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HOMEOMORPHISMS OF ČECH–STONE REMAINDERS:

THE ZERO-DIMENSIONAL CASE

ILIJAS FARAH AND PAUL MCKENNEY

(Communicated by Mirna Džamonja)

Abstract. We prove, using a weakening of the Proper Forcing Axiom, that
any homemomorphism between Čech–Stone remainders of any two locally com-
pact, zero-dimensional Polish spaces is induced by a homeomorphism between
their cocompact subspaces.

1. Introduction

The Čech–Stone remainder (also known as corona) βX \X of a topological space
X will be denoted X∗. A continuous map ϕ : X∗ → Y ∗ is called trivial if there is
a continuous e : X → Y such that ϕ = e∗, where e∗ = βe \ e and βe is the unique
continuous extension of e to βX. It follows that two remainders X∗ and Y ∗ are
homeomorphic via a trivial map if and only if there are cocompact subspaces of X
and Y which are themselves homeomorphic. In this paper we prove the following
(see Section 2 for the definitions).

Theorem 1.1. OCA and MAℵ1
together imply that every homeomorphism between

Čech–Stone remainders of locally compact, zero-dimensional, Polish spaces is triv-
ial.

This proves a special case of the rigidity conjecture that forcing axioms im-
ply all homeomorphisms between Čech–Stone remainders of locally compact, non-
compact Polish spaces are trivial (see [10], [9], [3]). In contrast, the Continuum
Hypothesis (CH), implies that Čech–Stone remainders of locally compact, noncom-
pact, zero-dimensional Polish spaces are homeomorphic. This is a consequence of
Parovičenko’s topological characterization of ω∗ (see, e.g., [25]). Stone duality be-
tween compact, zero-dimensional, Hausdorff spaces and Boolean algebras of their
clopen sets provides a model-theoretic reformulation of this malleability phenome-
non. For a locally compact, non-compact Hausdorff space X let C(X) denote the
algebra of the clopen subsets of X and let K(X) denote its ideal of compact-open
sets. If X and Y are in addition zero-dimensional, then continuous maps from X∗

to Y ∗ functorially correspond to Boolean algebra homomorphisms from C(Y )/K(Y )
into C(X)/K(X). All of these algebras are elementarily equivalent and (assuming
CH) saturated, and therefore isomorphic (see [6] for the details and an extension
to not necessarily zero-dimensional spaces).1
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Back to rigidity, Theorem 1.1 belongs to a long line of results going back to She-
lah’s groundbreaking construction of an oracle-cc forcing extension of the universe
in which all autohomeomorphisms of ω∗ are trivial ([22]). Shelah’s proof was recast
in terms of forcing axioms PFA and OCA+MAℵ1

in [23] and [27], respectively. The
latter axiom also implies that homeomorphisms between Čech–Stone remainders
between countable locally compact spaces, as well as their arbitrary powers, are
trivial ([9, §4]) as well as strong negations of Parovičenko’s theorem ([5], [7]).

The interest in quotient rigidity results was rejuvenated by the discovery that the
noncommutative analogue of ‘are all automorphisms of ω∗ (or of P(ω)/ fin) trivial?’
was a prominent open problem in the theory of operator algebras. Motivated by
their work on analytic K-homology, Brown, Douglas, and Fillmore asked whether
the Calkin algebra associated with the separable, infinite-dimensional, complex
Hilbert space has outer automorphisms ([2]). Like its commutative analogue, this
question cannot be resolved in ZFC, with CH and OCA implying the opposite
answers ([21], [11]). Other rigidity results in the setting of C∗-algebras were proved
for reduced products of the form

∏
n An/

⊕
n An in the case when all An are matrix

algebras ([16], [15]), separable UHF algebras ([19]), or unital separable nuclear C∗-
algebras ([28], [20]).

A general rigidity conjecture for corona C∗-algebras was stated and partially
verified in [3]. The model theory of coronas proved to be a bit more complex than
that of Boolean algebras. While the reduced products are countably saturated
([14]), coronas possess only a modest degree of saturation ([12], [8], [30], [13]).
In return, C∗-algebras provided a vantage point that resulted in the construction
of nontrivial autohomeomorphisms of X∗ for every noncompact, locally compact,
metrizable manifold using CH ([29]).2

We note that Theorem 1.1 is not optimal. The first author’s proof that all zero-
dimensional, locally compact, Polish spaces satisfy the weak extension principle ([9,
Theorem 4.10.1]) will appear elsewhere. Dow refuted the related strong extension
principle ([9, Question 4.11.4]) by constructing a nontrivial continuous map from
ω∗ into ω∗ (i.e., one that does not have a continuous extension to a map from βω
into βω) in ZFC ([4]). An alternative proof of our main result from a stronger
assumption (PFA) is given in [14, Theorem 4.3].

In Section 2 we introduce some of the language required to prove Theorem 1.1.
Section 3 treats embeddings of P(ω)/ fin into C(X)/K(X), and we show that under
OCA +MAℵ1

, every such embedding is trivial. Much of the proof follows the work
in [27] and [26] with only minor modifications, so to avoid treading the same ground
we only prove one of the ingredients going into this theorem. Section 4 completes
the proof of Theorem 1.1 through an analysis of coherent families of continuous
functions.

2. Notation

Our terminology is standard (see [18]). The assumption of Theorem 1.1 is a con-
sequence of the Proper Forcing Axiom, PFA. OCA abbreviates the Open Coloring
Axiom ([24]; not to be confused with the eponymous OCA of [1]), and MAℵ1

refers
to Martin’s Axiom for ℵ1 dense sets.

If E is a set, then [E]2 will denote the set of unordered pairs from E. IfM ⊆ [E]2,
then a set H ⊆ E is called M -homogeneous if [H]2 ⊆ M . The Open Coloring Axiom

2The only previously known case was X = R; see [17] and [14].
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states: for every separable metric space E and every partition [E]2 = M0∪M1 such
that M0 is open (here we identify [E]2 with a symmetric subset of E×E minus the
diagonal), either

(1) there is an uncountable M0-homogeneous set, or
(2) there is a cover of E by countably-many M1-homogeneous sets.

We fix a zero-dimensional, locally compact and noncompact Polish space X.
Let 〈Kn | n < ω〉 be an increasing sequence of compact-open sets in X, such that
X =

⋃
Kn. Then K(X) is generated by 〈Kn | n < ω〉 since

K ∈ K(X) ⇐⇒ ∃n K ⊆ Kn.

It is easy to see that C(X) has size continuum, whereas K(X) is countable. When
A,B ∈ C(X) are distinct, we write δ(A,B) for the least n such that A∩Xn 
= B∩Xn.
If

d(A,B) =

{
2−δ(A,B), A 
= B,
0, A = B,

then d is a Polish metric on C(X).
Let X0 = K0 and Xn+1 = Kn+1 \ Kn. We will often identify C(X) with∏
n C(Xn), and P(ω) with ω2. Under these identifications, K(X) maps to

⊕
n C(Xn)

(the set of functions in
∏

n C(Xn) which are nonempty on only finitely many coor-
dinates) and fin to <ω2. If Y and Z are zero-dimensional, locally compact Polish
spaces, ϕ : C(Y )/K(Y ) → C(Z)/K(Z) is a homomorphism, and U ∈ C(Y ), then
we write ϕ�U for the restriction ϕ�C(U)/K(U). When working with the quotient
C(X)/K(X) we will write [A] for the equivalence class of some A ∈ C(X).

3. Embeddings of P(ω)/ fin into C(X)/K(X)

Let e : X → ω be a continuous map. If e−1(n) is compact for every n, then we
say e is compact-to-one. If e is compact-to-one, then the map a �→ e−1(a), from
P(ω) to C(X), induces a homomorphism ϕe : P(ω)/ fin → C(X)/K(X). Moreover,
ϕe is injective if and only if e is bounded on compact sets. We call a homomorphism
ϕ : P(ω)/ fin → C(X)/K(X) trivial if it is of the form ϕe for some compact-to-one,
continuous e.

In this section we prove

Theorem 3.1. Assume OCA+MAℵ1
, and suppose

ϕ : P(ω)/ fin → C(X)/K(X)

is an injective homomorphism. Then ϕ is trivial.

Working towards the proof of Theorem 3.1, we fix an injective homomorphism
ϕ : P(ω)/ fin → C(X)/K(X) and we define

I = {a ⊆ ω | ϕ�a is trivial} .
Note that I is an ideal on ω.

A family A ⊆ P(ω) is called almost disjoint if for all distinct a, b ∈ A, a∩b =∗ ∅.
Such a family A is called treelike if there is some tree T on ω and a bijection
t : ω → <ωω under which each a ∈ A corresponds to a branch through T , and vice
versa. The following lemma is proven in [27].

Lemma 3.2. Assume MAℵ1
. Then for every uncountable almost-disjoint family

A of subsets of ω we may find an uncountable B ⊆ A and partitions b = b0 ∪ b1 for
b ∈ B such that each family Bi = {bi | b ∈ B} is treelike.
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The following three lemmas do not directly follow from the work in [27], but
their proofs are nearly the same, modulo some minor modifications. Recall that an
ideal J ⊆ P(ω) is a P-ideal if for each countable sequence An ∈ J (n < ω) there
is an A ∈ J such that for all n < ω, An ⊆∗ A.

Lemma 3.3. Assume OCA+MAℵ1
. If I is a dense P-ideal, then ϕ is trivial.

Lemma 3.4. Assume b > ℵ1. If I is not a dense P-ideal, then there is an un-
countable almost disjoint family A ⊆ P(ω) which is disjoint from I.

Lemma 3.5. Assume OCA. Let A be an uncountable, treelike, almost-disjoint
family of subsets of ω. Then I \ A is countable.

Theorem 3.1 now follows from a straightforward combination of Lemmas 3.2,
3.3, 3.4, and 3.5. To illustrate the kind of modifications necessary in translating
from [27], we will give a proof of Lemma 3.3.

Proof of Lemma 3.3. For each a ∈ I, we fix Za ∈ C(X) and a continuous, compact-
to-one map ea : Za → a such that ϕ([a]) = [Za] and for all b ⊆ a, ϕ([b]) = [e−1

a (b)].
We define fa : ω → C(X) by

fa(n) = e−1
a ({n}).

Define a partition [I]2 = M0 ∪ M1 by placing {a, b} ∈ M0 if and only if there is
some n ∈ a ∩ b such that fa(n) 
= fb(n). Then M0 is open when I is given the
topology obtained by identifying a ∈ I with (a, fa) ∈ P(ω)× ωC(X).

Claim 3.6. There is no uncountable, M0-homogeneous subset H of I.

Proof. Assume H is such a set, and that |H| = ℵ1. Since I is a P-ideal, there is a
set H̄ ⊆ I such that for every a ∈ H there is some b ∈ H̄ with a ⊆∗ b, and moreover
H̄ is a chain of order-type ω1 with respect to ⊆∗. By OCA, there is an uncountable
subset of H̄ which is homogeneous for one of the two colors M0 and M1; hence, by
passing to this subset, we may assume H̄ is either M0 or M1 homogeneous.

Say H̄ is M1-homogeneous. Put ā =
⋃
H̄ , and f̄ =

⋃
a∈H̄ fa. Then f̄ : ā →

C(X), and for all a ∈ H we have a ⊆∗ ā and fā�(a ∩ ā) =∗ fa�(a ∩ ā). Choose n
so that for uncountably many a ∈ H, we have a \ n ⊆ ā, and fā�a \ n = fa�a \ n.
Then if a, b ∈ H are such, and fa�n = fb�n, we have {a, b} ∈ M1, a contradiction.

So H̄ is M0-homogeneous. Define a poset P as follows. Put p ∈ P if and only
if p = (Ap,mp, Hp) where mp < ω, Ap ∈ C(Kmp

), and Hp ∈ [H̄ ]<ω, and for all
distinct a, b ∈ Hp, there is an n ∈ a ∩ b such that

¬(fa(n) ∩Ap = ∅ ⇐⇒ fb(n) ∩ Ap = ∅).
That is, one of fa(n), fb(n) is disjoint from Ap, and the other isn’t. Put p ≤ q if
and only if mp ≥ mq, Ap ∩Kmq

= Aq, and Hp ⊇ Hq.
First we must show that P is ccc. Suppose X is an uncountable subset of P. We

may assume without loss of generality that for some fixed m and A ∈ C(Km), and
for all p ∈ X , mp = m and Ap = A, and moreover that Hp is the same size for all
p ∈ X . Let ap be the minimal element of Hp under ⊆∗, for each p ∈ X . Find np so
that for all a ∈ Hp,

fap
�(ap \ np) ⊆ fa, e′′ap

Km ⊆ np.

We may assume that for some fixed n, we have np = n for all p ∈ X . Find p, q ∈ X
with fap

�n = faq
�n. Since {ap, aq} ∈ M0, there is some k ∈ ap ∩ aq such that
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fap
(k) 
= faq

(k). Then k ≥ n, and so fap
(k) ∩ Km = faq

(k) ∩ Km = ∅. At least
one of fap

(k) \ faq
(k) and faq

(k) \ fap
(k) must be nonempty; whichever one it is,

call it B. Put Ar = A ∪ B and Hr = Hp ∪ Hq, and choose mr large enough that
Ar ⊆ Kmr

. Then r = (Ar,mr, Hr) ∈ P, and r ≤ p, q.
By MAℵ1

, there is a set A ∈ C(X) and an uncountable H∗ ⊆ H̄ such that for all
distinct a, b ∈ H∗,

∃n ∈ a ∩ b, ¬(fa(n) ∩A = ∅ ⇐⇒ fb(n) ∩A = ∅).

Fix x ⊆ ω such that F (x) = A. Then for all a ∈ H∗, e−1
a (x ∩ a)Δ(A ∩ F (a)) is

compact; hence there are ka and ma such that

e−1
a (x ∩ a \ ka) = (A ∩ F (a)) \Kma

and e−1
a (a \ ka) = F (a) \Kma

.

Then, for all n ∈ a \ ka, n ∈ x implies fa(n) ⊆ A, and n 
∈ x implies fa(n)∩A = ∅.
Fix distinct a, b ∈ H∗ with ka = kb = k, and fa�k = fb�k. Then,

∀n ∈ a ∩ b (fa(n) ∩ A = ∅ ⇐⇒ fb(n) ∩ A = ∅).

This contradicts the choice of A. �

By OCA, there is a cover of I by countably many sets In, each of which is
M1-homogeneous. Since I is a P-ideal, at least one of the In’s must be cofinal in I
with respect to ⊆∗. Choose such an In, and let f =

⋃
{fa | a ∈ In}. Then f is a

function from some subset of ω to C(X). Setting e(x) = n if and only if x ∈ f(n),
we get a function e : X → ω, and since I is dense and In cofinal in I, a �→ e−1(a)
witnesses that ϕ is trivial. �

4. Coherent families of continuous functions

Theorem 4.1. Assume OCA+MAℵ1
. Let X and Y be zero-dimensional, locally

compact Polish spaces, and let ϕ : C(Y )/K(Y ) → C(X)/K(X) be an isomorphism.
Then there are compact-open K ⊆ X and L ⊆ Y , and a homeomorphism e :
X \K → Y \ L, such that for all A ∈ C(Y \ L), ϕ([A]) = [e−1(A)].

By Stone duality, a homeomorphism ϕ : X∗ → Y ∗ induces an isomorphism
ϕ̂ : C(Y )/K(Y ) → C(X)/K(X), and any map e as in the conclusion to Theorem 4.1
will in this case be a witness to the triviality of ϕ. Hence Theorem 4.1 implies
Theorem 1.1. Before proving Theorem 4.1 we note a corollary involving definable
isomorphisms.

Corollary 4.2. Suppose X and Y are zero-dimensional, locally compact, Polish
spaces, and ϕ : C(Y )/K(Y ) → C(X)/K(X) is an isomorphism such that the set

Γ = {(A,B) ∈ C(Y )× C(X) | ϕ([A]) = [B]}

is Borel. Then ϕ is trivial.

Proof of Corollary 4.2. The fact that ϕ is an isomorphism between C(Y )/K(Y )
and C(X)/K(X) can be written as a Π1

2 statement using Γ; hence by Schoenfield
absoluteness, if V P is a forcing extension satisfying OCA+MAℵ1

(see [24]), then in
V P the map ϕ̄ : C(Y )/K(Y ) → C(X)/K(X), defined from the reinterpretation of Γ
in V P, is also an isomorphism. By Theorem 4.1, then, we have in V P that

∃e ∈ C(X,Y ) ∀A ∈ C(Y ) ϕ̄([A]) = [e−1(A)],
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where C(X,Y ) denotes the space of continuous maps from X to Y . This can be
written as a Σ1

2 statement and so by Schoenfield absoluteness again, it must be
true in V with ϕ replacing ϕ̄. �

Before the proof of Theorem 4.1 we set down some more notation. Fix X,Y and
ϕ as in the statement of the theorem. Let Ln be an increasing sequence of compact
subsets of Y , with union Y , and let Yn+1 = Ln+1 \ Ln and Y0 = L0. Let B be a
countable base for Y consisting of compact-open sets, such that

• for all U ∈ B, the set of V ∈ B with V ⊇ U is finite and linearly ordered
by ⊆, and

• for all U ∈ B and all n < ω, either U ⊆ Yn or U ∩ Yn = ∅.
It follows that for all U, V ∈ B, either U ∩ V = ∅, U ⊆ V , or V ⊆ U . Let P be the
poset of all partitions of Y into elements of B, ordered by refinement;

P ≺ Q ⇐⇒ ∀U ∈ P ∃V ∈ Q U ⊆ V.

We also use ≺∗ to denote eventual refinement ;

P ≺∗ Q ⇐⇒ ∀∞U ∈ P ∃V ∈ Q U ⊆ V.

When P ≺∗ Q we let Γ(P,Q) be the least n such that every U ∈ P disjoint from
Ln is contained in some element of Q.

For a given P ∈ P, let sP : Y → P be the unique function satisfying x ∈ sP (x) for
all x ∈ Y ; similarly, when P,Q ∈ P and P ≺ Q we let sPQ : P → Q be the unique
function satisfying U ⊆ sPQ(U) for all U ∈ P . These maps induce embeddings
σP : P(P )/ fin → C(Y )/K(Y ) and σPQ : P(Q)/ fin → P(P )/ fin in the usual way.

Finally, we need to prove a uniqueness result for maps e : Z → ω inducing the
same map P(ω)/ fin → C(Z)/K(Z).

Lemma 4.3. Suppose Z ∈ C(X) and e, f : Z → ω are continuous, compact-to-one
maps, such that e−1(a)Δf−1(a) is compact for every a ⊆ ω. Then {x ∈ Z | e(x) 
=
f(x)} is compact.

Proof. Suppose not; then for some infinite set I ⊆ ω and all n ∈ I, there is a point
xn ∈ Z ∩Xn such that e(xn) 
= f(xn). Since e and f are compact-to-one, we may
assume also that m 
= n implies e(xm) 
= e(xn) and f(xm) 
= f(xn). Now define a
coloring F : [I]2 → 3 by

F ({m < n}) =

⎧⎨
⎩

0, e(xm) 
= f(xn) ∧ f(xm) 
= e(xn),
1, e(xm) = f(xn) ∧ f(xm) 
= e(xn),
2, e(xm) 
= f(xn) ∧ f(xm) = e(xn).

By Ramsey’s theorem, there is an infinite set a ⊆ I which is homogeneous for this
coloring. Suppose first that a is 1-homogeneous, and let m < n < k be members of
a. Then

e(xm) = f(xn) and e(xm) = f(xk) and e(xn) = f(xk)

which implies e(xn)=f(xn), a contradiction. Similarly, a cannot be 2-homogeneous.
Now suppose a is 0-homogeneous. Let a = a0 ∪ a1 be a partition of a into two

infinite sets, and put Wi = {xn | n ∈ ai} and W = {xn | n ∈ a} = W0 ∪W1. From
the homogeneity of a, it follows that e′′W ∩ f ′′W = ∅, and hence (as e and f are
injective on W )

W ∩ e−1((e′′W0) ∪ (f ′′W1)) = W0 and W ∩ f−1((e′′W0) ∪ (f ′′W1)) = W1.
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So, if b = e′′W0 ∪ f ′′W1, we have W ⊆ e−1(b)Δf−1(b). But W is not compact, so
this is a contradiction. �

Proof of Theorem 4.1. For each P ∈ P, let ϕP = ϕ◦σP . Then ϕP is an embedding
of P(P )/ fin into C(X)/K(X). By Theorem 4.1, there is a continuous map eP :
X → P such that a �→ e−1

P (a) lifts ϕP . Note that if P,Q ∈ P and P ≺∗ Q, then
the following diagram commutes:

P(P )/ fin
ϕP �� C(X)/K(X)

P(Q)/ fin

σPQ

��

ϕQ

�������������

So by Lemma 4.3, the set {x ∈ X | sPQ(eP (x)) 
= eQ(x)} is compact. Now let
[P]2 = M0 ∪M1 be the partition defined by

{P,Q} ∈ M0 ⇐⇒ ∃x ∈ X sP,P∨Q(eP (x)) 
= sQ,P∨Q(eQ(x)).

Here P ∨ Q is the finest partition coarser than both P and Q. If we define fP :
B → C(X) by

fP (U) = {x ∈ X | eP (x) ⊆ U} ,
then we have

{P,Q} ∈ M0 ⇐⇒ ∃U ∈ B, fP (U) 
= fQ(U),

and it follows that M0 is open in the topology on P obtained by identifying P with
fP .

Claim 4.4. There is no uncountable, M0-homogeneous subset of P.

Proof. Suppose H is such, and has size ℵ1. Using MAℵ1
with a simple modification

of Hechler forcing, we see that there is some P̄ ∈ P such that P �∗ P̄ for all P ∈ H.
By thinning out H and refining a finite subset of P̄ , we may assume that P � P̄
for all P ∈ H, and moreover that there is an n̄ such that for all P ∈ H,{

x ∈ X
∣∣ sP̄ ,P (eP̄ (x)) 
= eP (x)

}
⊆ Kn̄.

Now fix P,Q ∈ H such that eP �Kn̄ = eQ�Kn̄. Then sP,P∨Q ◦ eP = sQ,P∨Q ◦ eQ,
contradicting the fact that {P,Q} ∈ M0. �

By OCA, there is a countable cover of P by M1-homogeneous sets; since P is
countably directed under �∗, it follows that one of them, say Q, is cofinal in P. It
follows moreover that for some n, we have

∀P ∈ P ∃Q ∈ Q Γ(Q,P ) ≤ n

That is, Q is cofinal in P under �n defined by

P ≺n Q ⇐⇒ ∀U ∈ P (U ∩ Ln = ∅ =⇒ ∃V ∈ Q U ⊆ V ).

Claim 4.5. There is a compact setK ⊆ X and a unique continuous map e : X\K →
Y satisfying

∀x ∈ X \K e(x) ∈
⋂

P∈Q
eP (x).
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Proof. Fix x ∈ X. If P,Q ∈ Q, then by M1-homogeneity of Q we have

sP,P∨Q(eP (x)) = sQ,P∨Q(eQ(x)).

Then, the unique member of P ∨ Q containing eP (x) is the same as the unique
member of P ∨Q containing eQ(x). It follows that eP (x)∩eQ(x) 
= ∅, and so either
eP (x) ⊆ eQ(x) or vice versa. Then the collection {eP (x) | P ∈ Q} is a chain, and
hence by compactness has nonempty intersection.

Now let

K = {x ∈ X | ∀P ∈ Q eP (x) ⊆ Ln} ⊆
⋂
P∈Q

e−1
P (P ∩ C(Ln)).

Then K is contained in a compact set. If x ∈ X \ K and P ∈ Q, then eP (x) is
disjoint from Ln. Then for any x ∈ X \ K and ε > 0, there is some P ∈ Q such
that eP (x) has diameter less than ε (since Q is cofinal in P under �n). Thus e, as
defined above, is unique.

To see that e is continuous, note that for any open U ⊆ X,

x ∈ e−1(U) ⇐⇒ ∃P ∈ Q eP (x) ⊆ U.

�
Claim 4.6. The map U �→ e−1(U) lifts ϕ.

Proof. Fix P ∈ Q, and let U ∈ P . Then clearly, for all x ∈ X \K, eP (x) = U if
and only if e(x) ∈ U . Since there are only finitely many U ∈ P such that one of
e−1
P ({U}) or e−1(U) meets K, it follows that

∀∞U ∈ P e−1
P ({U}) = e−1(U).

Then U �→ e−1(U) lifts ϕP .
Now fix A ∈ C(Y ). Then there is some P ∈ P such that A can be written as a

union of a subset of P . Find Q ∈ Q with Q ≺∗ P ; then, up to a compact set, A
can be written as a union of some subset a of Q. Hence,

ϕ[A] = ϕQ[a] = [e−1(A)].

�

�

References

[1] Uri Abraham, Matatyahu Rubin, and Saharon Shelah, On the consistency of some partition

theorems for continuous colorings, and the structure of ℵ1-dense real order types, Ann. Pure
Appl. Logic 29 (1985), no. 2, 123–206, DOI 10.1016/0168-0072(84)90024-1. MR801036

[2] L. G. Brown, R. G. Douglas, and P. A. Fillmore, Extensions of C∗-algebras and K-homology,
Ann. of Math. (2) 105 (1977), no. 2, 265–324, DOI 10.2307/1970999. MR0458196

[3] Samuel Coskey and Ilijas Farah, Automorphisms of corona algebras, and group cohomology,
Trans. Amer. Math. Soc. 366 (2014), no. 7, 3611–3630, DOI 10.1090/S0002-9947-2014-06146-
1. MR3192609

[4] Alan Dow, A non-trivial copy of βN\N, Proc. Amer. Math. Soc. 142 (2014), no. 8, 2907–2913,
DOI 10.1090/S0002-9939-2014-11985-X. MR3209343

[5] Alan Dow and Klaas Pieter Hart, ω∗ has (almost) no continuous images, Israel J. Math. 109
(1999), 29–39, DOI 10.1007/BF02775024. MR1679586

[6] Alan Dow and Klaas Pieter Hart, A universal continuum of weight ℵ, Trans. Amer. Math.
Soc. 353 (2001), no. 5, 1819–1838, DOI 10.1090/S0002-9947-00-02601-5. MR1707489

[7] Alan Dow and Klaas Pieter Hart, The measure algebra does not always embed, Fund. Math.
163 (2000), no. 2, 163–176. MR1752102

http://www.ams.org/mathscinet-getitem?mr=801036
http://www.ams.org/mathscinet-getitem?mr=0458196
http://www.ams.org/mathscinet-getitem?mr=3192609
http://www.ams.org/mathscinet-getitem?mr=3209343
http://www.ams.org/mathscinet-getitem?mr=1679586
http://www.ams.org/mathscinet-getitem?mr=1707489
http://www.ams.org/mathscinet-getitem?mr=1752102
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