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ALTERNATING LINKS AND LEFT-ORDERABILITY

JOSHUA EVAN GREENE

Abstract. Let L ⊂ S3 denote an alternating link and Σ(L) its branched double-cover. We
give a short proof of the fact that the fundamental group of Σ(L) admits a left-ordering iff L
is an unlink. This result is originally due to Boyer-Gordon-Watson.

1. A group presentation.

Consider a link L ⊂ S3 presented by a connected planar diagram. Color its regions black
and white in checkerboard fashion, and assign each crossing a sign as displayed in Figure 1.
From this coloring we obtain the white graph W = (V,E). This is the planar graph with one
vertex for each white region, one signed edge for each crossing where two white regions touch,
and one arbitrary distinguished vertex r (the root).

We form a group Γ as follows. It has one generator xv and one relation rv = 1 for each v ∈ V ,
as well as one additional relation xr = 1 for the root. To describe the relation rv, consider
a small loop γv centered at v and oriented counter-clockwise. Starting at an arbitrary point
along γv, the loop meets edges (v, w1), . . . , (v, wk) with respective signs ε1, . . . , εk in order;

then rv =
∏k
i=1(x

−1
wi
xv)

εi .

Let Σ(L) denote the double-cover of S3 branched along L.

Proposition 1.1. The fundamental group of Σ(L) is isomorphic to Γ. �

Proposition 1.1 is established in [5, §3.1], in which the presentation for Γ derives from a
specific Heegaard diagram of the branched double-cover Σ(L). We refer the reader there for a
worked example, as well as to [5, §3.2] for another derivation of the relevant Heegaard diagram.
Dylan Thurston points out that the standard derivation of the Wirtinger presentation of a
knot group suggests an alternate route to Proposition 1.1.

2. Non-left-orderability.

In this section we use Proposition 1.1 to establish the main result. Recall that a left-ordering
of a group is a total ordering of its elements that is invariant under left-multiplication in the
group.

Theorem 2.1 (Boyer-Gordon-Watson [1]). If L is an alternating link, then π1(Σ(L)) admits
a left-ordering iff L is an unlink.
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Figure 1. Crossings and signs.

Proof. First, suppose that L = L1 ∪ L2 is a split link. In this case, L is a connect-sum of
L1, L2, and the two-component unlink, so Σ(L) ∼= Σ(L1)#Σ(L2)#(S1 × S2) and π1(Σ(L))
decomposes as the free product π1(Σ(L1))∗π1(Σ(L2))∗Z. Furthermore, a free product admits
a left-ordering iff each of its factors do [12]. Therefore, to prove Theorem 2.1, it suffices to
restrict attention to the case of a non-split alternating link L. With this assumption in place,
Theorem 2.1 follows once we establish that π1(Σ(L)) admits a left-ordering iff L is the unknot.

Present L by a connected, alternating diagram; color it, distinguish a root r, and let W
denote the resulting white graph. It follows that every edge gets the same sign ε. Mirroring
L if necessary (which leaves π1 unchanged), we may assume that ε = 1. Now suppose that
Γ ∼= π1(Σ(L)) possessed a left-ordering <. Choose a vertex v for which xw ≤ xv for all w ∈ V .
If xv = xw for all w ∈ V , then from the relation xr = 1 it follows that 1 = Γ ∼= π1(Σ(L)); but
then 1 = |H1(Σ(L))| = det(L), and since L is alternating, it follows that L = U .

Thus, we assume henceforth that L 6= U and seek a contradiction. It follows that there
exists some w ∈ V for which xw < xv; from the connectivity of W , we may assume that
(v, w) ∈ E. It follows that 1 < x−1

w xv, while 1 ≤ x−1
wi
xv for every other edge (v, wi) ∈ E.

Therefore, the product of all these terms in any order is greater than 1. In particular, 1 <∏k
i=1(x

−1
wi
xv) = rv = 1, a contradiction. �

3. Discussion.

It remains an outstanding problem to relate π1(Y ) to the Heegaard Floer homology of a
3-manifold Y . As of this writing, it remains a possibility that a rational homology sphere Y is
an L-space iff π1(Y ) 6= 1 does not admit a left-ordering. Theorem 2.1 supports this conjecture,
since Σ(L) is a rational homology sphere L-space for a non-split alternating link L [10, Prop.
3.3]. Additional examples appear in [1, 2, 3, 4, 11].

In this spirit, Peter Ozsváth raises an interesting question. Let (Y0, Y1, Y2) denote a surgery
triple of rational homology spheres. That is, there exists a manifold M with torus boundary
and a triple of slopes (γ0, γ1, γ2) in ∂M such that Yi results from filling M along slope γi and
γi · γi+1 = +1, for all i (mod 3). Cyclically permuting the indices if necessary, assume that
|H1(Y0)| = |H1(Y1)|+ |H1(Y2)|.

Question 3.1. If π1(Y0) admits a left-ordering, does it follow that one of π1(Y1) and π1(Y2)
must as well?
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Note that if Y1 and Y2 are L-spaces, then so is Y0 according to the surgery exact triangle in

ĤF . This is the motivation behind Question 3.1. An affirmative answer would imply that
Theorem 2.1 extends to quasi-alternating links.

Updates. Ito has applied the idea in this paper to a different presentation for π1(Σ(L)) to
recover yet another proof of Theorem 2.1 [7]. Levine and Lewallen proved that the fundamental
group of any non-trivial strong L-space is not left-orderable [8, Theorem 1]. Their result
generalizes Theorem 2.1 in the sense that Σ(L) is a strong L-space whenever L is a non-split
alternating link [5, Corollary 3.5], although no examples of strong L-spaces are known besides
these [6, Question 1.2]. Li and Watson applied the presentation and technique used here in
their study of genus one open books [9].
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