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Abstract. Let C be a nonempty, bounded, closed, and convex subset of a
Banach space X and T : C → C be a monotone asymptotically nonexpansive
mapping. In this paper, we investigate the existence of fixed points of T . In
particular, we establish an analogue to the original Goebel and Kirk’s fixed
point theorem for asymptotically nonexpansive mappings.

1. Introduction

Recently a new direction has been discovered dealing with the extension of the
Banach Contraction Principle [2] to partially ordered metric spaces. Ran and Reur-
ings [14] successfully carried out such an attempt while investigating the solution(s)
to the matrix equation:

X = Q±
i=m∑
i=1

A∗
iF (X)Ai,

where X ∈ H(n), the set of n × n Hermitian matrices, F : H(n) → H(n) is a
monotone function, i.e., F (X1) ≤ F (X2) if X1 ≤ X2, which maps the set of all
n × n positive definite matrices P (n) into itself, A1, . . . , Am are arbitrary n × n
matrices and Q ∈ P (n), a result known before to Turinici [15]. Another similar
approach was carried out in [12] with applications to some differential equations.
Jachymski [9] was the first to give a more general unified version of these extensions
by considering graphs instead of a partial order. In all these works, the mappings
considered are monotone contractions. The case of monotone nonexpansive map-
pings was first considered in [1]. Then the race was on to find out whether the
classical fixed point theorems for nonexpansive mappings still hold for monotone
nonexpansive mappings. In particular, an analogue to Browder [4] and Göhde [8]
fixed point theorems for monotone mappings does hold [3]. But it is still unknown
whether an analogue to the classical Kirk’s fixed point theorem [10] holds for mono-
tone nonexpansive mappings. The difficulty in doing this resides in the fact that
the monotone Lipschitzian mappings enjoy nice properties only on comparable el-
ements. In fact, they may not even be continuous, a property obviously shared
by Lipschitzian mappings. In this paper, we extend Goebel and Kirk’s fixed point
theorem [7] for asymptotically nonexpansive mappings to the case of monotone
mappings.
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An interesting reference with many applications of the fixed point theory of
monotone mappings is the excellent book by Carl and Heikkilä [5].

2. Preliminaries

Let (M,d) be a metric space endowed with a partial order �. We will say that
x, y ∈ M are comparable whenever x � y or y � x. Next we give the definition of
monotone mappings.

Definition 2.1. Let (M,d,�) be a metric space endowed with a partial order. Let
T : M → M be a map. T is said to be monotone or order-preserving if

x � y =⇒ T (x) � T (y),

for every x, y ∈ M .

Next we give the definition of monotone Lipschitzian mappings.

Definition 2.2. Let (M,d,�) be a metric space endowed with a partial order. Let
T : M → M be a map. T is said to be monotone Lipschitzian mapping if T is
monotone and there exists k ≥ 0 such that

d(T (x), T (y)) ≤ k d(x, y),

for every x, y ∈ M such that x and y are comparable. We will say that T is a
monotone asymptotically nonexpansive mapping if there exists {kn} a sequence of
positive numbers such that lim

n→+∞
kn = 1 and

d(Tn(x), Tn(y)) ≤ kn d(x, y),

for every comparable element x, y ∈ M . A point x ∈ M is said to be a fixed point
of T whenever T (x) = x. The set of fixed points of T will be denoted by Fix(T ).

Note that monotone Lipschitzian mappings are not necessarily continuous. They
usually have a good topological behavior on comparable elements but not on the
entire set on which they are defined.

Before we close this section, recall that a sequence {xn}n∈N in a partially ordered
set (M,�) is said to be

(i) monotone increasing if xn � xn+1, for every n ∈ N;
(ii) monotone decreasing if xn+1 � xn, for every n ∈ N;
(iii) a monotone sequence if it is either monotone increasing or decreasing.

3. Monotone asymptotic nonexpansive mappings

The fixed point theory for asymptotically nonexpansive mappings finds its root
in the work of Goebel and Kirk [7]. Following some successful results on monotone
mappings in recent years, the original fixed point theorem of Goebel and Kirk for
these mappings was elusive till now. The setting will be uniformly convex Banach
spaces partially ordered.

Definition 3.1. Let (X, ‖.‖) be a Banach space. We say that X is uniformly
convex (in short, UC) if for every ε > 0

δ(ε) = inf
{
1−

∥∥∥∥x+ y

2

∥∥∥∥ ; ‖x‖ ≤ 1, ‖y‖ ≤ 1, ‖x− y‖ ≥ ε
}
> 0.

The function δ is known as the modulus of uniform convexity of X.
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The following technical lemma will be useful in the proof of our main result.
This lemma is stated in terms of type functions but its origin may be found in the
work of Edelstein [6] on an asymptotic center of a sequence.

Lemma 3.2. Let C be a nonempty closed convex subset of uniformly convex Banach
space (X, ‖.‖). Let τ : C → [0,+∞) be a type function, i.e., there exists a bounded
sequence {xn} ∈ X such that

τ (x) = lim sup
n→+∞

‖xn − x‖,

for every x ∈ C. Then τ has a unique minimum point z ∈ C such that

τ (z) = inf{τ (x); x ∈ C} = τ0.

Moreover, if {zn} is a minimizing sequence in C, i.e., lim
n→+∞

τ (zn) = τ0, then {zn}
converges strongly to z.

Proof. Since τ is continuous and convex, the existence and uniqueness of the min-
imum point of τ is well known and its proof will be omitted. We will focus on the
proof of the second part of the lemma. Let {zn} be a minimizing sequence of τ . Let
us prove that {zn} converges to the minimum point z. This conclusion is obvious
if τ0 = 0. Assume τ0 > 0 and {zn} does not converge to z. Since {xn} is bounded,
then {zn} is also bounded. Therefore, there exists R > 0 such that

max
(
‖xn − zm‖, ‖xn − z‖

)
≤ R,

for every n,m ∈ N. Since {zn} does not converge to z, we may assume that

ε = inf

{
‖zm − z‖

R
; m ∈ N

}
> 0.

Using the definition of the modulus of uniform convexity of X, we get∥∥∥∥xn − zm + z

2

∥∥∥∥ =

∥∥∥∥ (xn − zm) + (xn − z)

2

∥∥∥∥ ≤ max
(
‖xn−zm‖, ‖xn−z‖

)
(1− δ(ε)) ,

for every n,m ∈ N. If we let n → +∞, taking the limit-sup, we get

τ

(
zm + z

2

)
≤ max

(
τ (zm), τ (z)

)
(1− δ(ε)) ,

for every m ∈ N, which implies

τ0 ≤ τ (zm) (1− δ(ε)) .

If we let m → +∞, we get τ0 ≤ τ0 (1− δ(ε)) < τ0. This contradiction implies that
{zn} does converge to z. The proof of Lemma 3.2 is complete. �

Since the main result of this work is set in a partially ordered Banach space, we
assume that (X, ‖.‖) is endowed with a partial order �. Throughout, we assume
that order intervals are convex and closed. Recall that an order interval is any of
the subsets

[a,→) = {x ∈ X; a � x} and (←, b] = {x ∈ X;x � b},
for every a, b ∈ X.

Now we are ready to state the main result of this work.
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Theorem 3.3. Let (X, ‖.‖,�) be a partially ordered Banach space for which order
intervals are convex and closed. Assume (X, ‖.‖) is uniformly convex. Let C be a
nonempty convex closed bounded subset of X not reduced to one point. Let T : C →
C be a continuous monotone asymptotically nonexpansive mapping. Then T has a
fixed point if and only if there exists x0 ∈ C such that x0 and T (x0) are comparable.

Proof. Obviously if x is a fixed point of T , then x and T (x) = x are comparable. Let
x0 ∈ C be such that x0 and T (x0) are comparable. Without loss of any generality,
assume that x0 � T (x0). Since T is monotone, then we have Tn(x0) � Tn+1(x0),
for every n ∈ N. In other words, the orbit {Tn(x0)} is monotone increasing. Since
the order intervals are closed and convex and X is reflexive, we conclude that

C∞ =
⋂
n≥0

[Tn(x0),→) ∩ C =
⋂
n≥0

{x ∈ C; Tn(x0) � x} �= ∅.

Let x ∈ C∞; then Tn(x0) � x and since T is monotone, we get

Tn(x0) � T (Tn(x0)) = Tn+1(x0) � T (x),

for every n ≥ 0, i.e., T (C∞) ⊂ C∞. Consider the type function τ : C∞ → [0,+∞)
generated by {Tn(x0)}, i.e., τ (x) = lim sup

n→+∞
‖Tn(x0) − x‖. Lemma 3.2 implies the

existence of a unique z ∈ C∞ such that τ (z) = inf{τ (x); x ∈ C∞} = τ0. Since
z ∈ C∞, we have T p(z) ∈ C∞, for every p ∈ N, which implies

τ (T p(z)) = lim sup
n→+∞

‖Tn(x0)− T p(z)‖ ≤ kp lim sup
n→+∞

‖Tn(x0)− z‖,

where {kp}p∈N is given by Definition 2.2 such that lim
p→+∞

kp = 1 since T is asymp-

totically nonexpansive. Hence τ0 ≤ τ (T p(z)) ≤ kp τ0, for every p ∈ N. The main
property of {kp}p∈N implies

lim
p→+∞

τ (T p(z)) = τ0,

which means that {T p(z)}p∈N is a minimizing sequence of τ . Using Lemma 3.2
again, we conclude that {T p(z)}p∈N converges to z. Since T is continuous, we have
lim

p→+∞
T (T p(z)) = lim

p→+∞
T p+1(z) = T (z) = z, i.e., z is a fixed point of T . �

It is natural to ask whether the continuity assumption in Theorem 3.3 may be
relaxed. This is the main motivation behind [12] where the authors relaxed the
continuity assumption from the main result of [14]. Looking at the proof carefully,
we see that the continuity assumption was used at the end to prove that the min-
imum point is a fixed point. The difficulty met here has to do with the fact that
it is not clear whether the minimum point is comparable to its image under the
map in question. While investigating this point, we came with a property satisfied
by any Banach lattice, like the classical Lp([0, 1])-spaces (for p ≥ 1), similar to the
Opial condition [13]. It is well known that the classical �p spaces (for p ≥ 1) enjoy
the Opial condition for the weak topology while Lp([0, 1])-spaces (for p > 1) fail to
enjoy such property despite the fact that these spaces are uniformly convex.

Definition 3.4. Let (X, ‖.‖,�) be a partially ordered Banach space.

(i) [13] X is said to satisfy the weak-Opial condition if whenever any sequence
{xn} in X which weakly converges to x, we have

lim sup
n→+∞

‖xn − x‖ < lim sup
n→+∞

‖xn − y‖,

for every y ∈ X such that x �= y.
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(ii) X is said to satisfy the monotone weak-Opial condition if whenever any
monotone increasing (resp. decreasing) sequence {xn} in X which weakly
converges to x, we have

lim sup
n→+∞

‖xn − x‖ ≤ lim sup
n→+∞

‖xn − y‖,

for every y ∈ X such that x � y (resp. y � x).

The following result is noteworthy and seems to be new.

Proposition 3.5. Any Banach lattice satisfies the monotone weak-Opial condition.

Proof. Let (X, ‖.‖,�) be a Banach lattice. One of the properties of X states

0 � u � v implies ‖u‖ ≤ ‖v‖,
for every u, v ∈ X, and the positive cone P of X is convex and closed [11]. In
order to show that X satisfies the monotone weak-Opial condition, let {xn}n∈N be
a monotone sequence in X which converges weakly to x. Without loss of generality,
we assume that {xn}n∈N is monotone increasing. Let y ∈ X be such that x � y.
Since order intervals of X are convex and closed, we conclude that xn � x � y
which implies 0 � x − xn � y − xn, for every n ∈ N. Hence ‖x− xn‖ ≤ ‖y − xn‖,
for every n ∈ N, which implies

lim sup
n→+∞

‖xn − x‖ ≤ lim sup
n→+∞

‖xn − y‖.

�
Using the monotone Opial condition, we can relax the continuity assumption in

Theorem 3.3.

Theorem 3.6. Let (X, ‖.‖,�) be a partially ordered Banach space for which order
intervals are convex and closed. Assume (X, ‖.‖) is uniformly convex. Let C be
a nonempty convex closed bounded subset of X not reduced to one point. Assume
that X satisfies the monotone weak-Opial condition. Let T : C → C be a monotone
asymptotically nonexpansive mapping. Then T has a fixed point if and only if there
exists x0 ∈ C such that x0 and T (x0) are comparable.

Proof. As we did in the proof of Theorem 3.3, we first assumed that x0 � T (x0).
Then the orbit {Tn(x0)} is a monotone increasing sequence. Since X is reflexive,
it is easy to show that {Tn(x0)} is weakly convergent to some point x ∈ C and
Tn(x0) � x, for every n ∈ N. Since X satisfies the monotone weak-Opial condition,
we know that

lim sup
n→+∞

‖Tn(x0)− x‖ ≤ lim sup
n→+∞

‖Tn(x0)− y‖,

for every y ∈ C̃ = C∩ [x,→). Note that C̃ is a nonempty closed convex subset of C.
Therefore the type function τ generated by the orbit {Tn(x0)} has x as its unique

minimum point in C̃. As we did in the proof of Theorem 3.3, we see that {T p(x)}
converges strongly to x. Let us show that x � T (x). We have Tn(x0) ∈ (←, x]∩C,
for every n ∈ N. Since T is monotone we get Tn+1(x0) ∈ (←, T (x)] ∩ C, for every
n ∈ N. Since (←, T (x)]∩C is convex and closed, then the weak-limit of {Tn+1(x0)}
also belongs to this set, i.e., x ∈ (←, T (x)]∩C. In other words, we have x � T (x).
This will imply that {Tn(x)} is a monotone increasing sequence which converges to
x. Therefore we must have Tn(x) � x, for every n ∈ N. This will force x = T (x),
i.e., x is a fixed point of T . �
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