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ABSTRACT. In accordance with the Bing-Borsuk conjecture, we show that if X
is an n-dimensional homogeneous metric AN R-compactum and z € X, then
there is a local basis at = consisting of connected open sets U such that the
homological properties of U and bd U are similar to the properties of the closed
ball B” C R™ and its boundary S*~!. We discuss also the following questions
raised by Bing-Borsuk [Ann. of Math. (2) 81 (1965), 100-111], where X is a
homogeneous AN R-compactum with dim X = n:

e Is it true that X is cyclic in dimension n?

e Is it true that no non-empty closed subset of X, acyclic in dimension

n — 1, separates X7

It is shown that both questions simultaneously have positive or negative an-
swers, and a positive solution to each one of them implies a solution to another
question of Bing-Borsuk (whether every finite-dimensional homogenous metric
AR-compactum is a point).

1. INTRODUCTION

There are few open problems concerning homogeneous compacta; see [2]. The
most important one is the well-known Bing-Borsuk conjecture stating that every
n-dimensional homogeneous metric AN R-compactum X is an n-manifold. Another
one is whether any such X has the following properties: (i) X is cyclic in dimension
n; (ii) no closed non-empty subset of X, acyclic in dimension n — 1, separates X. It
is also unknown if there exists a non-trivial finite-dimensional metric homogeneous
AR-compactum.

In this paper we address the above problems and investigate the homological
structure of homogeneous metric AN R-compacta. In accordance with the Bing-
Borsuk conjecture, we prove that any such compactum has local homological prop-
erties similar to the local structure of R™; see Theorem [[LIl It is also shown that
the properties (i) and (ii) from the second of the above questions are equivalent, so
each one of them implies that every finite-dimensional homogeneous metric AR is
a point.

Reduced Cech homology H, (X;G) and cohomology groups H"(X;G) with co-
efficients from G are considered everywhere below, where G is an abelian group.
Suppose (K, A) is a pair of closed subsets of a space X with A C K. By i) We
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denote the homomorphism from H,(A;G) into H, (K;G) generated by the inclu-
sion A — K. Following [2], we say that K is an n-homology membrane spanned on
A for an element v € H,(A;G) provided ~ is homologous to zero in K, but not
homologous to zero in any proper closed subset of K containing A. It is well known
[2, property 5, p. 103] that for every compact metric space X and a closed set
A C X the existence of a non-trivial element v € H,(A4; G) with i’ () = 0 yields
the existence of a closed set K C X containing A such that K is an n-homology
membrane for « spanned on A. We also say that a space K is a homological
(n, G)-bubdble it H,(K;G) # 0, but H,(B;G) = 0 for every closed proper subset
BCK.

For any abelian group G, Alexandroff [I] introduced the dimension dgX of a
space X as the maximum integer n such that there exist a closed set ' C X and
a non-trivial element v € H,,_1(F; G) with v being G-homologous to zero in X.
According to [Il p. 207] we have the following inequalities for any metric finite-
dimensional compactum X: dgX < dim X and dim X = dg, X = ds1 X, where G is
any abelian group, S! is the circle group, and Q; is the group of rational elements
of St

Because the definition of d X does not provide any information for the homology
groups Hy_1(F;G) when F' C X is closed and k < dgX — 1, we consider the set
Hx, of all integers £ > 1 such that there exist a closed set /' C X and a non-trivial
element v € Hy_1(F; G) with @]Iff)%(v) = 0. Obviously, dgX = maxHx .

Using the properties of the sets Hx g, we investigate in Section 2 the local
homological properties of metric homogeneous AN R-compacta. The main result in
that section is Theorem [[T] below, which is a homological version of [I1, Theorem
1.1].

Theorem 1.1. Let X be a finite-dimensional homogeneous metric ANR with
dim X > 2. Then every point x € X has a basis B, = {Ux} of open sets such
that for any abelian group G and n > 2 withn € Hx ¢ and n+ 1 & Hx ¢ almost
all Uy satisfy the following conditions:

(1) H,_1(bdUy; G) # 0 and Uy, is an (n — 1)-homology membrane spanned on
bd Uy, for any non-zero v € H,_1(bdUy; G);

(2) Hyo_1(Uy;G) = H,(Uy; G) =0 and X \ Uy, is connected;

(3) bd Uy is a homological (n — 1, G)-bubble.

Corollary 1.2. Let X be as in Theorem [LIl Then X has the following property
for any abelian group G andn > 2 withn € Hx ¢ andn+1 ¢ Hx g: If a closed
subset K C X is an (n — 1)-homology membrane spanned on B for some closed set
BC X andvy € H,_1(B;G), then ( K\ B)NX\ K = @.

In Section 3 we show that the following two statements are equivalent, where
H(n) is the class of all homogeneous metric AN R-compacta X with dim X = n:

(1) For all n > 1 and X € H(n) there is a group G such that H"(X;G) # 0
(xesp., H(X;G) £ 0).

(2) If X € H(n) with n > 1 and F C X is a closed separator of X with
dim F = n — 1, then there exists a group G such that H" }(F;G) # 0
(resp.,Hn,l(F; G) 7é 0)
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Therefore, we have the following result (see Corollary B.3)):

Theorem 1.3. Suppose for alln > 1 and all X € H(n) the following holds: For
every closed separator F' of X with dim F' = n — 1 there exists a group G such that
either H" 1 (F;G) # 0 or H,,_1(F;G) # 0. Then there is no homogeneous metric
AR-compactum Y with dimY < oo.

2. LOCAL HOMOLOGICAL PROPERTIES OF HOMOGENEOUS AN R-COMPACTA
We begin this section with the following analogue of Theorem 8.1 from [2].

Proposition 2.1. Let X be a locally compact and homogeneous separable metriz-
able AN R-space. Suppose there is a pair F' C K of compact proper subsets of
X such that K is contractible in X and K is a homological membrane for some
v € Hy1(F;G). If (K\F)NX \ K # @, then there exists a proper compact subset
P C X contractible in X such that H,(P;G) # 0.

Proof. We follow the proof of [6 Lemma 1] (let us note that the proof of Propo-
sition 2] can also be obtained following the arguments of [2, Theorem 8.1]). Let
a € (K\F)NnX\K. Then a is a boundary point for K. Because K is con-
tractible in X, there is a homotopy g : K x [0,1] — X such that g(z,0) = = and
g(z,1) = c € X for all z € K. Then we can find an open set U C X containing
K and a homotopy g : U x [0,1] — X extending g and connecting the identity on
U and the constant map U — ¢ (this can be done since X is an ANR). So, U is
also contractible in X. Moreover, we can assume that U is compact. Fix a metric
d on X generating its topology in the following way: consider X as a subspace of
its one-point compactification X and take d to be the restriction to X of some
admissible metric on aX. Let 2e = d(a, I') and take an open cover w of U such that
for any two w-close maps f1, fo : K — U (i.e., for all x € K the points fi(z), fa(x)
are contained in some element of w) there is an e-homotopy ® : K x [0,1] — U
between f; and fo (i.e., each set Mg(z) = {®(z,t) : t € [0,1]}, = € K, is of di-
ameter < €). This can be done because U is an ANR. Now, we fix an open set
V C X containing K with V' C U and let § be the Lebesgue number of the open
cover {{L NV : T € w} of V. According to Effros’ theorem [4], there is a positive
number 7 such that if z,y € X are two points with d(z,y) < 7, then f(z) =y
for some homeomorphism h: X — X, which is min{d, d(K, X \ V}-close to the
identity on X (Effros’ theorem can be applied because of the special choice of the
metric d). Since a is a boundary point for K, we can choose a point b € V \ K
with d(a,b) < n. Then, there exists a homeomorphism h} : X — X such that
hi(a) = b and d(z, h}(z)) < min{d,d(K, X \ V}, z € X. Let hy be the restriction
h4|K. Obviously, hy : K — hq(K) is a homeomorphism with h;(K) C V and hy is
d-close to the identity on K. Then, according to the choice of §, there is homotopy
h: K x[0,1] — U such that h(x,0) =z, h(z,1) = h1(z), and d(x, h(z,t)) < € for
all z € K and ¢ € [0, 1].

Let Kl = KU h(F X H), K2 = hl(K)7 and KO = K1 n KQ, where 1 = [O, 1]
Since 2¢ = d(a, F) and h is an e-small homotopy, b € Ky \ K;. So, K is a proper
subset of K, containing hy(F). Hence, D = h;*(Kp) is a proper subset of K
containing F', which implies v; = @’IffDl (7) # 0. Because h; is a homeomorphism,
(p1)s : Ho—1(D; G) — H,—1(Ko; G) is an isomorphism, where ¢ = hy|D. Thus,
4= (p1)«(m) #0.
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Claim 1. We have i}g}Kl (%) =0 and z";(;lKQ (%) = 0.

Let A = i;fhl(FXﬂ) (7). Since h|(F x I) is a homotopy between the identity on F'
and the map ¢y = hi|F, A = 221_(;) n(rxn((#2)«(7)). We consider the following

commutative diagram:

v € Hy1(F;G) H, 1(D;G)>m~

(2) (%)*l
(02)«(7) € Hy—1 (1 (F); G) H,_1(Ko;G) >4

iﬁl(p),h(mu)

X € Hy_1(h(F x1);G)

=1
h(FxI), K1

0e anl(Kl;G)

Obviously, Zg}é (v) = iZ(}le),Kl (\) = inK;’1K1 (4). On the other hand, z}}gl (v) =

Z"K}I(l (@%}%(7)) = 0 because z’lfle(v) = 0. Hence, i"K;’lKl (%) = 0.

For the second part of the claim, observe that z%}l{ (M) = z?le(ﬂy) = 0. Then,

the equality ZanlKQ (%) = 0 follows from the diagram

b Kk
v €H,1(D;G) ————H, 1(K;G)>0
(&01)*l (hl)*l
i?(;,lkfz

’AY S Hn—l(KO; G) —— 'IL—I(KQ; G) >0

We are in a position now to complete the proof of Proposition 211 Let P =
K, UK,. Since h(K x 1) Cc U, P C U. Therefore, P is contractible in X (recall
that U is contractible in X). Finally, by Claim [0 and the Phragmen-Brouwer
theorem (see [2]), there exists a non-trivial o € H,(P; G). O

For simplicity, we say that a closed set F' C X is strongly contractible in X if F
is contractible in a closed set A C X and A is contractible in X.

Corollary 2.2. Let X be a homogeneous compact metrizable AN R-space such that
ne€Hxg andn+1¢ Hx g Then for every closed set FF C X we have:
(1) H,(F;G) =0 provided F is contractible in X ;
(2) F separates X provided H,,_1(F;G) # 0 and F is strongly contractible in
X;
(3) if K is a homological membrane for some non-trivial element of H,,—1(F'; Q)
and K is contractible in X, then ( K\ F)NX\ K = @.

Proof. Since F is contractible in X, every v € H,,(F; G) is homologous to zero in X .
So, the existence of a non-trivial element of H,(F;G) would imply n + 1 € Hx ¢,
a contradiction.

To prove the second item, suppose H,,—1(F; G) # 0 and F is strongly contractible
in X. So, there exists a closed set A C X such that F' is contractible in A and
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A is contractible in X. Then, by [2, property 5, p. 103], we can find a closed
set K C A containing F' which is a homological membrane for some non-trivial
v € Hy,_1(F;G). Because K (as a subset of A) is contractible in X, the assumption
(K\F)N X\ K # @ would yield the existence of a proper closed set P C X
contractible in X with H,(P;G) # 0 (see Proposition Z]). Consequently, there
would be a non-trivial o € H, (P; G) homologous to zero in X. Hence, n+1 € Hx a,
a contradiction. Therefore, (K \ F) N X \ K = @. This means that X \ F =
(K \ F)U (X \ K) with both K\ F' and X \ K being non-empty open disjoint
subsets of X.

The above arguments provide also the proof of the third item. |

Proof of Theorem [LIl Suppose X satisfies the hypotheses of Theorem [[LIl By
[11, Theorem 1.1], every x € X has a basis B, = {Uy },>1 of open sets satisfying the
following conditions: bdUy = bd Uy; the sets Uy, bd Uy, and X \ U}, are connected;
HYmX=1(A;7) = 0 for all proper closed sets A C bd U},. We may also suppose that
each Uy, 1 is contractible in Uy and all Uy, are strongly contractible in X. Let G be
an abelian group and let n > 2 with n+1 ¢ Hx ¢ and n € Hx ¢. So, there exist
a closed set B C X and a non-trivial element v € H,,_1(B;G) with z%}%(v) =0.
Then, by [2, property 5, p. 103], there is a closed set K C X containing B which
is a homological membrane for 4. We fix a point & € K \ B and its open in K
neighborhood W with W N B = @. According to [2 property 6, p. 103], W is an
(n — 1)-homological membrane for some non-trivial element of H,,_1(bdxW;G).
We can choose W so small that W is contractible in X. Then Corollary yields
(W\bdgW)NX\W = @. So, W\ bdgW is open in X and contains Z. Hence,
there exists ko such that U, ¢ W \ bdgW for all U, € Bz with k > ky. Below
we consider only the elements Uy with k& > k. Applying again [2] property 6,
p. 103], we conclude that every Uy, is a homological membrane for some non-trivial
element of H,,_1(bdUx;G). By Corollary 22(1), H, (U;G) = 0. Suppose v €
H,,_1(bdUy; G) is non-trivial. Since X \ Uy is connected, Corollary Z2(2) implies
that H,_1(Ux;G) = 0. Consequently, v is homologous to zero in Uj. So, by
[2, property 5, p. 103], Uy contains a closed set P such that P is a homological
membrane for y. Then Corollary 222(3) implies (P \ bdU;) N X \ P = &. Hence,
X \ bdUy, is the union of the disjoint open sets P\ bdUy and X \ P. Because Uy, is
connected and Uy N P # &, Uy, C P\ bdUy. Therefore, P = Uy. This provides the
proof of the first two conditions of Theorem [T}

To prove the last item of Theorem [[I] assume that H,,_1(F;G) # 0 for some
closed proper subset F of bdUy1, where k > ky. Because F (as a subset of U 1) is
strongly contractible in X, according to Corollary 2:2(2), F' separates X. So, X \ F’
is the union of two disjoint non-empty open in X sets V; and V5 with VNV, C F.
Let us show that F separates Ujy. Indeed, otherwise U}, \ F' would be connected.
Then Uy, \ F should be contained in one of the sets Vi, Vo, say V;. Since X \ Uy is
also connected and Vo # @, X \ Up C Va. Hence, Uy \ FN X\ U C F. On the
other hand, because Uy \ F is dense in Uy, (recall that F' does not contain interior

points), Uy \ F N X \ Uy = bdU;. So, F D bdUy, a contradiction. Therefore, F
separates U.

The proof of Theorem [[T(3) will be done if we show that F cannot separate Uy.
According to [IT, Theorem 1.1], Uy is an (m—1)-cohomology membrane spanned on
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bdU}, for some non-trivial « € H™~!(bdUy; Z), where m = dim X. This means that
« (considered as a map from bdUy, to the Eilenberg-MacLane complex K (Z, m—1))
is not extendable over Uy, but it is extendable over any proper closed subset of Uy,.
Hence, by [9, Proposition 2.10], the couple (U, bdUy) is a strong KZ'-manifold (see
[9] for the definition of a strong K7'-manifold). So, according to [9, Theorem 3.3],
H™Y(F;7Z) # 0 because F separates U, and FNbdU; = @. Finally, we obtained a
contradiction because H™ 1(A;Z) = 0 for every proper closed subset A of bdUy.
Therefore, all Uy, k > ko + 1, satisfy conditions (1) — (3) from Theorem [l O

Proof of Corollary [L2l Suppose there exists a point a € (K \ B)N X \ K and take
aset U € B, satisfying conditions (1) — (3) from Theorem [T such that UNB = .
Then Fy = bdg (U N K) is non-empty, and it follows from [2, property 6, p. 103]
that U N K is a homology membrane for some non-zero o € H,,_1(Fy; G). Because
Fy C bdU, by Theorem [[I(3), Fy = bdU. So, U is a homological membrane
for a; see Theorem [LI(1). This implies that "7 (o) # 0 provided UN K is a

bdU,UNK
proper subset of U. Therefore, U N K = U, which yields U C K. The last inclusion
contradicts the fact that « € X \ K. Hence, (K\B)NX \ K = @. O

3. CYCLICITY OF HOMOGENEOUS ANR’S

Let H(n) be the class of all homogeneous metric AN R-compacta X with dim X =
n.

Theorem 3.1. The following conditions are equivalent:
(1) If n > 1, then for every space X € H(n) there exists a group G with
H™"(X;G) #0.
(2) If n > 1 and X € H(n), then for every closed set F C X separating X
there exists a group G with H"~*(F;G) # 0.
(3) If n > 1 and X € H(n), then for every (n — 1)-dimensional closed set
F C X separating X there exists a group G with H"~(F;G) # 0.

Proof. (1) = (2) Suppose n > 1 and X € H(n). Then H"(X;G) # 0 for some
group G, and by [10, Corollary 1.2], H" 1(F;G) # 0 for every non-empty closed
set F' C X separating X.

(2) = (3) This implication is trivial.

(3) = (1) Suppose that condition (3) holds, but there exists n > 1 and X € H(n)
such that H"(X;G) = 0 for all groups G. Consider the two-dimensional sphere
S? and a circle S! separating S?. Then X x S? € H(n +2) and X x S! is a
closed separator of X x S? of dimension n + 1. So, there is a group G’ such that
H" (X x S1;G’) # 0. On the other hand, according to the Kiinneth formula, we
have the exact sequence

Y H(X)@H/(SY) - H"H(X xS = Y H(X)xH/(SY,
i+j=n+1 i+j=n+2

where the coefficient group G’ is suppressed. Because dim X = n and dimS! =1
H"(X;G") = 0 and H'T(SY;G’) = 0 for all i > 1. Moreover, H"(X;G’) = 0.
So,
Y H(X;@)eH/(ShG) = ) H(X;G)xH(S4G)=0.
i+j=n+1 i+j=n+2
Hence, H"*1(X x S!;G’) = 0, a contradiction. O
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A homological version of Theorem [B.1] also holds.

Theorem 3.2. The following conditions are equivalent:

(1) If n > 1, then for every space X € H(n) there exists a group G with
H,(X;G) #0.

(2) If n > 1 and X € H(n), then for every closed set F C X separating X
there exists a group G with H,,_1(F;G) # 0.

(3) If n > 1 and X € H(n), then for every (n — 1)-dimensional closed set
F C X separating X there exists a group G with H,_1(F;G) # 0.

Proof. Everywhere below, H, denotes the exact homology (see [B], [7]), which for
locally compact metric spaces is equivalent to Steenrod’s homology [8]. For every
compact metric space X and every k there exists a surjective homomorphism T)k( :
Hi(X;G) = Hy(X;G). According to [7, Theorem 4], T% is an isomorphism in
each of the following cases: G is a vector space over a field, both ﬁk(X; G) and G
are countable modules, dim X = k, H*+1(X;Z) is finitely generated.

(1) = (2) Suppose n > 1 and X € H(n). Then H,(X;G) # 0 for some group
G. By [1, Theorem 3|, we have the exact sequence

(%) Ext(H"tY(X;Z),G) — H,(X;G) — Hom(H"(X;Z),G) — 0.

Since dim X = n, H"*(X;Z) = 0. Moreover H,(X;G) is non-trivial because so
is H,(X;G) and T% is a surjective homomorphism. Hence, H"(X;Z) # 0 and
there exists a non-trivial homomorphism ¢: H"(X;Z) — G. Now, let FF C X be a
closed separator of X and X \ F = X; U Xo, where Xy, X C X are closed proper
subsets with X; N Xy = F. Since H"(P;Z) = 0 for every closed proper subset
P C X (see [10]), H"(F;Z) = H™(X1;Z) = H"(X2;Z) = 0. Then it follows from
the Mayer-Vietoris sequence

H\(F;z) —2— H(X;2) —Y— HM(Xy;2)® H*(X1;Z)

that H""Y(F;Z) # 0 and 9 is a surjective homomorphism. Consequently, ¢ o
d : H" Y(F;Z) — G is also a non-trivial surjective homomorphism. Hence,
Hom(H" 1(F;Z),G) # 0, and the exact sequence

0 — Ext(H"(F;Z),G) = H,_1(F;G) — Hom(H" ' (F;Z),G) — 0

yields I/{Tn,l(F;G) # 0. Finally, since H"(F;Z) = 0, I/i\'n,l(F;G) is isomorphic to
anl(F; G)

(2) = (3) This implication is obvious.

(3) = (1) As in the proof of Theorem Bl (3) = (1), suppose there exists
n > 1 and X € H(n) such that H,(X;G) = 0 for all groups G. Since H,(X;G) is
isomorphic to H, (X;G) and H"™(X;Z) = 0 (recall that dim X = n), it follows
from the exact sequence () that Hom(H™(X;Z),G) = 0 for all groups G. This
implies that H"(X;Z) = 0. As above, the product X x S! is a closed separator of
X x §%, and according to our assumption, H,1(X x S';G’) # 0 for some group
G'. Because dimX x S' = n+ 1, Hy (X x S5 G') = Hyp1(X x S1G') and
H""2(dim X x S',Z) = 0. Therefore, the exact sequence

Ext(H""2(X x SY),G") = Hpi1(X x S G') = Hom(H" T (X x SY),G"),

where the coefficient groups Z in H"*2(X x S!) and H"1 (X x S') are suppressed,
yields that H"*1(X x S';Z) # 0. On the other hand, the Kiinneth formula from
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the proof of Theorem B (with Z being the coefficient group in all cohomology
groups) implies H" (X x S';Z) = 0, a contradiction. O

Corollary 3.3. Suppose for alln > 1 and all X € H(n) the following holds: For
every closed separator F' of X with dim F' = n — 1 there exists a group G such that
either H" 1 (F;G) # 0 or H,,_1(F;G) # 0. Then there is no homogeneous metric
AR-compactum Y with dimY < oo.

If H(G,n) denotes the class of all homogeneous metric AN R-compacta X with
dimg X = n, the arguments from Theorem [B.1] provide the following result:

Proposition 3.4. The following conditions are equivalent:
(1) H"(X;G) #0 for all X € H(G,n) and all n > 1.
(2) If X € H(G,n) and n > 1, then H" 1(F;G) # 0 for every closed set
F C X separating X.
(3) If X € H(G,n) and n > 1, then H" Y(F;G) # 0 for every closed set
F C X separating X with dimg F =n — 1.

The corresponding homological analogue of Proposition B.4] also holds for some
groups G.

Proposition 3.5. The following conditions are equivalent, where G is either a field
or a torsion free group:
(1) Hy(X;G) #0 for all X € H(n) and all n > 1.
2 If X € Hn), n > 1, and F C X is a closed set separating X, then
anl(F; G) 7é 0.
(3) If X e H(n), n>1, and F C X is a closed set separating X with dim F' =
n—1, then H,_1(F;G) # 0.

Proof. All implications except (3) = (1) follow from the proof of Theorem To
prove (3) = (1), we suppose there exists a space X € H(n) with H,(X;G) = 0.
Considering the (n + 1)-dimensional separator X x S! of X x S?, we conclude that
H,1(X xSYG) # 0. Because X and X x S' are ANR’s, their Cech homology
groups are isomorphic to the singular homology groups. Thus, we can apply the
Kiinneth formula

> Hi(X)@Hj(S') = Hya(X xS') = Y Hy(X) « Hy(SY),
i+j=n+1 i+j=n
where G is the coefficient group. Since H,,(X;G) = H,,+1(X;G) = 0 and H;(SY; G)
=0forall j >1, EiJrj:nJrl H;(X;G)® H;(SY; G) = 0. If G is a torsion free group,
then the group >, ., Hi(X;G) * H;(S'; G) is also trivial because Hq(S;G) = G
yields H,_1(X;G) * Hy(S';G) = 0. Therefore, H,1(X x S*;G) = 0, a contradic-
tion.

When G is a field, the group H, (X x S'; Q) is isomorphic to the trivial group
Ziﬂ.:n“ H;(X;G) ® H;(SY; G). So, again we have a contradiction. a
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