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A direct solution to the Generic Point Problem

Andy Zucker

Abstract

We provide a new proof of a recent theorem of Ben-Yaacov, Melleray, and Tsankov.
If G is a Polish group and X is a minimal, metrizable G-flow with all orbits meager,
then the universal minimal flow M(G) is non-metrizable. In particular, we show that
given X as above, the universal highly proximal extension of X is non-metrizable.

1 Introduction

In this paper, we are concerned with actions of a topological group G on a compact space
X. All groups and spaces are assumed Hausdorff. A compact space X equipped with a
continuous G-action a : G × X → X is called a G-flow. The action a is often suppressed
in the notation, i.e. gx is written for a(g, x). A G-flow X is called minimal if every orbit is
dense. It is a fact that every topological group G admits a universal minimal flow M(G), a
minimal flow which admits a G-map onto any other minimal flow. A G-map is a continuous
map respecting the G-action. The flow M(G) is unique up to G-flow isomorphism.

We can now recall the following theorem of Ben-Yaacov, Melleray, and Tsankov [4].

Theorem 1.1. Let G be a Polish group, and let M(G) be the universal minimal flow of G.
If M(G) is metrizable, then M(G) has a comeager orbit.

The question of whether or not metrizability of M(G) was enough to guarantee a comea-
ger orbit was first asked by Angel, Kechris, and Lyons [5]. In [6], the current author proved
Theorem 1.1 in the case when G is the automorphism group of a first-order structure. The
proof given there used topological properties of the largest G-ambit S(G) along with com-
binatorial reasoning about the structures. In [4], the authors also use topological properties
of S(G), but the combinatorics is replaced by the following theorem due to Rosendal; see [4]
for a proof.

Theorem 1.2. Let G be a Polish group acting continuously on a compact metric space X.
Assume the action is topologically transitive. Then the following are equivalent.

1. G has a comeager orbit.

2. For any open 1 ∈ V ⊆ G and any open B ⊆ X, there is open C ⊆ B so that for any
D ⊆ C, the set C \ V D is nowhere dense.
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It is proven in [5] that comeager orbits push forward; namely, if X is a minimal G-flow,
x ∈ X is a point whose orbit is generic, and if π : X → Y is a surjective G-map, then π(x)
has generic orbit in Y . Theorem 1.1 then becomes equivalent to the following: whenever G
is a Polish group and X is a minimal metrizable flow with all orbits meager, then G must
admit some minimal, non-metrizable flow. Remarkably, neither [4] nor [6] prove Theorem
1.1 in this direct fashion.

We provide a direct proof of Theorem 1.1. For any topological group G and any G-flow
X, we construct a new G-flow denoted SG(X). We then show that if X is minimal, then
so is SG(X). Lastly, if G is Polish and X is metrizable and has all orbits meager, we use
Theorem 1.2 to show that SG(X) is non-metrizable.

After providing our new proof of 1.1, we investigate the flow SG(X) in more detail. For
any G-flow X, there is a natural map πX : SG(X) → X. When X is minimal, we show
that πX is the universal highly proximal extension of X. The notion of a highly proximal
extension was introduced by Auslander and Glasner in [2]. If X and Y are minimal G-flows,
a G-map ϕ : Y → X is highly proximal if for any x ∈ X and non-empty open U ⊆ Y ,
there is g ∈ G with gπ−1({x}) ⊆ U . Auslander and Glasner prove in [2] that for every

minimal G-flow X, there is a universal highly proximal extension π : X̂ → X. This means
that π is highly proximal, and for every other highly proximal ϕ : Y → X, there is a G-map
ψ : X̂ → Y so that π = ϕ ◦ ψ. The map π is unique up to G-flow isomorphism over X. Our
construction of the flow SG(X) provides a new construction of the universal highly proximal
extension of X and hints at a generalization of this notion even when X is not minimal.
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I would like to thank Eli Glasner for many helpful discussions, including the initial suggestion
that πX was the universal highly proximal extension of X. I would also like to thank Todor
Tsankov for helpful discussions, and I would like to thank the Casa Matemática Oaxaca for
their hospitality while some of this work was being completed.

2 The flow SG(X) and proof of Theorem 1.1

All groups and spaces will be assumed Hausdorff. In this section, fix a topological group
G and a G-flow X. Write NG for the collection of symmetric open neighborhoods of the
identity in G, and write op(X) for the collection of nonempty open subsets of X.

Definition 2.1. A near filter is any F ⊆ op(X) so that for any A1, ..., Ak ∈ F and any
U ∈ NG, we have UA1 ∩ · · · ∩ UAk 6= ∅. A near ultrafilter is a maximal near filter.

Near ultrafilters exist by an application of Zorn’s lemma. Near ultrafilters on a uniform
space have been considered in [1] and [3]. Two aspects of our approach are slightly different.
First, the notion of nearness is not given by the natural uniform structure on the compact
Hausdorff space X. Second, instead of working with a notion of nearness on P(X), we are
more or less working with the regular open algebra on X (see item (2) in Lemma 2.2).

Let SG(X) denote the space of near ultrafilters on op(X).
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Lemma 2.2.

1. Let p ∈ SG(X), and let A ⊆ X be open. If A 6∈ p, then there is some V ∈ NG with
V A 6∈ p.

2. Let A ⊆ X be open, and let B1, ..., Bk ⊆ A be open with B1 ∪ · · · ∪ Bk dense in A. If
p ∈ SG(X) and A ∈ p, then Bi ∈ p for some i ≤ k.

Proof.

1. As A 6∈ p, find B1, ..., Bn ∈ p and U ∈ NG with UA ∩ UB1 ∩ · · · ∩ UBn = ∅. Let
V ∈ NG with V V ⊆ U . Then V (V A) ∩ V B1 ∩ · · · ∩ V Bn = ∅.

2. Towards a contradiction, assume Bi 6∈ p for each i ≤ k. For each i ≤ k, find
Bi

1, ..., B
i
ni
∈ p and a U ∈ NG so that UBi ∩ UBi

1 ∩ · · · ∩ UBi
ni

= ∅. We can take
the same U ∈ NG for each i ≤ k by intersecting. Let C =

⋂
i≤k

⋂
j≤ni

UBi
j. Then since

A ∈ p, we have UA∩C 6= ∅. Let ga ∈ UA∩C, where g ∈ U and a ∈ A. Since UA∩C
is open, there is open A′ ⊆ A with gA′ ⊆ UA ∩ C. As B1 ∪ · · · ∪ Bk is dense in A,
there is some i ≤ k and some b ∈ Bi with gb ∈ UA ∩ C. Since gb ∈ UBi, this is a
contradiction.

Definition 2.3. If A ∈ op(X), set NA := {p ∈ SG(X) : A 6∈ p}. We endow SG(X) with the
topology whose typical basic open neighborhood is NA for A ∈ op(X).

Proposition 2.4. The topology from Definition 2.3 is compact Hausdorff.

Proof. To show that SG(X) is Hausdorff, let p 6= q ∈ SG(X). Find some A ∈ p \ q. As
A 6∈ q, find some V ∈ NG so that V A 6∈ q. Set B = int(X \ V A). Then B 6∈ p. So p ∈ NB,
q ∈ NV A, and NV A ∩NB = ∅.

To show that SG(X) is compact, suppose C := {NAi
: i ∈ I} is a collection of basic open

sets without a finite subcover. Then for any i1, ..., ik ∈ I, we can find p ∈
⋂

j≤k SG(X)\NAij
,

equivalently, with Ai1 , ..., Aik ∈ p. But this implies that {Ai : i ∈ I} is a near filter, and can
be extended to a near ultrafilter q. Therefore C is not an open cover.

Definition 2.5. If p ∈ SG(X) and g ∈ G, we let gp ∈ SG(X) be defined by declaring A ∈ gp
iff g−1A ∈ p for each A ∈ op(X).

Proposition 2.6. The action in Definition 2.5 is continuous.

Proof. First note that for a fixed g ∈ G, the map p→ gp is continuous. So let pi, p ∈ SG(X)
and gi ∈ G with pi → p and gi → 1. Suppose A 6∈ p. Find V ∈ NG with V A 6∈ p. So
eventually V A 6∈ pi. Also, as gi → 1, eventually we have g−1i ∈ V . Whenever g−1i A ⊆ V A,
we must have g−1i A 6∈ pi. So eventually A 6∈ gipi.

Up until now, no assumptions on G and X have been needed. In fact, we did not even
need X to be compact to construct SG(X). We now begin adding extra assumptions to G
and X to obtain stronger conclusions about SG(X).
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Proposition 2.7. Suppose X is a minimal G-flow. Then so is SG(X).

Proof. Let p ∈ SG(X), and let A ∈ op(X) with NA 6= ∅. Find some V ∈ NG with NV A 6= ∅.
Then B := int(X \ V A) 6= ∅. As X is minimal, find g1, ..., gk with X =

⋃
i≤k giB. For some

i ≤ k, we must have giB ∈ p. Then B ∈ g−1i p, so we must have A 6∈ g−1i p, and the orbit of
p is dense as desired.

Before proving Theorem 1.1, we need a sufficient criterion for when SG(X) is non-
metrizable.

Proposition 2.8. Suppose there are {An : n < ω} ⊆ op(X) and V ∈ NG so that the
collection {V An : n < ω} is pairwise disjoint. Then SG(X) is non-metrizable.

Proof. If S ⊆ ω, let AS =
⋃

n∈S An, and let Y = {p ∈ SG(X) : Aω ∈ p}. Then Y ⊆ SG(X)
is a closed subspace. To show that SG(X) is non-metrizable, we will exhibit a continuous
surjection π : Y → βω. First note that if S ⊆ ω, then V AS ∩ V Aω\S = ∅. Therefore, if
p ∈ Y , p contains exactly one of AS or Aω\S for each S ⊆ ω. We let π : Y → βω be defined
so that for S ⊆ ω, S ∈ π(p) iff AS ∈ p. It is immediate that π is continuous. To see that π
is surjective, let q ∈ βω. Then {AS : S ∈ q} is a near filter; any near ultrafilter p extending
it is a member of Y with π(p) = q.

Proof of Theorem 1.1. We now fix a Polish group G and a minimal G-flow X whose orbits
are all meager. Then by Theorem 1.2, there is U ∈ NG and open B ⊆ X so that for any
open C ⊆ B, there is open D ⊆ C with C \ UD somewhere dense (since C and UD are
open, this is the same as C \ UD having nonempty interior).

Let V ∈ NG with V V ⊆ U . We now produce {An : n < ω} ⊆ op(X) with {V An : n < ω}
pairwise disjoint. First set B0 = B. As B0 ⊆ B, there is A0 ⊆ B0 so that B0 \ UA0 has
nonempty interior. Suppose open sets B0, ..., Bn−1 and A0, ..., An−1 have been produced so
that Ai ⊆ Bi and int(Bi \ UAi) 6= ∅. We continue by setting Bn = int(Bn−1 \ UAn−1). As
Bn ⊆ B, there is An ⊆ Bn so that Bn \ UAn has nonempty interior. Notice that for any
m ≤ n, we also have An ⊆ Bm. It follows that if m < n, we have UAm ∩ An = ∅. This
implies that V Am∩V An = ∅ as desired. We can now apply Proposition 2.8 to conclude that
SG(X) is not metrizable.

3 Universal highly proximal extensions

Let ϕ : Y → X be a G-map between minimal flows. There are several equivalent definitions
which all say that ϕ is highly proximal. The definition we will use here is that ϕ is highly
proximal iff every non-empty open B ⊆ Y contains a fiber ϕ−1({x}) for some x ∈ X. Define
the fiber image of B to be the set ϕfib(B) := {x ∈ X : ϕ−1({x}) ⊆ B}. Notice that ϕfib(B)
is open, and ϕ is highly proximal iff ϕfib(B) 6= ∅ for every non-empty open B ⊆ Y . It follows
that this definition is the same as the one given in the introduction.

Now let X be a G-flow, and form SG(X). We define the map πX : SG(X) → X as
follows. For each p ∈ SG(X), there is a unique xp ∈ X so that every neighborhood of
xp is in p. The existence of such a point is an easy consequence of the compactness of X
and the second item of 2.2. For uniqueness, notice that if x 6= y ∈ X, we can find open
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A 3 x, B 3 y and U ∈ NG with UA ∩ UB = ∅. We set πX(p) = xp. This map clearly
respects the G-action. To check continuity, one can check that if K ⊆ X is closed, then
π−1X (K) = {p ∈ SG(X) : A ∈ p for every open A ⊇ K}, and this is a closed condition.

Proposition 3.1. Let X be minimal. Then the map πX : SG(X)→ X is highly proximal.

Proof. By 2.7, SG(X) is a minimal flow. So let NA ⊆ SG(X) be a nonempty basic open
neighborhood. This implies that int(X \ A) 6= ∅. Let x ∈ int(X \ A). Then there are open
B 3 x and U ∈ NG with UB ∩ A = ∅. It follows that any p ∈ SG(X) containing B cannot
contain A. In particular, we have π−1X ({x}) ⊆ NA.

Theorem 3.2. Let X be minimal. Then the map πX : SG(X) → X is the universal highly
proximal extension of X.

Proof. Fix a highly proximal extension ϕ : Y → X. For each y ∈ Y , let Fy := {ϕfib(B) :
B 3 y open}. Then Fy ⊆ op(X) is a filter of open sets, so in particular it is a near filter.
We will show that for each p ∈ SG(X), there is a unique y ∈ Y with Fy ⊆ p. This will define
the map ψ : SG(X)→ Y .

We first show that for each p ∈ SG(X), there is at least one such y ∈ Y . To the contrary,
suppose for each y ∈ Y , there were By 3 y open so that ϕfib(By) 6∈ p. Find y1, ..., yk so
that {By1 , ..., Byk} is a finite subcover. Let Ai = ϕfib(Byi). Each Ai is open, so we will
reach a contradiction once we show that

⋃
i≤k Ai is dense. Let A ⊆ X be open. Then

C := Byi ∩ ϕ−1(A) 6= ∅ for some i ≤ k. As C is open, ϕfib(C) 6= ∅, and ϕfib(C) ⊆ A ∩ Ai.
Now we consider uniqueness. Let p ∈ SG(X), and consider y 6= z ∈ Y . Find open B 3 y

and C 3 z and some V ∈ NG so that V B∩V C = ∅. It follows that ϕfib(V B)∩ϕfib(V C) = ∅.
Now notice that V ϕfib(B) ⊆ ϕfib(V B), and likewise for C. Hence p cannot contain both Fy

and Fz.
The map ψ clearly respects the G-action and satisfies πX = ϕ ◦ ψ. To show continuity,

let K ⊆ Y be closed. Let FK := {ϕfib(B) : B ⊇ K open}. We will show that ψ(p) ∈ K iff
FK ⊆ p. From this it follows that ψ−1(K) is closed. One direction is clear. For the other,
suppose ψ(p) = y 6∈ K. Find open sets B 3 y, C ⊇ K, and V ∈ NG with V B ∩ V C = ∅. As
in the proof of uniqueness, p cannot contain both Fy and FK .

By combining the main results of the previous two sections, we obtain the following.

Corollary 3.3. Let G be a Polish group, and let X be a minimal, metrizable G-flow with
all orbits meager. Then the universal highly proximal extension of X is non-metrizable.
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