
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 146, Number 6, June 2018, Pages 2723–2739
http://dx.doi.org/10.1090/proc/13930

Article electronically published on February 16, 2018

EXAMPLES OF NEW NONSTANDARD HULLS

OF TOPOLOGICAL VECTOR SPACES

ADEL KHALFALLAH AND SIEGMUND KOSAREW

(Communicated by Heike Mildenberger)

Abstract. In this paper, we construct new nonstandard hulls of topological
vector spaces using convex subrings of ∗R (or ∗C) and we show that such spaces
are complete. Some examples of locally convex spaces are provided to illustrate
our construction. Namely, we show that the new nonstandard hull of the space
of polynomials is the algebra of Colombeau’s entire holomorphic generalized
functions. The proof is based on the existence of global representatives of

entire generalized functions.

1. Introduction

The methods of nonstandard analysis have been applied to topology with illu-
minating and satisfying results; see Robinson [19] and Luxemburg[16, 17]. They
provide an alternative to the classical description of a topological space by open
sets. The notion of monad is a fundamental concept which encodes a topology
and most of the subsequent development comes from their properties. Meanwhile,
constructing nonstandard hulls turned out to be an effective method for obtaining
new mathematical objects from those available. For metric spaces, this was carried
out by Robinson. For normed spaces and uniform spaces, this was accomplished
by Luxemburg and by Henson and Moore [7] for topological vector spaces. In the
case of measure spaces, it is the Loeb spaces that play the role of nonstandard hulls
[9]. Roughly speaking, the nonstandard hull is the quotient of the set of “bounded”
elements by the equivalence relation of being infinitely close.

We construct new topologies on ∗E, a nonstandard extension of a topological

vector space E. Then, we define the set of F-bounded points and we construct Ê,

the F-nonstandard hull of E. The space Ê endowed with the quotient topology has

the structure of a topological vector space over F̂. We note that if F = bR or bC,
then Ê is the classical nonstandard hull of E constructed by Henson and Moore
in [7]. Finally, we provide some examples of F-nonstandard hulls of locally convex
spaces.

The first is given by the F-nonstandard hull of E(Ω), the space of smooth func-
tions over Ω, an open subset of Rn. We obtain the nonstandard counterpart of
the space of Colombeau’s algebra of generalized functions. Such spaces are investi-
gated by Todorov; see [21]. The second is the F-nonstandard hull of C[T1, . . . , Tn],
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the space of polynomials in n-indeterminates. In this case, we get the nonstan-
dard counterpart of the space Colombeau’s holomorphic generalized functions. To
achieve our goal, we prove that any entire generalized function has an entire gen-
eralized representative. Our proof is an adaptation to higher dimensions of [18],
where the authors showed that any generalized holomorphic function has a global
representative in any domain of C. On polydiscs, we approximate internal holo-
morphic functions by internal polynomials. The degrees of such polynomials will
be chosen in F

bC
N, the monoid of (bC,F) naturals. One can easily check that an in-

ternal polynomial of degree in F
bC
N is (bC,F)-bounded (resp. (bC,F)-infinitesimal) if

and only if its coefficients belongs to F (resp. iF). More generally, the relationship
between boundedness of entire functions and their coefficients is established in [13].

Next, we provide a simple proof of the identity theorem for generalized entire
functions using its Taylor expansion as a generalized power series over F

bC
N.

These results constitute a decisive step toward the development of a theory of
holomorphic generalized functions using nonstandard analysis. The need to go in
such a theory to convex subrings F than only the ring Mρ has been apparent in
many applications and has inspired other authors to use subrings defined by asymp-
totic scales; see [3]. Characteristically, nonstandard analysis allows for a general
framework at a minimal technical cost. The introduction of the sets of hypernat-
ural numbers F

bC
N is a natural language to describe the behaviour of holomorphic

generalized functions in such a general framework.
Finally, we investigate the F-nonstandard hull of Z, the ring of integers, equipped

with the p-adic norm.

2. Preliminaries

This section of preliminary notions provides a background necessary for the
comprehension of the paper.

2.1. Nonstandard analysis. The approach to nonstandard analysis that we use
in the present paper follows that of Stroyan and Luxemburg [20]. One starts with a
superstructure V (S) =

⋃
Vn(S) over set S, which is often not specified explicitly but

chosen large enough to contain all objects under the consideration, real numbers,
necessary vector spaces, etc. We suppose that for the enlargement ∗S of the set S
of basic elements, the natural embedding ∗ : V (S) → V (∗S) satisfies the following
principles:

The extension principle. ∗s = s for all s ∈ S.
The transfer principle. Let Φ(x1, x2, . . . , xn) be a bounded formula of the

superstructure V (S) and let A1, A2, . . . , An be elements of the superstructure V (S).
Then the assertion Φ(A1, A2, . . . , An) about elements of V (S) holds true if and

only if the assertion Φ(∗A1,
∗A2, . . . ,

∗An) about elements of V (∗S) does.
Let V (∗S) be a nonstandard enlargement of a superstructure V (S). An element

x ∈ V (∗S) is called standard if x = ∗X for some X ∈ V (S); internal if x ∈ ∗X for
some X ∈ V (S); external if x is not internal.

It is well known that a nonstandard enlargement V (∗S) of V (S) can be chosen
so that the following principle is satisfied; see for instance Goldblatt [6].

The general saturation principle. If a family {Aγ}γ ∈ Γ of internal sets pos-
sesses the finite intersection property and card(Γ) < card(V(S)), then

⋂
γ∈Γ Aγ �= φ.
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In what follows, we always deal with nonstandard enlargements satisfying the
general saturation principle (they are also called polysaturated).

2.2. Convex subrings of ∗R. Let ∗R be a nonstandard extension of the field of
real numbers R and iR, bR and ∞R stand for the sets of infinitesimals, bounded
(or finite) numbers and infinitely large numbers in ∗R, respectively. For a compre-
hensive introduction to nonstandard analysis, the reader is referred to [6,9,14,20].

First, we recall the definition and some properties of convex subrings of ∗R.

Definition 2.1. We say that F is a convex in ∗R if

(∀x ∈ ∗R)(∀ξ ∈ F)(|x| ≤ |ξ| ⇒ x ∈ F).

Remark 2.2. There is a one-to-one correspondence between convex subrings of ∗C
and those of ∗R : let F′ be a convex subring of ∗C; then F = F′ ∩ ∗R is a convex
subring of ∗R. Conversely, let F be a convex subring of ∗R; then F′ = {a ∈ ∗C :
|a| ∈ F} is a convex subring of ∗C.

Using the fact that any subring of ∗R contains Z, it is clear that if F is a convex
subring of ∗R, then F contains bR. We prove that the converse remains true.

Proposition 2.3. Let F be a subring of ∗R. Then F is convex if and only if F
contains bR.

Proof. Let x ∈ ∗R and ξ ∈ F \ {0} such that |x| ≤ |ξ|. Thus x/ξ ∈ bR, and we
deduce that x = (x/ξ).ξ ∈ bR.F ⊂ F, that is, F is a convex subring of ∗R. �

Therefore, any convex subring F of ∗R is a valuation ring. For the remainder of
this paper we fix the following notation: iF denotes the maximal ideal of F, and
aF = F \ iF, the set of appreciable elements of F and ∞F = ∗R \ F.

2.2.1. Examples.

(i) (Finite numbers). The ring of bounded nonstandard real numbers bR is a
convex subring of ∗R. Its maximal ideal is iR, the set of infinitesimals.

(ii) (Nonstandard real numbers). The field of nonstandard real numbers ∗R is
(trivially) a convex subring of ∗R. Its maximal ideal is {0}.

(iii) (Robinson rings). Let ρ be a positive infinitesimal in ∗R. The ring of the
ρ-moderate nonstandard numbers is defined by

Mρ = {x ∈ ∗R : |x| ≤ ρ−n for some n ∈ N}.

Mρ is a convex subring of ∗R. For its maximal ideal we have

Nρ = {x ∈ ∗R : |x| ≤ ρn for all n ∈ N}.

(iv) Let ω be an infinite positive number in ∗R. Then

Pω = {x ∈ ∗R : |x| ≤ nω for some n ∈ N},

Pω is a convex subring of ∗R, and its maximal ideal is given by

iPω = {x ∈ ∗R : |x| ≤ 1

nω
for all n ∈ N}.

One can easily check that Pω = Mexp(−ω).
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Definition 2.4. A sequence (λn)n∈N of infinitesimal positive numbers (except pos-
sibly n = 0) is called an asymptotic scale if it satisfies the following conditions:

(i) for all n ∈ N, λn+1

λn
∈ iR,

(ii) for every n ∈ N, there is k ∈ N such that λk ≤ λ2
n.

The sequence (λn)n∈N extends to (λn)n∈Z by putting

λ−n =
1

λn
for n ∈ N \ {0}.

Let Fn be the principal fractional ideal generated by λn, that is, for n ∈ Z \ {0}
Fn := λn

bR. One can easily check that if (λn) is an asymptotic scale, then

F =
⋃
n∈Z

Fn = {x ∈ ∗R : x ∈ λ−n
bR for some n ∈ N}

is a convex subring of ∗R and its maximal ideal is given by

iF =
⋂
n∈N

Fn = {x ∈ ∗R : x ∈ λn
bR for all n ∈ N}.

Using convex subrings of ∗R, a variety of fields F̂ is constructed by Todorov [21].
These fields are called F-asymptotic hulls and their elements F-asymptotic numbers.
This construction can be viewed as a generalization of A. Robinson’s theory of
asymptotic numbers; see Lightstone-Robinson [15].

Definition 2.5. Let F be a convex subring of ∗R. The F-asymptotic hull is the

factor ring F̂ = F/iF.

Let ŝt : F −→ F̂ stand for the corresponding quotient mapping, called the quasi-
standard mapping.

If x ∈ F, we shall often write x̂ instead of ŝt(x) for the quasi-standard part of x.

We can define an order relation in F̂, inherited from the order in ∗R, by

x̂ ≤ ŷ if there are representatives x, y with x ≤ y.

Using the convexity of F, the following proposition is straightforward.

Proposition 2.6. (F̂,≤) is a completely ordered field.

3. Nonstandard hulls of topological vector spaces

3.1. Nonstandard topologies on ∗E. Let E be a K-topological vector space,
where K stands either for R or C. Denote by N0 the filter of neighborhoods of
0 in E. Let bK be the set of bounded elements of ∗K and let iK be the set of
infinitesimals of ∗K. Let F be a convex subring of ∗K, that is, bK ⊂ F ⊂ ∗K. Let
us recall that aF = F \ iF denotes the set of appreciable elements of F.

We define a family of topologies on ∗E parametrized by convex subrings of ∗K
as follows: for each p in ∗E, let

Vp(
∗E,F) = {p+ r ∗U : U ∈ N0 and r ∈ aF}.

We will often write V(∗E) in place of V0(
∗E,F).

Proposition 3.1. V(∗E) is a neighborhood basis of zero in the group (∗E,+).
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Proof. First, we have to show that V(∗E) is a filter base on ∗E.
(i) 0 ∈ r∗U for any U ∈ N0 and r ∈ aF.
(ii) For any U, V ∈ N0 and r, s ∈ aF. Let U0, V0 be two balanced neighborhoods

of 0, such that U0 ⊂ U and V0 ⊂ V . For W = U0∩V0 and t = min(|r|, |s|), we have
t ∈ aF and t∗W ⊂ r∗U ∩ s∗V.

(iii) For any U ∈ N0, there exists V ∈ N0 such that V − V ⊂ U . Thus for any
r ∈ aF, we get r∗V − r∗V ⊂ r∗U. �

If (E, τ ) is a topological vector space, we denote by (∗E, τF) the topology on ∗E
generated by Vp(

∗E,F).
We notice that for F = bK, the topology on ∗E generated by V(∗E) coincides

with the topology generated by the zero neighborhood basis {∗U : U ∈ N0}. The
latter topology was defined by Henson and Moore in [7].

3.2. F−bounded elements of ∗E.

Definition 3.2.

(i) A point p of ∗E is F-bounded if, for each neighborhood U of 0, there exists
r ∈ aF which satisfies p ∈ r ∗U .

The set of F-bounded elements of ∗E will be denoted by F(∗E).
(ii) We define the F-halo of 0 by

μF(0) =
⋂

U∈N0, r∈ aF

r ∗U =
⋂

r∈ aF

r μ(0),

where μ(0) =
⋂

U∈N0

∗U stands for the classical halo of 0 in ∗E.
(iii) For any point p ∈ ∗E, the F-halo of p,

μF(p) = p+ μF(0).

Remark 3.3.

(i) The F-halo of p is exactly the closure of p with respect to the topology
generated by Vp(

∗E,F).
(ii) μF(0) is closed under addition and under multiplication by elements of F.
(iii) The set of F-bounded elements of ∗K is F, i.e., F(∗K) = F.
(iv) The topology generated by Vp(

∗K,F) coincides with the QS-topology on
∗K; see [12].

Theorem 3.4. An element p of ∗E is F-bounded if and only if λp ∈ μF(0) whenever
λ ∈ iF.

In particular, this shows that
iF.F(∗E) ⊂ μF(0).

Proof. Suppose that p is F-bounded. Let U be a balanced neighborhood of 0. Then
p ∈ r0

∗U for some r0 ∈ aF. Therefore, p ∈ ω∗U for every ω ∈ ∞F. Given r ∈ aF
and λ ∈ iF, λ �= 0. Let ω0 = r/λ. Clearly, ω0 ∈ ∞F and λp ∈ λω0

∗U ⊂ r∗U . It
follows that λp is in μF(0) whenever λ is in iF.

Conversely, if λp ∈ μF(0) for every λ in iF and if U is a neighborhood of 0, then
the internal set A = {ω ∈ ∗R : p ∈ ω∗U} contains ∞F. Thus by the underflow
principle, A must contain r ∈ aF. Therefore, the condition implies that p is F-
bounded. �

The following is an immediate consequence of Theorem 3.4 and Remark 3.3 (ii).
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Corollary 3.5.

(i) If p ∈ F(∗E), then μF(p) ⊂ F(∗E).
(ii) F(∗E) is an F-module.

Theorem 3.6.

(i) F(∗E) is a topological F-module, that is, the addition F(∗E) × F(∗E) →
F(∗E) and the scalar multiplication F× F(∗E) → F(∗E) are continuous.

(ii) F(∗E) is closed in ∗E.

Proof. (i) We have to check that the scalar multiplication (λ, x) 
→ λx satisfies the
following conditions; see Warner [23, page 86]:
(TM1) (λ, x) 
→ λx is continuous at (0, 0),
(TM2) for each c ∈ F(∗E), λ 
→ λc is continuous at 0,
(TM3) for each α ∈ F, x 
→ αx is continuous at 0.

Given U ∈ N0, there exists U0 a balanced neighborhood of 0 such that U0 ⊂ U .
Let r ∈ aF+.
(TM1): (|λ| ≤ 1)(r ∗U0) ⊂ r ∗U0 ⊂ r ∗U .
(TM2): Let c ∈ F(∗E); then there exists r0 ∈ aF, such that c ∈ r0

∗U0. We have
r/r0 ∈ aF+ and (|λ| ≤ |r|/|r0|) c ⊂ r (|λ| ≤ 1)∗U0 ⊂ r ∗U .
(TM3): Let α ∈ F. We have r

|α|+1 ∈ aF+ and α r
|α|+1

∗U0 ⊂ r ∗U .

(ii) To see that F(∗E) is closed, let x ∈ ∗E with x �∈ F(∗E). Then there exists U
a neighborhood of 0 in E such that x �∈ r ∗U for any r ∈ aF+. Let O be a balanced
neighborhood of 0 such that O − O ⊂ U . Let V := x + ∗ O. It follows that V is a
neighborhood of x in ∗E satisfying V ∩ F(∗E) = ∅.

Indeed, assume that there exists y ∈ V ∩ F(∗E). Then we find r0 ∈ aF with
y ∈ r0

∗O. Since ∗O is balanced, this implies x ∈ r0
∗O−∗O ⊂ (|r0|+1)(∗O−∗O) ⊂

(|r0|+ 1)∗U , a contradiction. �

For each U ∈ N0 and r ∈ aF define

Vr,U = {(x, y) ∈ ∗E × ∗E : x− y ∈ r ∗U}.
Let UF be the filter on ∗E×∗E generated by the filter base {Vr,U : U ∈ N0, r ∈ aF}.
Then UF is a translation-invariant uniformity on ∗E which determines the topology
on ∗E generated by Vp(

∗E,F).

Theorem 3.7. If F is generated by an asymptotic scale, then (∗E,UF) is complete.

Proof. Assume that F is generated by the asymptotic scale λn. Let G be a Cauchy
filter on ∗E. Then for each n ∈ N and each U ∈ N0, there exists Fn,U ∈ G such
that

Fn,U − Fn,U ⊂ λn
∗U.

Choose some xn,U ∈ Fn,U and consider the system of internal sets An,U := xn,U +
λn

∗U . As Fn,U ⊂ An,U , then An,U has the finite intersection property. Hence, by
the saturation property, we conclude that ∩An,U contains some element x ∈ ∗E.

We claim that the filter G converges to x, that is, any neighborhood of x belongs
to G.

Let W be any neighborhood of x; then there exists n ∈ N and U ∈ N0 such that
x+ λn

∗U ⊂ W . Let V be a neighborhood of 0 such that V − V ⊂ U . We have

FV,n ⊂ xn,V +λn
∗V ⊂ (xn,V −x)+(x+λn

∗V ) ⊂ −λn
∗V +(x+λn

∗V ) ⊂ x+λn
∗U.

Hence x+ λn
∗U ∈ G and so W ∈ G, as claimed. �
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Using Theorem 3.6 (ii), we deduce the following

Corollary 3.8. If F is generated by an asymptotic scale, then F(∗E) is complete.

Theorem 3.9. Let (G, τ ) and (H, τ ′) be K-topological vector spaces and let f :
G → H be a linear mapping. Consider the following:

(i) f is continuous at 0.

(ii) ∗f(μτ
F
(0)) ⊂ μτ ′

F
(0).

(iii) ∗f (F(∗G)) ⊂ F(∗H).

Then (i) ⇐⇒ (ii) =⇒ (iii).
Furthermore, if F is generated by an asymptotic scale, then (i) ⇐⇒ (ii) ⇐⇒ (iii).

Before giving the proof, we need the following lemmas.

Lemma 3.10. Let E be K-topological vector space. Then there exists W , a ∗-open
neighborhood of 0, such that W ⊂ μF(0).

Proof. According to the saturation principle, there exists V , a ∗- open neighborhood
of 0, such that V ⊂ μ(0); see [9]. Let α be a nonzero element in iF. We claim that
W := αV is a ∗-open neighborhood of 0 satisfying W ⊂ μF(0). Indeed, the transfer
principle shows that W is a *-open neighborhood of 0. Furthermore, for any r ∈ aF
and for any U , a balanced neighborhood 0, we have αV ⊂ α ∗U ⊂ r ∗U , thus,
W ⊂ μF(0). �

We prove the converse of Theorem 3.4 under some additional assumptions on F.

Lemma 3.11. Assume that F is generated by an asymptotic scale. Then, for each
p ∈ μF(0) there exists ω ∈ ∞F such that ωp ∈ μF(0). Hence

iF . μF(0) = μF(0).

Proof. Let p ∈ μF(0). For each n ∈ N and U ∈ N0 define the internal set A(n, U)
by

A(n, U) = {x ∈ ∗R : x ≥ λ−n and xp ∈ λn
∗U}.

Since μF(0) is closed by multiplication by elements of F, each set A(n, U) is
nonempty. It follows that the sets A(n, U) is a collection of internal subsets of ∗R
which has the finite intersection property. Hence, by the saturation principle, there
is ω in the intersection of the collection. That is, ω ∈ ∞F and satisfies ωp ∈ λn

∗U
for each n ∈ N and each U ∈ N0. It follows that ωp ∈ μF(0), which completes the
proof. �
Remark 3.12. We remark that if (E, |.|) is a normed space, then iF . μF(0) = μF(0)
holds for any F a convex subring of ∗R. Indeed, let p be a nonzero element in μF(0),

i.e., |p| ∈ iF. Let ω = 1/
√
|p|. Clearly, ω ∈ ∞F and ωp ∈ μF(0).

Proof (Theorem 3.9).
(i) =⇒ (ii) f is continuous at 0. So for any V neighborhood of 0 in H there

exists U , a neighborhood of 0 in G, such that f(U) ⊂ V . By the transfer principle,

we get ∗f(r ∗U) ⊂ r ∗V , for any r ∈ aF. Hence ∗f(μτ
F
(0)) ⊂ μτ ′

F
(0).

(ii) =⇒ (i) Conversely, assume that ∗f(μτ
F
(0)) ⊂ μτ ′

F
(0). Let V be an arbitrary

neighborhood of 0 in H. Using Lemma 3.10, we obtain :

There exists W, a *-open nieghborhood of 0, such that ∗f(W ) ⊂ ∗V.

The transfer principle shows that f is continuous.
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(ii) =⇒ (iii) Let p ∈ F(∗G). According to Theorem 3.4, the condition ∗f(p) ∈
F(∗H) is equivalent to iF.∗f(p) ∈ μτ ′

F
(0). Indeed, let λ ∈ iF,

λ∗f(p) = ∗f(λp) ∈ ∗f(μτ
F(0)) ⊂ μτ ′

F (0),

which completes the proof.
(iii) =⇒ (ii) Assume that F is generated by an asymptotic scale. By Lemma

3.10, we have

∗f(μτ
F(0)) =

∗f(iF.F(∗G)) = iF. ∗f(F(∗G)) ⊂ iF.F(∗H) ⊂ μτ ′

F (0).

�

Corollary 3.13. If τ and τ ′ are two vector topologies on E and F is a convex
subring of ∗R generated by an asymptotic scale, then

(i) τ ⊂ τ ′ ⇐⇒ Fτ (
∗E) ⊃ Fτ ′(∗E).

(ii) τ = τ ′ ⇐⇒ Fτ (
∗E) = Fτ ′(∗E).

Definition 3.14. Let (E, τ ) be a K-topological vector space. The F-nonstandard
hull of E is the vector space Ê defined by

Ê = ÊF = F(∗E)/μF(0)

equipped with τ̂F, the quotient topology of τF on F(∗E).

The canonical mapping of F(∗E) on Ê will be denoted by π, thus π(p) = p+μF(0)
for all p ∈ F(∗E).

We remark that the quotient topology on F̂ coincides with the (product of) order
topology, that is,

B̂(0, r) = {α ∈ F̂ : |α| < r}, r ∈ F̂+,

is a neighborhood basis of 0 is F̂.

Proposition 3.15. The quotient mapping π : F(∗E) → Ê is continuous and open.

By Theorem 3.6 and the universal property of the quotient topology, we have

Theorem 3.16. Ê is a Hausdorff topological F̂-vector space. Then

F(∗E)× F(∗E) F(∗E)

Ê × Ê Ê

+

π×π π

+

F× F(∗E) F(∗E)

F̂× Ê Ê

·

̂st×π π

·

Theorem 3.17. If F is generated by an asymptotic scale, then Ê is complete.

Proof. Let Ĝ be a Cauchy filter on Ê and let G be the filter on F(∗E) generated by

π−1(Ĝ). One can easily check that π−1(Ĝ) is a Cauchy filter on F(∗E), hence by
Corollary 3.8, it converges to some x ∈ F(∗E). The continuity of the mapping π

implies that Ĝ = π(G) converges to π(x). �

Proposition 3.18. If E is a normed space, then topology of τ̂F induces on E the
discrete topology.

Proof. If E is Hausdorff, then E is a subspace of Ê. Indeed, let x ∈ E such that
π(x) = 0. Hence x ∈ μF(0) ∩ E ⊂ μ(0) ∩E = {0} = {0}. �
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Using Theorem 3.9, we deduce the following

Theorem 3.19. Let G and H be two K-topological vector spaces and let f : G → H

be a continuous linear mapping. Then f gives rise to a continuous F̂-linear mapping

f̂ : Ĝ → Ĥ defined by

f̂(x̂) = f̂(x) for all x̂ ∈ Ĝ.

3.3. Nonstandard hulls of locally convex spaces. Let E be a locally convex
topological vector space topologized through a family of seminorms (pj)j∈J . Then
F(∗E), the set of F-bounded points of ∗E defined in Section 3.2, is given by

F(∗E) = {x ∈ ∗E : pj(x) ∈ F for all j ∈ J},
and

μF(0) = {x ∈ ∗E : pj(x) ∈ iF for all j ∈ J}.
The topology (∗E, τF) is generated by {p−1

j (0, r) : r ∈ aF+} as a subbase. In other
words, τF coincides with the initial topology on ∗E making all ∗pj : ∗E −→ ∗R+

continuous, where ∗R is equipped with the QS-topology generated by F.
The family of seminorms pj induces on Ê

p̂j : Ê → F̂+.

The quotient topology τ̂F on Ê coincides with the initial topology making all the

seminorms p̂j : Ê → F̂+ continuous, where F̂ is equipped with the order topology.

4. Examples

4.1. E = E(Ω) the space of smooth functions. Let Ω be an open subset of
Rn and let E be the space of smooth functions over Ω. E is topologized through
the family of seminorms pKi,j(f) = supx∈Ki,|α|≤j |∂αf(x)|, where (Ki)i∈N is an
exhausting sequence of compact subsets of Ω,

F(∗E(Ω)) = M(∗E(Ω)) = {f ∈ ∗E(Ω) : ∂αf(ns(∗Ω)) ⊂ F for all α ∈ Nn},

μF(0) = N (∗E(Ω)) = {f ∈ ∗E(Ω) : ∂αf(ns(∗Ω)) ⊂ iF for all α ∈ Nn},
where ns(∗Ω) stands for the nearstandard points of ∗Ω.

The space ÊF(Ω) = F(∗E(Ω))/μF(0) was studied in detail in [21] as the nonstan-
dard counterpart of Colombeau algebras.

4.2. E = C[T1, . . . , Tn] the space of polynomials. Let E = C[T1, . . . , Tn] be the
space of polynomials in n-indeterminates over C equipped with the topology of
compact convergence.

F(∗C[T1, . . . , Tn]) = {f ∈ ∗(C[T1, . . . , Tn]) : f(
bCn) ⊂ F},

μF(0) = {f ∈ ∗(C[T1, . . . , Tn]) : f(
bCn) ⊂ iF},

where bCn stands for the nearstandrad points of ∗Cn.
F(∗C[T1, . . . , Tn]) is the ring of (bC,F)-bounded polynomials and will be denoted

by F
bC
C[T1, . . . , Tn] and μF(0) is the ideal of (bC,F)-infinitesimal polynomials. In

[13], we provided a characterization of (bC,F)-bounded polynomials in terms of
their coefficients using F

bC
N the set of naturals in (bC,F).

For the sake of completeness, we recall the definition of F
bC
N, the set of naturals

in (bC,F), and their main properties.
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Definition 4.1 ([13]). Let F be a convex subring of ∗C . Define

F
bC
N := {ν ∈ ∗N : ∀R ∈ bC+, Rν ∈ F}

the set of (bC,F) naturals, where bC+ = bC ∩ ∗R+.

Moreover, by convexity of F, we have

ν ∈ F
bC
N if and only if ∀n ∈ N, nν ∈ F.

Example 4.2. If F = Mρ, then

F
bC
N = {ν ∈ ∗N : ν ≤ α| ln ρ| for some α ∈ R+} = ∗N ∩ (| ln ρ| bR+).

Proposition 4.3 ([13]). Let F be a convex subring of ∗C . Then

(i) F
bC
N is a monoid.

(ii) N ⊂ F
bC
N ⊂ F ∩ ∗N.

(iii) Let n,m ∈ ∗N such that m ≤ n. If n ∈ F
bC
N; then m ∈ F

bC
N.

(iv) If bC � F, then N � F
bC
N.

Remark 4.4. Let P ∈ ∗ (C[T1, . . . , Tn]) be an internal polynomial of degree in F
bC
N,

P =
∑
|ν|≤d

aνZ
ν , aν ∈ ∗C, d ∈ F

bC
N.

Then

(i) P (bCn) ⊂ F if and only if aν ∈ F for all |ν| ≤ d.
(ii) P (bCn) ⊂ iF if and only if aν ∈ iF for all |ν| ≤ d.

More generally, for internal entire functions, a characterization of (bC,F)-bounded-
ness in terms of their coefficients is proved in [13].

Our main result is Theorem 4.10 showing that

̂C[T1, . . . , Tn]F = F(∗C[T1, . . . , Tn])/μF(0),

the F-nonstandard hull of C[T1, . . . , Tn], is ÔF(Cn), the nonstandard counterpart
of Colombeau’s generalized holomorphic functions over Cn.

We should mention that for F = bC, the nonstandard hull of C[T1, . . . , Tn] is
O(Cn) the algebra of entire functions on Cn, see [11], and for n = 1, the F-
nonstandard hull of C[T ] is the nonstandard counterpart of Colombeau’s gener-
alized holomorphic functions over C; see [13]. The proof is based on the existence
of global holomorphic representatives of Colombeau’s generalized holomorphic func-
tions. For n = 1, our argument is that the ∂-operator has a right inverse; see also
[18]. Some substantial modifications are needed to adapt the proof in [18] to higher
dimensions spaces. It appears that the set of naturals is an essential tool in our
proofs. Indeed, the Runge approximation theorem is explicit on polydiscs since
we approximate internal analytic functions (on polydiscs) by internal polynomials
given by their Taylor expansion. The degrees of the polynomials will be carefully
chosen to satisfy some crucial estimates in the proof.
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4.2.1. Existence of global holomorphic representaives. Let Ω be an open subset of
Cn. We construct variants of nonstandard counterparts of the space of holomorphic
generalized functions introduced by Colombeau, see [1, 2],

ÔF(Ω) := {f ∈ ÊF(Ω) : ∂jf = 0 ∀j = 1, . . . , n}.

In [13], we used bounded polynomials to provide natural counterexamples showing
the disparity with the classical theory of analytic functions. Indeed, any poly-

nomial P ∈ ∗(C[T1, . . . , Tn]) which is (bC,F)-bounded generates P̂ ∈ ÔF(Cn) a
holomorphic generalized function.

Now, we prove the converse that any holomorphic generalized function over Cn

is given by a (bC,F)-bounded polynomial of degree in ∗N \ F
bC
N. First, we show

Theorem 4.5. Let F be a convex subring of ∗C. Then any holomorphic generalized

function F ∈ ÔF(Cn) admits an internal holomorphic function representative f ∈
∗O(Cn).

In [4], the authors proved that any generalized holomorphic function has a local
holomorphic representative. One can easily translate the proof from the setting
of Colombeau generalized functions to our setting since the proof is based on the
Cauchy-Pompeiu formula; see [8].

Lemma 4.6 ([4]). Let Ω be an open subset of Cn, a = (a1, . . . , an) ∈ Ω and let
r1, . . . , rn > 0 be such that the closure of the polydisc P (a, r) = {(z1, . . . , zn) ∈ Cn :

|zi − ai| < ri, ∀ i = 1, . . . , n} is contained in Ω. Then every F ∈ ÔF(Ω) has an
internal holomorphic representative f in the polydisc P (a, r).

Proof. For j ∈ N≥1, we set Vj the polydisc in Cn of center the origin and radius j
and ∗Vj its nonstandard extension defined for j ∈ ∗N≥1. By Theorem 4.5, for every
j ∈ N≥1, there exists fj a holomorphic representative of F on Vj . The sequence
(fj)j∈N≥1

extends to (fj)j∈∗N≥1
an internal sequence of internal analytic functions

on ∗Vj .
Let

uj(z) = fj+1(z)− fj(z), z ∈ ∗Vj , j ∈ ∗N, j ≥ 1.

uj is an internal holomorphic function on ∗Vj , therefore it has an internal power
series expansion

uj(z) =
∑

l∈∗Nn

aljz
l, z ∈ ∗Vj , j ∈ ∗N≥1

and for j standard, uj ∈ N (∗E(Vj)) ∩ ∗O(Vj).

Claim. For all j ∈ ∗N≥2, there exists αj ∈ iF+ and vj ∈ ∗ (C[T1, . . . , Tn]), an
internal polynomial, such that supz∈∗Vj−1

|uj(z)−vj(z)| ≤ 2−jαj and vj is a (
bC,F)-

infinitesimal polynomial for j standard.

For j ≥ 2 standard, let us choose Nj ∈ F
bC
N such that if

vj(z) =
∑

|l|≤Nj

aljz
l
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we have

sup
z∈∗Vj−1

|uj(z)− vj(z)| ≤ 2−jαj

for some αj ∈ iF and vj is a (bC,F)-infinitesimal polynomial.
Since uj ∈ N (∗E(Vj)) ∩ ∗O(Vj), then it follows from Cauchy’s inequalities that

there exits αj ∈ iF such that

(�) |alj | ≤
αj

(j − 1/2)|l|
.

Therefore if z ∈ ∗Vj−1,

|uj(z)− vj(z)| ≤
∑

|l|≥Nj+1

|alj |(j − 1)|l| ≤ αj

∑
|l|≥Nj+1

r
|l|
j ≤ αj r

(Nj+1)n
j (2j − 1)n,

where rj =
j − 1

j − 1
2

.

Since rj is a real number in (0, 1), we have r
(Nj+1)n
j ∈ iR for any Nj ∈ ∞N∩F

bC
N,

thus (2j − 1)nr
(Nj+1)n
j < 2−j . Such Nj exists since ∞N ∩ F

bC
N is nonempty by

Proposition 4.3 (iv).
Hence, on ∗Vj−1 we have

|uj − vj | ≤ αj 2
−j .

Moreover,
∑
j≥1

αj2
−j ∈ iF.

For j standard, the polynomial vj is a (bC,F)-infinitesimal polynomial . Indeed,
by the Cauchy’s estimate (�), we obtain alj ∈ iF for all |l| ≤ Nj . Thus as Nj ∈ F

bC
N,

we have vj(
bCn) ⊂ iF; see Remark 4.4.

Define g on ∗Vj−1, j ∈ ∗N, j ≥ 2, by

g = fj +
∑
k≥j

(uk − vk)− v2 − . . .− vj−1

= fj+1 +
∑

k≥j+1

(uk − vk)− v2 − . . .− vj .

The *-sheaf property shows that g defines an internal holomorphic function on
∗Cn and g is a global representative of F . �

Remark 4.7. If F is generated by an asymptotic scale, then we strengthen the claim
by showing that there exists a uniform α ∈ iF such that supz∈∗Vj−1

|uj(z)−vj(z)| ≤
2−jα; see Lemma A.3.

Lemma 4.8 ([13]). Let f ∈ ∗O(Cn) be a (bC,F)-bounded internal holomorphic
function. Then for each N ∈ ∗N \ F

bC
N, the tail (f − fN ) is (bC,F) infinitesimal,

that is,

(f − fN )(bCn) ⊂ iF

and

f̂(z) = lim
N∈F

bC
N,N→∞

f̂N (z).
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f̂(z) = lim
N∈F

bC
N,N→∞

f̂N (z) means that for any ε ∈ F̂, ε > 0, there exists N ∈ F
bC
N,

such that for any n ∈ F
bC
N, n > N , we have |f̂(z)− f̂n(z)| < ε.

Combining Theorem 4.5 with the previous lemma proved in [13], we obtain

Corollary 4.9. Every holomorphic generalized function F ∈ ÔF(Cn) admits a

(bC,F)-bounded polynomial representative P of degree N ∈ ∗N\FbCN, that is, P̂ = F .

The (bC,F)-bounded polynomial is obtained by truncation of the internal entire
function up to any order in ∗N \ F

bC
N.

Theorem 4.10. Let F be a convex subring of ∗C. Then the quasi-standard mapping

ŝt : F
bC
C[T1, . . . , Tn] → ÔF(C

n)

is surjective and its kernel is given by (bC,F)-infinitesimal polynomials and

ŝt(
∑

ν∈∗Nn

aνz
n) =

∑
|ν|∈F

bC
N

âν ẑ
n.

This shows that the F-nonstandard hull of the space C[T1, . . . , Tn] is ÔF(Cn),
the algebra of holomorphic generalized functions on Cn.

4.2.2. Identity theorem. The classical identity theorem for power series is very sim-
ple: given an entire function f =

∑
anz

n. If f vanishes near the origin, then
f vanishes everywhere as an = f (n)(0)/n! = 0 for all n. We can apply similar
arguments to the case of generalized holomorphic functions.

Proposition 4.11. Let f be a generalized holomorphic function in ÔF(Cn). If f
vanishes on Ω, a nonempty open subset of Cn, then f vanishes everywhere.

Proof. Let F be a global generalized holomorphic representative of f . Let a ∈ Ω
and r > 0 such that P (a, r) ⊂ Ω. Let us write the Taylor expansion of F

F (z) =
∑

ν∈∗Nn

aν(z − a)ν .

By hypothesis, F (∗P (a, r′)) ⊂ iF, for any 0 < r′ < r. The Cauchy’s estimate shows
that aν ∈ iF for every |ν| ∈ F

bC
N. Thus

ŝt(F ) = ŝt

( ∑
ν∈∗Nn

aν(z − a)ν

)
=

∑
|ν|∈F

bC
N

âν(ẑ − a)ν = 0.

Hence f = 0. �

4.3. E = OX(U). Let (X,OX) be a separable analytic space, and U ⊂ X any open
set. Recall that OX(U) has a structure of a Fréchet space defined by the topology
of compact convergence,

F(∗OX(U)) = {f ∈ ∗OX(U) : f(ns(∗U)) ⊂ F},
μF(0) = {f ∈ ∗OX(U) : f(ns(∗U)) ⊂ iF}.

The space ÔX(U) = F(∗O(U))/μF(0) is the F-nonstandard hull of OX(U). More-

over, the mapping U 
→ ÔX(U) defines a separated presheaf on X as any element

f ∈ ÔX(U) gives a pointwise mapping f̂ : ns(∗U)/iFn → F̂.
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More generally, let G be a Fréchet sheaf on a topological spaceX with a countable
topology, that is, G is a sheaf of vector spaces on X such that G(U) is a Fréchet
space for every U ⊂ X, an open subset of X, and for every V ⊂ U , the restriction-

homomorphism G(U) → G(V ) is continuous. Let Ĝ(U) be the F-nonstandard hull of

G(U). If F̂ has a nontrivial real-valued valuation compatible with its order, then the

space Ĝ(U) is complete with respect to a countable sequence of ultra-seminorms.

Hence, using Theorem 3.19, we deduce that the mapping U 
→ Ĝ(U) gives a Fréchet
presheaf on X.

A fundamental example of a Fréchet sheaf is given by a coherent OX -module,
where (X,OX) is a complex space.

4.4. E = Z the ring of integers equipped with the p−adic norm. Let us
consider Z, the ring of the integers equipped with |.|p, the p−adic norm. Recall

that if n ∈ Z \ {0}, |n|p = p−νp(n), where νp denotes the p−adic valuation for Z.
Let F be a proper convex subring of ∗R, that is, bR ⊂ F � ∗R.

Then the set of F-bounded and F-infinitesimal elements are given by

F(∗Z) = {n ∈ ∗Z : |n|p ∈ F} = ∗Z,

μF(0) = {n ∈ ∗Z : |n|p ∈ iF}.
One can easily check that μF(0) is an external prime ideal in ∗Z.
The following proposition provides a generalization of Theorem 18.4.1 in Gold-

blatt [6], where the author considered the case F = bR.

Proposition 4.12. Let n be a nonzero hyperinteger n ∈ ∗Z. The following are
equivalent:

(i) |n|p ∈ iF.
(ii) νp(n) ∈ ∗N \ F

bR
N.

(iii) n is divisible by pk for all k ∈ F
bR
N.

(iv) n is divisible by pK for some K ∈ ∗N \ F
bR
N.

The proof is a direct consequence of the following elementary lemma.

Lemma 4.13. log(∞F+) ∩ ∗N = ∗N \ F
bR
N.

Proof (Proposition).
(i) ⇐⇒ (ii): |n|p ∈ iF ⇐⇒ pνp(n) ∈ ∞F+ ⇐⇒ νp(n) ∈ log(∞F+) ∩ ∗N.
(ii) ⇐⇒ (iii): pk/n ⇐⇒ k ≤ νp(n).
(iii) ⇐⇒ (vi): follows from the overflow principle; see Theorem A.2. �

Let us consider θp, the following homomorphism of rings,

θp : ∗Z −→ lim←−
k∈ F

bR
N

∗Z/pk ∗Z

defined by θp(n) = (n mod pk)k∈ F

bR
N. Using Proposition 4.12, we deduce that

ker θp = μF(0). Hence

ẐF ↪→ lim←−
k∈ F

bR
N

∗Z/pk ∗Z,

where ẐF denotes the F-nonstandard hull ∗Z, that is, ẐF = F(∗Z)/μF(0) =
∗Z/μF(0).
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We obtain the following commutative diagram:

ẐF lim←−
k∈ F

bR
N

∗Z/pk ∗Z

Ẑ lim←−
k∈N

∗Z/pk ∗Z	

Here, Ẑ denotes the bR-nonstandard hull of ∗Z, which is isomorphic to Zp, the
ring of p-adic integers; see Goldblatt [6].

Proposition 4.14.

ẐF = Ẑp

F

.

For any n ∈ Ẑp

F

, and for any N ∈ ∗N \ F
bR
N, we have

n =
∑
k≤N

akp
k mod μF(0) =

∑
k∈F

bR
N

akp
k,

where (ak)k∈∗N is an internal sequence of integers with values in [[0, p− 1]].

Appendix A. Spilling principles

We recall several spilling principles in terms of a proper convex subring F of ∗R.
We note that the familiar underflow and overflow principles in nonstandard analysis
follow as a particular case for F = bR.

Theorem A.1 (Spilling principles [21]). Let F be a proper convex subring of ∗R
and let A ⊂ ∗R be an internal set. Then:

(i) Overflow of F : If A contains arbitrarily large numbers in F, then A con-
tains arbitrarily small numbers in ∗R \ F. In particular,

F \ iF ⊂ A ⇒ A∩ (∗R \ F) �= ∅.
(ii) Underflow of F\ iF : If A contains arbitrarily small numbers in F\ iF, then

A contains arbitrarily large numbers in iF. In particular,

F \ iF ⊂ A ⇒ A∩ iF �= ∅.
(iii) Overflow of iF : If A contains arbitrarily large numbers in iF, then A

contains arbitrarily small numbers in F \ iF. In particular,

iF ⊂ A ⇒ A∩ (F \ iF) �= ∅.
(iv) Underflow of ∗R \ F : If A contains arbitrarily small numbers in ∗R \ F,

then A contains arbitrarily large numbers in F. In particular,
∗R \ F ⊂ A ⇒ A∩ (F \ iF) �= ∅.

We should mention that these spilling principles fail if F = ∗R and iF = {0}.

Theorem A.2 (Principles of permanence of G

F
N, [13]). Let A be an internal subset

of ∗N and F and G be two convex subrings of ∗C such that F ⊂ G.

(i) (The underflow principle) Let K ∈ ∞N be an infinite integer. If every
H ∈ ∗N \ G

F
N with H ≤ K belongs to A, then there is some k ∈ G

F
N such

that [[k..K]] ⊂ A.
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(ii) (The overflow principle) Let k ∈ G

F
N. If every n ∈ G

F
N with n ≥ k belongs

to A, then there is some K ∈ ∗N \ G

F
N such that [[k..K]] ⊂ A.

Where
G

FN := {ν ∈ ∗N : ∀R ∈ F+, Rν ∈ G}
is the set of (F,G) naturals, and F+ = F ∩ ∗R+.

Lemma A.3. Let F be a convex subring of ∗R generated by an asymptotic scale
(λn). Let (αn)n∈N be a sequence in iF+. Then there exists α ∈ iF+ such that
0 ≤ αn ≤ α for all n ∈ N.

Proof. For each n ∈ N, consider An = {x ∈ ∗R : αn ≤ x ≤ λn} = [αn, λn]. An is a
sequence of internal subsets of ∗R satisfying the finite intersection property, hence⋂

n∈N
An �= ∅. �
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