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EQUIVARIANT HILBERT SERIES OF MONOMIAL ORBITS

SEMA GÜNTÜRKÜN AND UWE NAGEL

(Communicated by Irena Peeva)

Abstract. The equivariant Hilbert series of an ideal generated by an orbit
of a monomial under the action of the monoid Inc(N) of strictly increasing
functions is determined. This is used to find the dimension and degree of such
an ideal. The result also suggests that the description of the denominator of
an equivariant Hilbert series of an arbitrary Inc(N)-invariant ideal as given by
Nagel and Römer is rather efficient.

1. Introduction

For a polynomial ring over a field K in finitely many variables, Hilbert showed
that its ideals are finitely generated and the vector space dimensions of graded com-
ponents of its homogeneous ideals eventually grow polynomially. Equivalently, their
Hilbert series are rational. Recently, analogs of these results have been established
for certain ideals in polynomial rings in infinitely many variables.

To describe this more precisely, fix a positive integer c ≥ 1 and consider a
polynomial ring K[X] = K[X[c]×N] = K[xi,j | 1 ≤ i ≤ c, 1 ≤ j]. Let Inc(N) be the
monoid of strictly increasing functions on the set N of positive integers

Inc(N) = {π : N → N | π(i) < π(i+ 1) for all i ≥ 1}.

Setting π · xj,k = xj,π(k) induces an action of Inc(N) on K[X]. In [1] and [4] it
is shown that any Inc(N)-invariant ideal I of K[X] is generated by finitely many
orbits. This and related results are of great interest, for example, in algebraic
statistics, the study of tensors, or in representation theory (see, e.g., [2–4, 8, 9]).

If I is a homogeneous ideal, in [7] an equivariant Hilbert series of K[X]/I has
been defined as a formal power series in two variables

HK[X]/I(s, t) =
∑

n≥0, j≥0

dimK [K[Xn]/In]j · sntj ,

where K[Xn] = K[X[c]×[n]] = K[xi,j | 1 ≤ i ≤ c, 1 ≤ j ≤ n] and In = I ∩K[Xn].
Note that any ideal of K[X] that is invariant under the action of Sym(∞) (induced
by moving the column indices of the variables) is also Inc(N)-invariant. For any
homogeneous Inc(N)-invariant ideal of K[X], it has been shown in [7] that its
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equivariant Hilbert series is rational of the form

(1) HK[X]/I(s, t) =
g(s, t)

(1− t)a ·
∏b

j=1

[
(1− t)cj − s · fj(t)

] ,
where a, b, cj are non-negative integers with cj ≤ c, g(s, t) ∈ Z[s, t], and each fj(t)
is a polynomial in Z[t] satisfying fj(1) > 0.

This form has been used in [7] to show in particular that the dimension of
K[Xn]/In eventually grows linearly in n and that the limit lim

n→∞
n
√
deg In exists

and is a positive integer. However, the equivariant Hilbert series is explicitly known
for only a few ideals. Furthermore, a different argument for the rationality of the
Hilbert series HK[X]/I(s, t) has been given more recently in [6], but without a more
precise description of the rational function. The authors wonder about a good
description of its denominator. In order to begin addressing these issues we consider
any ideal I that is generated by the Inc(N)-orbit of some monomial of K[X]. For
ease of notation, let us focus on the case c = 1 in this introduction and write xj for
x1,j . Let I be the ideal generated by the orbit of a monomial xa1

μ1
xa2
μ2

· · ·xar
μr
, where

μ1 < · · · < μr and r, a1, . . . , ar ∈ N, which we write as I = 〈Inc(N) ·xa1
μ1
xa2
μ2

· · ·xar
μr
〉.

For example, if I = 〈Inc(N) ·x2
3x

4
5x8〉, then one gets

In =

{
〈x2

i1
x4
i2
xi3 | 3 ≤ i1, i2 − i1 ≥ 2, i3 − i2 ≥ 3, i3 ≤ n〉 if n ≥ 8,

0 if 0 ≤ n < 8.

As a special case of our main result (see Theorem 3.3), one gets for such ideals:

Theorem 1.1. If I = 〈Inc(N) ·xa1
μ1
xa2
μ2

· · ·xar
μr
〉, then

HK[X]/I(s, t) =
g(s, t)

(1− t)μr−1
r∏

j=1

[
1− s · (1 + t+ · · ·+ taj−1)

] ,
where g(s, t) ∈ Z[s, t] is a polynomial that is not divisible by any of the indicated
irreducible factors of the denominator.

We also determine the numerator polynomial g(s, t) (see Theorem 2.4). For
instance, if I = 〈Inc(N) ·x2

3x
4
5〉 one gets (see, e.g., Example 2.5)

HK[X]/I(s, t)(2)

=
(1− t)4 + s(1− t)3(−1 + t2 + t4) + s2t6(1− t)2 + s3t6(1− t) + s4t6

(1− t)4 · [1− s(1 + t)] · [1− s(1 + t+ t2 + t3)]
.

The Hilbert series in the case of an arbitrary mononomial when c ≥ 1 is quali-
tatively of the same form as in the case where c = 1 (see Theorem 3.3).

Let us compare the above result with the form of the equivariant Hilbert series
of an arbitrary Inc(N)-invariant ideal as given in equation (1). Example 7.3 in [7]
shows that there is no a priori bound on the degree of the polynomials fj appear-
ing in the denominator and that they can have negative coefficients. Theorem 1.1
establishes that the number of irreducible factors in the denominator can be arbi-
trarily large. Thus, the description of the denominator in equation (1) seems rather
efficient.

It is instructive to compare our results with the case of a noetherian graded
hypersurface ring A = K[y1, . . . , ym]/〈f〉. It is a Cohen-Macaulay ring of dimension
m− 1, and its multiplicity (degree) is deg f . This information can be read off from
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its Hilbert series, which is HA(t) =
1+t+···+tdeg f−1

(1−t)m−1 . If I is generated by the Inc(N)-

orbit of a monomial, then dimK[Xn]/In = n(c − 1) + μr − 1, and so the growth
is dominated by c − 1. However, the degrees of the ideals In eventually grow
exponentially in n, and if c = 1 (so I = 〈Inc(N) ·xa1

μ1
xa2
μ2

· · ·xar
μr
〉) the growth rate is

dominated by

lim
n→∞

n
√
deg In = max{a1, . . . , ar},

which is not the degree of the orbit generator if r ≥ 2. Again, there is a similar
formula in the general case c ≥ 1 (see Corollary 3.8). Notice that even though each
K[Xn]/In is Cohen-Macaulay the numerator polynomial of the Hilbert series of
K[X]/I in reduced form can have negative coefficients, as is the case in formula (2).
However, the polynomials fj appearing in the irreducible factors of the denominator
have only non-negative coefficients (see also Remark 3.9).

The proofs of rationality of an equivariant Hilbert series in [7] and [6] both lead
to an algorithm for computing it. However, here we develop a different method
that makes the computations efficient. This is first carried out in Section 2 if c = 1.
We discuss this simpler case separately in order to stress the ideas and to simplify
notation. The general case is treated in Section 3. In some sense we are able to
reduce it to the case where c = 1.

2. A special case

In this section we consider the special case where c = 1; that is, the ringK[X] has
only one row of variables. Thus, we simplify notation and let K[X] = K[xj | j ∈ N].
Any monomial in K[X] can be written as xa1

μ1
xa2
μ2

· · ·xar
μr
, where μ1 < · · · < μr and

r, a1, . . . , ar ∈ N. The Inc(N)-invariant ideal I of K[X] generated by the orbit of
this monomial is

I = 〈Inc(N) ·xa1
μ1
xa2
μ2

· · ·xar
μr
〉.

Set μ = (μ1, . . . , μr).
Denote the set of non-negative integers by N0. So, for n ∈ N0, one has K[Xn] =

K[xj | 1 ≤ j ≤ n]. In particular, K[X0] = K. Since Inc(N) acts on K[X] by
π · xj = xπ(j), we get the following explicit description of the ideal In = I ∩K[Xn]:

In =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
〈xa1

i1
xa2
i2

· · ·xar
ir

| μ1 ≤ i1, ir ≤ n, and ij+1 − ij ≥ μj+1 − μj for each j〉
if n ≥ μr,

0

if 0 ≤ n < μr.

Similarly, if r ≥ 2, we also consider the ideal

J = 〈Inc · xa1
μ1
xa2
μ2

· · ·xar−1
μr−1

〉 ⊂ K[X]

and Jn = J∩K[Xn] for n ∈ N0. The above description of the ideals In immediately
gives the following simple but very useful observation.

Lemma 2.1. If n ≥ 1, then

In = 〈In−1〉K[Xn] + xar
n 〈Jn−δr〉K[Xn],

where δr := μr − μr−1 ≥ 1 and Jn is defined as the zero ideal if n < 0.
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Recall that the Hilbert series of a proper homogeneous ideal a ofK[Xn] is defined
as the formal power series

HK[Xn]/a(t) =
∑
j≥0

dimK [K[Xn]/a]j · tj .

Hilbert showed that it is a rational function of the form HK[Xn]/a(t) = f(t)
(1−t)d

,

where f(t) ∈ Z[t] and d ∈ N0. We say that HK[Xn]/a(t) is in reduced form if the
numerator and denominator are relatively prime or, equivalently, if f(1) �= 0. In
this case d is the Krull dimension of K[Xn]/a, and f(1) ≥ 1 is the degree of a or
multiplicity of K[Xn]/a. In particular, the zero ideal has degree one.

Corollary 2.2.

(a) If n ≥ μr, then An := K[Xn]/In is a Cohen-Macaulay ring of dimension
μr − 1.

(b) Setting Bn := K[Xn]/Jn, one gets for the Hilbert series if n ≥ δr:

HAn
(t) = (1 + t+ · · ·+ tar−1)HAn−1

(t) +
tar

(1− t)δr
HBn−δr

(t).

Proof. Consider multiplication by xar
n on An. Lemma 2.1 shows that, for n ≥ 1, it

induces a short exact sequence

0 → (K[Xn]
/
〈Jn−δr〉K[Xn])(−ar) → An → K[Xn]

/
〈In−1, x

ar
n 〉K[Xn] → 0.(3)

Since the generators of the ideal Jn−δr are in K[Xn−δr ], we get

K[Xn]
/
〈Jn−δr〉K[Xn]

∼=
{
K[Xn] if 0 ≤ n < δr,

Bn−δr [xn−δr+1, . . . , xn] if n ≥ δr.

Observe also that K[Xn]
/
〈In−1, x

ar
n 〉K[Xn]

∼= An−1 ⊗K K[xn]
/
(xar

n ), which implies
that

H
K[Xn]

/
〈In−1,x

ar
n 〉K[Xn]

(t) = HAn−1
(t) ·H

K[xn]
/
(xar

n )
(t)

= HAn−1
(t) · (1 + t+ · · ·+ tar−1).

Now, sequence (3) gives claim (b).
For proving (a), we use induction on r ≥ 1. Let r = 1. If n ≥ μ1, then

note that An = K[Xn]/〈xa1
μ1
, xa1

μ1+1, . . . , x
a1
n 〉, which is a Cohen-Macaulay ring of

dimension μ1 − 1. If r ≥ 2 and n ≥ μr, then the induction hypothesis gives that
K[Xn]

/
〈Jn−δr〉K[Xn] is a Cohen-Macaulay ring with

dimK[Xn]
/
〈Jn−δr〉K[Xn] = dimBn−δr + δr = μr−1 − 1 + δr = μr − 1.

The above Hilbert series computation also yields dimK[Xn]
/
〈In−1, x

ar
n 〉K[Xn] =

dimAn−1. Furthermore, xar
n is not a zerodivisor of K[Xn]

/
〈In−1〉K[Xn], and so

K[Xn]
/
〈In−1, x

ar
n 〉K[Xn] also is a Cohen-Macaulay ring.

Thus, claim (a) follows from sequence (3). �

Remark 2.3. In terms of Gorenstein liaison theory, Lemma 2.1 says that In is a basic
double link of 〈Jn−δr 〉K[Xn] on 〈In−1〉K[Xn]. The name stems from the fact that In
can be obtained from 〈Jn−δr〉K[Xn] by two Gorenstein links if K[Xn]

/
〈Jn−δr〉K[Xn]

is generically Gorenstein (see [5, Proposition 5.10]).

We are ready to establish the main result of this section.
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Theorem 2.4. The equivariant Hilbert series of A = K[X]/I is

HA(s, t) =
gr,a,μ(s, t)

(1− t)μr−1
r∏

i=1

[
1− s(1 + t+ · · ·+ tai−1)

] ,
where gr,a,μ(s, t) ∈ Z[s, t] is the polynomial with

gr,a,μ(s, t) · (1− t− s) = (1− t)μr−r
r∏

i=1

(1− t− s+ stai)− sμr t

r∑

i=1

ai

.

Moreover, the above right-hand side is in reduced form; that is, the given numerator
and denominator are relatively prime.

Proof. Denote the right-hand side in the definition of gr,a,μ(s, t) by g̃r,a,μ(s, t), that
is,

g̃r,a,μ(s, t) = (1− t)μr−r
r∏

i=1

(1− t− s+ stai)− sμr t

r∑

i=1
ai

.

We first show by induction on r ≥ 1 that

(4) HA(s, t) =
g̃r,a,μ(s, t)

(1− t)μr−1(1− t− s)
r∏

i=1

[
1− s(1 + t+ · · ·+ tai−1)

] .
Let r = 1. One has An = K[Xn] if n < μ1. If n ≥ μ1, then we get

An = K[Xn]/(x
a1
μ1
, xa1

μ1+1, . . . , x
a1
n ) ∼= K[Xμ1−1]⊗K

(
K[z]/〈za1〉

)⊗(n−μ1+1)
.

Thus we obtain for the equivariant Hilbert series

HA(s, t) =

μ1−1∑
n=0

1

(1− t)n
sn +

∑
n≥μ1

1

(1− t)μ1−1
(1 + t+ · · ·+ ta1−1)n−μ1+1 · sn

=

μ1−2∑
n=0

( s

1− t

)n

+
( s

1− t

)μ1−1 ∑
n≥μ1−1

[
s(1 + t+ · · ·+ ta1−1)

]n−μ1+1

=
1−

(
s

1−t

)μ1−1

1− s
1−t

+
( s

1− t

)μ1−1 1

1− s(1 + t+ · · ·+ ta1−1)

=

[
(1− t)μ1−1 − sμ1−1

]
·
[
1− t− s(1− ta1)

]
+ sμ1−1

[
1− t− s

]
(1− t)μ1−1(1− t− s)

[
1− s(1 + t+ · · ·+ ta1−1)

]
=

(1− t)μ1−1(1− t− s+ sta1)− sμ1ta1

(1− t)μ1−1(1− t− s)
[
1− s(1 + t+ · · ·+ ta1−1)

] ,
as desired.
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Let r ≥ 2. Using Corollary 2.2(b), we get

HA(s, t)− 1 =
∑
n≥1

HAn
(t)sn

=

δr−1∑
n=1

tar ·HK[Xn](t) · sn +
∑
n≥δr

tar

(1− t)δr
HBn−δr

(t) · sn

+
∑
n≥1

[1 + t+ · · ·+ tar−1] ·HAn−1
(t) · sn

= tar · s

1− t
·
1−

(
s

1−t

)δr−1

1− s
1−t

+
tar

(1− t)δr
sδrHB(s, t)

+ [1 + t+ · · ·+ tar−1] · s ·HA(s, t).

Solving for the equivariant Hilbert series of A, a straightforward computation gives
the following recursive formula:

HA(s, t) =
1 +

tar s
[
(1−t)δr−1−sδr−1

]
(1−t)δr−1(1−s−t)

+ tar sδr

(1−t)δr
HB(s, t)

1− s[1 + t+ · · ·+ tar−1]
.

Applying the induction hypothesis to B and noting μr = μr−1 + δr, we get

HA(s, t) · [1− s · (1 + t+ · · ·+ tar−1)] = 1 +
tars(1− t)μr−1

[
(1− t)δr−1 − sδr−1

]
(1− t− s)(1− t)μr−1

+

tarsδr(1− t)μr−1−r+1
r−1∏
i=1

[1− t− s+ stai ]− sμr t

r∑

i=1

ai

(1− t)μr−1(1− t− s)
r−1∏
i=1

[
1− s(1 + t+ · · ·+ tai−1)

] .
Using (1− t) · [1− s(1 + t+ · · ·+ tai−1)] = [1− t− s+ stai ], this gives

HA(s, t) · · · (1− t)μr−1(1− s− t)
r∏

i=1

[1− s · (1 + t+ · · ·+ tai−1)]

= HA(s, t) · (1− t)μr−r(1− s− t)[1− s · (1 + t+ · · ·+ tar−1)]
r−1∏
i=1

[1− t− s+ stai ]

= −sμr t
∑r

i=1 ai +
r−1∏
i=1

[1− t− s+ stai ]

·
{
(1− t)μr−r(1− s− t) + tars(1− t)μr−1−r+1

[
(1− t)δr−1 − sδr−1

]
+tarsδr (1− t)μr−1−r+1

}
= −sμr t

∑r
i=1 ai +

r−1∏
i=1

[1− t− s+ stai ] · (1− t)μr−r {1− t− s+ star} .

Now equation (4) follows.
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It remains to show that g̃r,a,μ(s, t) is divisible by (1− t− s) in Z[s, t], but not by

any of the polynomials [1− s(1 + t+ · · ·+ tai−1)]. The first claim follows because

g̃r,a,μ(1− t, t) = (1− t)μr−r
r∏

i=1

[(1− t)− (1− t) + (1− t)tai ]− (1− t)μr t

r∑

j=1

aj

= (1− t)μr−r(1− t)rt

r∑

i=1
ai

− (1− t)μr t

r∑

j=1

aj

= 0.

In order to show the other claims we compute

g̃r,a,μ

(
1

1 + t+ · · ·+ tai−1
, t

)
= g̃r,a,μ

(
1− t

1− tai
, t

)
= −

(
1− t

1− tai

)μr

· t
∑r

i=1 ai .

Since this is not the zero polynomial, it follows that [1 − s(1 + t + · · ·+ tai)] does
not divide g̃r,a,μ(s, t), as desired. �

We give the numerator polynomial in the reduced form of the Hilbert series for
small r.

Example 2.5. For r = 1, 2, 3, one gets

g1,a,μ(s, t) = (1− t)μ1−1 + ta1

μ1−2∑
j=0

(1− t)jsμ1−1−j ,

g2,a,μ(s, t) = (1− t)μ2−1 + s(1− t)μ2−2(−1 + ta1 + ta2)

+ ta1+a2 ·
μ2−3∑
j=0

(1− t)jsμ2−1−j ,

g3,a,μ(s, t) = (1− t)μ3−1 + s(1− t)μ3−2(−2 + ta1 + ta2 + ta3)

+ s2(1− t)μ3−3(1− ta1 − ta2 − ta3 + ta1+a2 + ta1+a3 + ta2+a3)

+ ta1+a2+a3 ·
μ3−4∑
j=0

(1− t)jsμ3−1−j .

Here we use the convention that a sum
∑e

j=0 is defined to be zero if e < 0.

We can also use our methods to determine the degree of each ideal In.

Proposition 2.6. If n ≥ μr − 1, then deg In is the coefficient of tn−μr+1 in the
power series

∏r
i=1

1
1−ait

. In other words,

r∏
i=1

1

1− ait
=

∑
n≥μr−1

deg In · tn−μr+1.

Proof. One can deduce this from Theorem 2.4. However, there is an easier, more
direct approach.

Since Iμr−1 = 0 by definition, we get deg Iμr−1 = 1 for each r ≥ 1, as claimed.
To determine deg In for larger n, we use induction on r ≥ 1. If r = 1, then
In = 〈xa1

μ1
, xa1

μr+1, . . . , x
a1
n 〉, and so deg In = an−μ1+1

1 . Now the geometric series

gives the claim, that is,
∑

n≥μ1−1

deg Int
n−μ1+1 =

∑
n≥0

an1 t
n = 1

1−a1t
.

Let r ≥ 2. If n ≥ δr, then Lemma 2.1 gives

(5) deg In = ar deg In−1 + deg Jn−δr .
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By induction on r, one has

r−1∏
i=1

1

1− ait
=

∑
n≥μr−1−1

deg Jnt
n−μr−1+1 =

∑
n−δr≥μr−1−1

deg Jn−δr t
n−μr+1.

Hence we obtain

r∏
i=1

1

1− ait
=

( ∑
n−δr≥μr−1−1

deg Jn−δr · tn−μr+1
)
·
(∑

k≥0

akr t
k
)

=
∑

n≥μr−1

[
n−μr+1∑

i=0

an−μr+1−i
r · deg Jμr−1−1+i

]
tn−μr+1.

This implies our assertion because

n−μr+1∑
i=0

an−μr+1−i
r · deg Jμr−1−1+i = deg In.

Indeed, if n = μr−1, then this formula is true since a0r ·deg Jμr−1−1 = 1 = deg Iμr−1.
Let n ≥ μr. Using equation (5), one has

n−μr+1∑
i=0

an−μr+1−i
r · deg Jμr−1−1+i = deg Jn−μr+μr−1

+ ar

n−μr∑
i=0

an−μr−i
r deg Jμr−1−1+i

= deg Jn−δr + ar deg In−1 = deg In,

as desired. �

One can use the last result to explicitly compute deg In. This is easiest if
a1, . . . , ar are pairwise distinct.

Corollary 2.7. If a1, . . . , ar are pairwise distinct, then deg In =

r∑
i=1

an−μr+r
i∏

j �=i

(ai − aj)
,

provided n ≥ μr − 1.

Proof. Using partial fractions, one can write

r∏
i=1

1

1− ait
=

C1

1− a1t
+ · · ·+ Cr

1− art
,

where

Ci =
∏
j �=i

1

1− aj

ai

=
ar−1
i∏

j �=i

(ai − aj)
.

Hence

r∏
i=1

1

1− ait
=

r∑
i=1

ar−1
i∏

j �=i

(ai − aj)
· 1

1− ait
=

r∑
i=1

[ ar−1
i∏

j �=i

(ai − aj)
·
∑
k≥0

aki t
k
]
.

Now we conclude by Proposition 2.6. �



EQUIVARIANT HILBERT SERIES OF MONOMIAL ORBITS 2389

3. The general case

We extend the results of the previous section. We use the notation established
in the introduction. So we fix an integer c ≥ 1 and consider the polynomial rings
K[Xn] = K[xi,j | 1 ≤ i ≤ c, 1 ≤ j ≤ n] and K[X] = K[xi,j | 1 ≤ i ≤ c, 1 ≤ j].
Any monomial of positive degree in K[X] can be written as

xa =

c∏
i=1

s∏
j=1

x
ai,j

i,j ,

where a = (ai,j) is a c× s non-zero matrix whose entries are non-negative integers.
Denote the indices of the non-zero columns of a by μ1, . . . , μr, where μ1 < μ2 <
· · · < μr. We may assume that the last column of a is not zero, that is, μr = s and
a ∈ N

c×μr

0 . Thus, we can rewrite xa more explicitly as

xa = (x
a1,μ1
1,μ1

· · ·xa1,μr
1,μr

) · (xa2,μ1
2,μ1

· · ·xa2,μr
2,μr

) · · · (xac,μ1
c,μ1 · · ·xac,μr

c,μr ).

Put μ = (μ1, . . . , μr).
In order to determine the equivariant Hilbert series of K[X]/I, where I =

〈Inc(N) ·xa〉, we also consider the ideal

J = 〈Inc ·
c∏

i=1

μr−1∏
j=1

x
ai,j

i,j 〉

if r ≥ 2. Thus, we get for In = I ∩K[X] and Jn = J ∩K[X] that In = 0 if n < μr

and that Jn = 0 if n < μr−1. Moreover, there is again a useful relation among
these ideals.

Lemma 3.1. If n ≥ 1, then

In := 〈In−1〉K[Xn] +
c∏

i=1

xai,μr

i,n 〈Jn−δr〉K[Xn],

where δr := μr − μr−1 ≥ 1.

It follows that In is a basic double link of Jn−δr on In−1 because of the following
consequence. We use the notation An = K[Xn]/In, Bn = K[Xn]/Jn, and bj =
c∑

i=1

ai,μj
for j = 1, . . . , r. Thus, bj is the total degree of the divisor of xa whose

factors are the variables appearing in column μj .

Corollary 3.2.

(a) If n ≥ μr, then An is a Cohen-Macaulay ring of dimension n(c−1)+μr−1.
(b) If n ≥ δr, then one has for the Hilbert series:

HAn
(t) =

1− tbr

(1− t)c
HAn−1

(t) +
tbr

(1− t)cδr
HBn−δr

(t).

Proof. Multiplication by
c∏

i=1

xai,μr

i,n on An induces the exact sequence

0 → K[Xn]
/
〈Jn−δr〉K[Xn](−br) → An → K[Xn]

/
〈In−1,

c∏
i=1

xai,μr

i,n 〉K[Xn] → 0.
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Furthermore, we have

K[Xn]
/
〈Jn−δr〉K[Xn]

∼=
{
K[Xn] if 0 ≤ n < δr,

Bn−δr

[
xi,j | 1 ≤ i ≤ c, n− δr < j ≤ n] if n ≥ δr.

Now the claims follow as in the proof of Corollary 2.2. �

Our main result is the promised extension of Theorem 2.4.

Theorem 3.3. Setting b=(b1, . . . , br), the equivariant Hilbert series of A=K[X]/I
is

HA(s, t) =
gr,c,b,μ(s, t)

(1− t)c(μr−r−1)+r
r∏

j=1

[
(1− t)c−1 − s(1 + t+ · · ·+ tbj−1)

] ,
where gr,c,b,μ(s, t) ∈ Z[s, t] is the polynomial with

gr,c,b,μ(s, t) ·
[
(1− t)c − s

]
= (1− t)c(μr−r)

r∏
j=1

[
(1− t)c − s+ stbj

]
− sμr t

r∑

j=1

bj
.

Furthermore, the above rational function is in reduced form; that is, the given
numerator and denominator polynomials are relatively prime. (Notice that the ex-
ponent [c(μr − r − 1) + r] of (1− t) is negative if and only if r < c and μr = r.)

Proof. We argue as in the proof of Theorem 2.4. Set

g̃r,c,a,μ(s, t) = (1− t)c(μr−r)
r∏

j=1

[
(1− t)c − s+ stbj

]
− sμr t

r∑

j=1

bj
.

Using induction on r ≥ 1, one shows that
(6)

HA(s, t) =
g̃r,c,a,μ(s, t)

(1−t)c(μr−r−1)+r
[
(1−t)c − s

] r∏
j=1

[
(1− t)c−1 − s(1 + t+ · · ·+ tbj−1)

] .
Indeed, let r = 1. If n ≥ μ1, then we get

An
∼= K[Xμ1−1]⊗

(
K[z1, . . . , zc]/(z

a1,μ1
1 · · · zac,μ1

c )
)⊗n−μ1+1

,

where z1, . . . , zc are new variables. It follows that

HA(s, t) =

μ1−1∑
n=0

1

(1− t)nc
sn +

∑
n≥μ1

1

(1− t)c(μ1−1)

(1 + t+ · · ·+ tb1−1

(1− t)c−1

)n−μ1+1

sn.

Now a computation as in the proof of Theorem 2.4 gives the desired formula.
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Let r ≥ 2. Corollary 3.2 implies that

HA(s, t)− 1 =
∑
n≥1

HAn
(t)sn

=

δr−1∑
n=1

tbr ·HK[Xn](t) · sn +
∑
n≥δr

tbr

(1− t)cδr
HBn−δr

(t) · sn

+
∑
n≥1

1 + t+ · · ·+ tbr−1

(1− t)c−1
·HAn−1

(t) · sn

= tbr · s

(1− t)c
·
1−

(
s

(1−t)c

)δr−1

1− s
(1−t)c

+
tbr

(1− t)cδr
sδrHB(s, t)

+
s(1 + t+ · · ·+ tbr−1)

(1− t)c−1
·HA(s, t).

This gives

HA(s, t) ·
(1− t)c−1 − s(1 + t+ · · ·+ tbr−1)

(1− t)c−1

= 1 + tbrs
(1− t)c(δr−1) − sδr−1

(1− t)c(δr−1)[(1− t)c − s]
+

tbrsδr

(1− t)cδr
HB(s, t).

Applying the induction hypothesis to B, a computation similar to the one in the
proof of Theorem 2.4 establishes equation (6).

It remains to show that g̃r,c,a,μ(s, t) is divisible by ((1 − t)c − s) in Z[s, t], but

not by any of the polynomials [(1− t)c−1 − s(1 + t+ · · ·+ tai−1)]. The first claim
is true because

g̃r,c,a,μ((1− t)c, t) = (1− t)c(μr−r)
r∏

i=1

[(1− t)c − (1− t)c + (1− t)ctbi ]

− (1− t)cμr t

r∑

j=1

bj

= (1− t)c(μr−r)(1− t)rct

r∑

i=1

bi
− (1− t)cμr t

r∑

j=1

bj
= 0.

Substituting s =
(1− t)c−1

1 + t+ · · ·+ tbr−1
=

(1− t)c

1− tbr
, we get

g̃r,c,a,μ

(
(1− t)c−1

1 + t+ · · ·+ tb1−1
, t

)
= − (1− t)(c−1)μr

(1 + t+ · · ·+ tbr−1)μr
· t

r∑

j=1
bj
.

Since this is not the zero polynomial the argument is complete now. �

Again we give the numerator polynomial in the reduced form of the Hilbert series
for small r, where we assume that c(μr − r − 1) + r ≥ 0.
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Example 3.4. For r = 1, 2, 3, one has

g1,c,a,μ = (1− t)c(μ1−1) + tb1 ·
μ1−2∑
j=0

(1− t)cjsμ1−1−j ,

g2,c,a,μ(s, t) = (1− t)c(μ2−1) + s(1− t)c(μ2−2)(−1 + tb1 + tb2)

+ tb1+b2 ·
μ2−3∑
j=0

(1− t)cjsμ2−1−j ,

g3,c,a,μ(s, t) = (1− t)c(μ3−1) + s(1− t)c(μ3−2)(−2 + tb1 + tb2 + tb3)

+ s2(1− t)c(μ3−3)(1− tb1 − tb2 − tb3 + tb1+b2 + tb1+b3 + tb2+b3)

+ tb1+b2+b3 ·
μ3−4∑
j=0

(1− t)cjsμ3−1−j .

Notice that these polynomials simplify if the μi’s are as small as possible, that is,
μi = i. For example, then one gets g1,c,a,μ = 1 and

g2,c,a,μ(s, t) = (1− t)c + s(−1 + tb1 + tb2).

Remark 3.5. Observe the similarity of the formulas in Theorems 2.4 and 3.3. In-
deed, Theorem 3.3 is formally obtained from Theorem 2.4 by replacing each aj by
the total column degree bj and (1− t) by (1− t)c.

Now we determine the degree of In.

Proposition 3.6. If n ≥ μr − 1, then deg In is the coefficient of tn−μr+1 in the
power series

∏r
j=1

1
1−bjt

. That is,

r∏
j=1

1

1− bjt
=

∑
n≥μr−1

deg In · tn−μr+1.

Proof. If r ≥ 2 and n ≥ δr, Lemma 3.1 gives

deg In = br deg In−1 + deg Jn−δr .

Now we conclude as in the proof of Proposition 2.6. �
Analogously to Corollary 2.7 this gives the following explicit formula.

Corollary 3.7. If b1, . . . , br are pairwise distinct, then deg In =

r∑
i=1

bn−μr+r
i∏

j �=i

(bi − bj)
,

provided n ≥ μr − 1.

For any Inc(N)-invariant ideal I of K[X], it is shown in [7, Theorem 7.9] that the

two limits lim
n→∞

dimK[Xn]/In
n and lim

n→∞
n
√
deg In exist and are non-negative integers,

where In = I ∩ K[Xn]. Following [7, Remark 7.14], we refer to these integers as
the dimension of K[X]/I and the degree of I, respectively. If I is generated by the
orbit of a monomial, we obtain the following values.

Corollary 3.8. For I = 〈Inc(N) ·
∏c

i=1

∏μr

j=1 x
ai,j

i,j 〉, one has

(a) dimK[X]/I = c− 1,
(b) deg I = max{b1, . . . , br}.
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Proof. (a) is a consequence of Corollary 3.2.
(b) follows by using partial fractions as in [7, Lemma A.3]. We leave the details

to the interested reader. �
We conclude with some comments about non-negativity of the coefficients of the

polynomials appearing in an equivariant Hilbert series.

Remark 3.9. If A is a graded Cohen-Macaulay quotient of a noetherian polynomial
ring, then it is well-known that the numerator polynomial in its reduced Hilbert
series has non-negative coefficients only. We have seen above that in the case of an
Inc(N)-invariant ideal I of K[X] the condition that all rings K[Xn]/In are Cohen-
Macaulay is not sufficient to guarantee that the numerator polynomial g(s, t) in a
reduced Hilbert series of K[X]/I as in equation (1) has non-negative coefficients
only (see, e.g., Example 3.4). However, the coefficients in the polynomials fj(t)
appearing in the denominator of the Hilbert series all have non-negative coefficients
if I is generated by the orbit of a monomial. This suggests the following question.

Question 3.10. Assume I is an Inc(N)-invariant ideal of K[X] such that each ring
K[Xn]/In is Cohen-Macaulay. Is it then true that the coefficients of the polynomials
fj(t) appearing in the reduced form of the Hilbert series (1) are all non-negative?
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