1. Introduction

In this paper, we are concerned with actions of a topological group G on a
compact space X. All groups and spaces are assumed Hausdorff. A compact space
X equipped with a continuous G-action a : G × X → X is called a G-flow. The
action a is often suppressed in the notation, i.e., gx is written for a(g, x). A G-
flow X is called minimal if every orbit is dense. It is a fact that every topological
group G admits a universal minimal flow M(G), a minimal flow which admits a
G-map onto any other minimal flow. A G-map is a continuous map respecting the
G-action. The flow M(G) is unique up to G-flow isomorphism.

We can now recall the following theorem of Ben Yaacov, Melleray, and Tsankov
[4].

Theorem 1.1. Let G be a Polish group, and let M(G) be the universal minimal
flow of G. If M(G) is metrizable, then M(G) has a comeager orbit.

The question of whether or not metrizability of M(G) was enough to guarantee
a comeager orbit was first asked by Angel, Kechris, and Lyons [5]. In [6], the
current author proved Theorem 1.1 in the case when G is the automorphism group
of a first-order structure. The proof given there used topological properties of the
largest G-ambit S(G) along with combinatorial reasoning about the structures. In
[4], the authors also use topological properties of S(G), but the combinatorics are
replaced by the following theorem due to Rosendal; see [4] for a proof.

Theorem 1.2. Let G be a Polish group acting continuously on a compact metric
space X. Assume the action is topologically transitive. Then the following are
equivalent:

(1) G has a comeager orbit.
(2) For any open 1 ∈ V ⊆ G and any open B ⊆ X, there is open C ⊆ B so

that for any open D ⊆ C, the set C \ V D is nowhere dense.
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It is proven in [5] that comeager orbits push forward; namely, if X is a minimal
G-flow, x ∈ X is a point whose orbit is generic, and if π : X → Y is a surjective
G-map, then π(x) has generic orbit in Y . Theorem 1.1 then becomes equivalent
to the following: whenever G is a Polish group and X is a minimal metrizable
flow with all orbits meager, then G must admit some minimal, nonmetrizable flow.
Remarkably, neither [4] nor [6] prove Theorem 1.1 in this direct fashion.

We provide a direct proof of Theorem 1.1. For any topological group G and any
G-flow X, we construct a new G-flow denoted SG(X). We then show that if X is
minimal, then so is SG(X). Lastly, if G is Polish and X is metrizable and has all
orbits meager, we use Theorem 1.2 to show that SG(X) is nonmetrizable.

After providing our new proof of Theorem 1.1, we investigate the flow SG(X)
in more detail. For any G-flow X, there is a natural map πX : SG(X) → X.
When X is minimal, we show that πX is the universal highly proximal extension
of X. The notion of a highly proximal extension was introduced by Auslander
and Glasner in [2]. If X and Y are minimal G-flows, a G-map ϕ : Y → X is
highly proximal if for any x ∈ X and nonempty open U ⊆ Y , there is g ∈ G with
gπ−1({x}) ⊆ U . Auslander and Glasner prove in [2] that for every minimal G-flow

X, there is a universal highly proximal extension π : X̂ → X. This means that π is
highly proximal, and for every other highly proximal ϕ : Y → X, there is a G-map

ψ : X̂ → Y so that π = ϕ ◦ ψ. The map π is unique up to G-flow isomorphism
over X. Our construction of the flow SG(X) provides a new construction of the
universal highly proximal extension of X and hints at a generalization of this notion
even when X is not minimal.

2. The flow SG(X) and proof of Theorem 1.1

All groups and spaces will be assumed Hausdorff. In this section, fix a topo-
logical group G and a G-flow X. Write NG for the collection of symmetric open
neighborhoods of the identity in G and write op(X) for the collection of nonempty
open subsets of X.

Definition 2.1. A near filter is any F ⊆ op(X) so that for any A1, . . . , Ak ∈ F
and any U ∈ NG, we have UA1 ∩ · · · ∩ UAk �= ∅. A near ultrafilter is a maximal
near filter.

Near ultrafilters exist by an application of Zorn’s lemma. Near ultrafilters on a
uniform space have been considered in [1] and [3]. Two aspects of our approach are
slightly different. First, the notion of nearness is not given by the natural uniform
structure on the compact Hausdorff space X. Second, instead of working with a
notion of nearness on P(X), we are more or less working with the regular open
algebra on X (see item (2) in Lemma 2.2).

Let SG(X) denote the space of near ultrafilters on op(X).

Lemma 2.2.

(1) Let p ∈ SG(X), and let A ⊆ X be open. If A �∈ p, then there is some
V ∈ NG with V A �∈ p.

(2) Let A ⊆ X be open, and let B1, . . . , Bk ⊆ A be open with B1 ∪ · · · ∪ Bk

dense in A. If p ∈ SG(X) and A ∈ p, then Bi ∈ p for some i ≤ k.
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Proof.

(1) As A �∈ p, find B1, . . . , Bn ∈ p and U ∈ NG with UA∩UB1∩· · ·∩UBn = ∅.
Let V ∈ NG with V V ⊆ U . Then V (V A) ∩ V B1 ∩ · · · ∩ V Bn = ∅.

(2) Towards a contradiction, assume Bi �∈ p for each i ≤ k. For each i ≤ k,
find Bi

1, . . . , B
i
ni

∈ p and a U ∈ NG so that UBi ∩ UBi
1 ∩ · · · ∩ UBi

ni
= ∅.

We can take the same U ∈ NG for each i ≤ k by intersecting. Let C =⋂
i≤k

⋂
j≤ni

UBi
j . Then since A ∈ p, we have UA∩C �= ∅. Let ga ∈ UA∩C,

where g ∈ U and a ∈ A. Since UA ∩ C is open, there is open A′ ⊆ A with
gA′ ⊆ UA ∩ C. As B1 ∪ · · · ∪ Bk is dense in A, there is some i ≤ k and
some b ∈ Bi with gb ∈ UA∩C. Since gb ∈ UBi, this is a contradiction. �

Definition 2.3. If A ∈ op(X), set NA := {p ∈ SG(X) : A �∈ p}. We endow SG(X)
with the topology whose typical basic open neighborhood is NA for A ∈ op(X).

Proposition 2.4. The topology from Definition 2.3 is compact Hausdorff.

Proof. To show that SG(X) is Hausdorff, let p �= q ∈ SG(X). Find some A ∈ p \ q.
As A �∈ q, find some V ∈ NG so that V A �∈ q. Set B = int(X \ V A). Then B �∈ p.
So p ∈ NB, q ∈ NV A, and NV A ∩NB = ∅.

To show that SG(X) is compact, suppose C := {NAi
: i ∈ I} is a collection of

basic open sets without a finite subcover. Then for any i1, . . . , ik ∈ I, we can find
p ∈

⋂
j≤k SG(X) \NAij

, equivalently, with Ai1 , . . . , Aik ∈ p. But this implies that

{Ai : i ∈ I} is a near filter and can be extended to a near ultrafilter q. Therefore
C is not an open cover. �

Definition 2.5. If p ∈ SG(X) and g ∈ G, we let gp ∈ SG(X) be defined by
declaring A ∈ gp iff g−1A ∈ p for each A ∈ op(X).

Proposition 2.6. The action in Definition 2.5 is continuous.

Proof. First note that for a fixed g ∈ G, the map p → gp is continuous. So let
pi, p ∈ SG(X) and gi ∈ G with pi → p and gi → 1. Suppose A �∈ p. Find V ∈ NG

with V A �∈ p. So eventually V A �∈ pi. Also, as gi → 1, eventually we have g−1
i ∈ V .

Whenever g−1
i A ⊆ V A, we must have g−1

i A �∈ pi. So eventually A �∈ gipi. �

Up until now, no assumptions on G and X have been needed. In fact, we did
not even need X to be compact to construct SG(X). We now begin adding extra
assumptions to G and X to obtain stronger conclusions about SG(X).

Proposition 2.7. Suppose X is a minimal G-flow. Then so is SG(X).

Proof. Let p ∈ SG(X), and let A ∈ op(X) with NA �= ∅. Find some V ∈ NG with
NV A �= ∅. Then B := int(X \ V A) �= ∅. As X is minimal, find g1, . . . , gk with
X =

⋃
i≤k giB. For some i ≤ k, we must have giB ∈ p. Then B ∈ g−1

i p, so we

must have A �∈ g−1
i p, and the orbit of p is dense as desired. �

Before proving Theorem 1.1, we need a sufficient criterion for when SG(X) is
nonmetrizable.

Proposition 2.8. Suppose there are {An : n < ω} ⊆ op(X) and V ∈ NG so that
the collection {V An : n < ω} is pairwise disjoint. Then SG(X) is nonmetrizable.
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Proof. If S ⊆ ω, let AS =
⋃

n∈S An and let Y = {p ∈ SG(X) : Aω ∈ p}. Then
Y ⊆ SG(X) is a closed subspace. To show that SG(X) is nonmetrizable, we will
exhibit a continuous surjection π : Y → βω. First note that if S ⊆ ω, then
V AS ∩ V Aω\S = ∅. Therefore, if p ∈ Y , p contains exactly one of AS or Aω\S for
each S ⊆ ω. We let π : Y → βω be defined so that for S ⊆ ω, S ∈ π(p) iff AS ∈ p.
It is immediate that π is continuous. To see that π is surjective, let q ∈ βω. Then
{AS : S ∈ q} is a near filter; any near ultrafilter p extending it is a member of Y
with π(p) = q. �

Proof of Theorem 1.1. We now fix a Polish group G and a minimal G-flow X whose
orbits are all meager. Then by Theorem 1.2, there is U ∈ NG and open B ⊆ X
so that for any open C ⊆ B, there is open D ⊆ C with C \ UD somewhere dense
(since C and UD are open, this is the same as C \ UD having nonempty interior).

Let V ∈ NG with V V ⊆ U . We now produce {An : n < ω} ⊆ op(X) with
{V An : n < ω} pairwise disjoint. First set B0 = B. As B0 ⊆ B, there is A0 ⊆ B0

so that B0 \ UA0 has nonempty interior. Suppose open sets B0, . . . , Bn−1 and
A0, . . . , An−1 have been produced so that Ai ⊆ Bi and int(Bi \ UAi) �= ∅. We
continue by setting Bn = int(Bn−1 \ UAn−1). As Bn ⊆ B, there is An ⊆ Bn so
that Bn \ UAn has nonempty interior. Notice that for any m ≤ n, we also have
An ⊆ Bm. It follows that if m < n, we have UAm ∩ An = ∅. This implies that
V Am ∩ V An = ∅, as desired. We can now apply Proposition 2.8 to conclude that
SG(X) is not metrizable. �

3. Universal highly proximal extensions

Let ϕ : Y → X be a G-map between minimal flows. There are several equivalent
definitions which all say that ϕ is highly proximal. The definition we will use here is
that ϕ is highly proximal iff every nonempty open B ⊆ Y contains a fiber ϕ−1({x})
for some x ∈ X. Define the fiber image of B to be the set ϕfib(B) := {x ∈
X : ϕ−1({x}) ⊆ B}. Notice that ϕfib(B) is open, and ϕ is highly proximal iff
ϕfib(B) �= ∅ for every nonempty open B ⊆ Y . It follows that this definition is the
same as the one given in the introduction.

Now letX be a G-flow, and form SG(X). We define the map πX : SG(X) → X as
follows. For each p ∈ SG(X), there is a unique xp ∈ X so that every neighborhood
of xp is in p. The existence of such a point is an easy consequence of the compactness
of X and the second item of Lemma 2.2. For uniqueness, notice that if x �= y ∈ X,
we can find open A � x, B � y, and U ∈ NG with UA∩UB = ∅. We set πX(p) = xp.
This map clearly respects the G-action. To check continuity, one can check that if
K ⊆ X is closed, then π−1

X (K) = {p ∈ SG(X) : A ∈ p for every open A ⊇ K}, and
this is a closed condition.

Proposition 3.1. Let X be minimal. Then the map πX : SG(X) → X is highly
proximal.

Proof. By Proposition 2.7, SG(X) is a minimal flow. So let NA ⊆ SG(X) be
a nonempty basic open neighborhood. This implies that int(X \ A) �= ∅. Let
x ∈ int(X \ A). Then there are open B � x and U ∈ NG with UB ∩ A = ∅. It
follows that any p ∈ SG(X) containing B cannot contain A. In particular, we have
π−1
X ({x}) ⊆ NA. �
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Theorem 3.2. Let X be minimal. Then the map πX : SG(X) → X is the universal
highly proximal extension of X.

Proof. Fix a highly proximal extension ϕ : Y → X. For each y ∈ Y , let Fy :=
{ϕfib(B) : B � y open}. Then Fy ⊆ op(X) is a filter of open sets, so in particular
it is a near filter. We will show that for each p ∈ SG(X), there is a unique y ∈ Y
with Fy ⊆ p. This will define the map ψ : SG(X) → Y .

We first show that for each p ∈ SG(X), there is at least one such y ∈ Y . To the
contrary, suppose for each y ∈ Y , there were By � y open so that ϕfib(By) �∈ p.
Find y1, . . . , yk so that {By1

, . . . , Byk
} is a finite subcover. Let Ai = ϕfib(Byi

).
Each Ai is open, so we will reach a contradiction once we show that

⋃
i≤k Ai is

dense. Let A ⊆ X be open. Then C := Byi
∩ ϕ−1(A) �= ∅ for some i ≤ k. As C is

open, ϕfib(C) �= ∅, and ϕfib(C) ⊆ A ∩ Ai.
Now we consider uniqueness. Let p ∈ SG(X) and consider y �= z ∈ Y . Find

open B � y and C � z and some V ∈ NG so that V B ∩ V C = ∅. It follows that
ϕfib(V B) ∩ ϕfib(V C) = ∅. Now notice that V ϕfib(B) ⊆ ϕfib(V B), and likewise
for C. Hence p cannot contain both Fy and Fz.

The map ψ clearly respects the G-action and satisfies πX = ϕ ◦ ψ. To show
continuity, let K ⊆ Y be closed. Let FK := {ϕfib(B) : B ⊇ K open}. We will
show that ψ(p) ∈ K iff FK ⊆ p. From this it follows that ψ−1(K) is closed. One
direction is clear. For the other, suppose ψ(p) = y �∈ K. Find open sets B � y,
C ⊇ K, and V ∈ NG with V B ∩ V C = ∅. As in the proof of uniqueness, p cannot
contain both Fy and FK . �

By combining the main results of the previous two sections, we obtain the fol-
lowing.

Corollary 3.3. Let G be a Polish group, and let X be a minimal, metrizable G-
flow with all orbits meager. Then the universal highly proximal extension of X is
nonmetrizable.
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