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Abstract. In this article, we generalize some recent results of Colding and
Minicozzi on generic singularities of mean curvature flow to curved ambient
spaces. To do so, we make use of a weighted monotonicity formula to derive
an “almost monotonicity” for the entropy upon embedding into R

�. We are
also led to study the continuity of the entropy functional in certain cases.

1. Introduction

In this article we show how some of the theory of [6] by Colding and Minicozzi,
on the study of singularities under the mean curvature flow (MCF) through the
entropy functional, may be generalized from flows in R

3 to flows in general curved
ambient spaces N3. Our main result, showcasing how their theory may be applied
in the curved setting, is the following theorem generalizing Theorem 0.10 in [6]:

Theorem 1.1. For any closed embedded surface M contained in a 3-manifold N3,
there exists a piecewise MCF Mt starting at M and defined up to time t0 < ∞
where the surfaces become singular. Moreover, Mt can be chosen so that if

(1.1) lim inf
t→τ0

diamMt√
t0 − t

< ∞,

then Mt becomes extinct in a round point.

See the concluding remarks, section 7 below, for a discussion on how this result
relates to preexisting results. Recall that a mean curvature flow of a smooth sub-
manifold M ⊂ N is a map F : M × [0, t0) → N so that dF

dt = −H, where H is the
mean curvature vector; see [14] for a nice introduction. We typically denote (as in
the above statement) the image of F at time t by Mt for notational convenience.
We will also often use the Brakke flow definition/language of MCF; see Brakke’s
thesis [4]. Of course for smooth compact M , the mean curvature flow equation
dF
dt = −H (which happens to be a degenerate parabolic PDE) with initial condi-
tion M has a solution (which is to say an MCF out of M exists) for at least some
short time. Denoting the maximal time of existence by t0, if t0 < ∞ we call this
time the singular time. As t → t0 necessarily the second fundamental form of M
blows up at some point, and we call the point(s) (x0, t0) in spacetime where it does
singular points.

Singularities are practically inevitable in the mean curvature flow (and indeed
are the subject of this paper). To study them one successively rescales around
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where the singularity is occurring and studies the limit flow Bt, which we define
first as follows for an MCF Mt ⊂ R

�, following the exposition in [6]. Let (xj , tj) be
a sequence of points in spacetime and let cj be a sequence of positive numbers with
cj → ∞. A limit flow is a Brakke limit (varifold convergence at each time slice) of
the sequence of rescaled flows t → cj(Mc−2

j t+tj
−xj). Such limits exist by Brakke’s

compactness theorem; see [4]. When all xj are equal to a common point x0 and
the tj ’s are equal to a common time t0, then the limit flow is called a tangent flow
at (x0, t0).

In case Mt is a flow is some ambient manifold N , we embed a neighborhood of N
about the point we are interested in isometrically into R

� for some � using Nash’s
theorem [15] and proceed as above in the definition of tangent flow (although Mt

won’t be a mean curvature flow in R
�, a point we’ll come back to shortly).

Returning to the statement of the theorem above, by Mt becoming extinct in
a round point we mean that all the tangent flows of Mt at a singular point are
shrinking round spheres. Equation (1.1) above implies (see [6]) that there exists
some D > 0 so that the tangent flows of Mt have diameter < D for all time slices.
Furthermore we also assume our flows are smooth up to and including the first
singular point as Colding and Minicozzi do in that we assume for simplicity every
tangent flow is multiplicity one (see also [11]).

2. The first technical hurdle: Failure of Huisken monotonicity

Consider for now a mean curvature flow Mn
t in R

N . Denote by Φx0,t0 the back-
ward heat kernel at (x0, t0), that is:

(2.1) Φx0,t0(x, t) =
1

(4π(t0 − t))n/2
· exp

(
−|x− x0|2
4(t0 − t)

)
, t < t0.

Then Huisken’s montonicity (Theorem 3.1 in [9]) says the integral of Φx0,t0 is non-
increasing under the flow; more precisely:

Theorem 2.1 (Huisken monotonicity). If Mt is a surface flowing by the mean
curvature flow for t < t0, then we have the formula

(2.2)
d

dt

∫
Mt

Φx0,t0(x, t)dμt = −
∫
Mt

Φx0,t0(x, t)

∣∣∣∣H +
1

2(t0 − t)
F⊥

∣∣∣∣2 dμt.

Flows that make this derivative zero (so that H + 1
2(t0−t)F⊥ = 0) are called

self shrinkers and are important below. This monotonicity is also important in the
proof of Theorem 0.10 (the Euclidean case) in giving us local volume bounds along
the flow depending on initial data and letting us use Brakke’s regularity theorem
in a critical step (see Lemmas 5.1 and 5.2 below). For general ambient manifolds
though we don’t have such a clean equation for the backwards heat kernel and don’t
have such a useful quantity right away.

The natural thing to do then when the ambient space isn’t R
N is to try to

isometrically embed, at least locally, our ambient space into R
� for some � by Nash’s

embedding theorem. When we do this, though, the flow of M (as a flow in R
�) is

not a mean curvature flow but instead involves forcing terms from the curvature of
the embedding of N in R

�. Namely, denoting by F : M × [0, t0) the mean curvature
flow of M in N as a flow in R

� we see that dF
dt = −Hν− trace(B(x) | TxMt), where

B is the second fundamental form of N in R
�. One finds, just naively calculating
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the time derivative of
∫
Φx0,t0 , that extra terms show up due to the forcing term

P = −trace(B(x) | TxMt) . Indeed for any function ψ : R� → R:

(2.3)
d

dt

∫
Mt

ψ =

∫
Mt

(−ψ|H|2 +∇ψ ·H + (∇ψ − ψHν) · P⊥).

The idea then is to introduce a new quantity that is monotone under the forced
flow that stays close enough to

∫
Φx0,t0 to “carry” it along, giving us an almost

monotonicity of the quantities we are actually interested in the necessary circum-
stances.

3. A weighted monotonicity formula for forced flows

By scaling the Huisken weighted volume above by an appropriate weight, we
find a monotone quantity under the forced flow (hence the namesake weighted
monotonicity formula) that fits our needs. We follow the discussion of it in section
11 of White’s stratification paper [17], where for example the weighted monotonicity
formula is used to show that stratification results by White for the singular set of
the mean curvature flow in R

n are also valid in curved ambient spaces. To begin
we define a K-almost Brakke flow:

Definition 3.1. A one-parameter family M = {(t, μt) | a < t < b} of radon
measures in U ⊂ R

� is a K-almost Brakke flow provided that:

(1) For almost every t, μt is the radon measure associated with an integer
multiplicity rectifiable varifold.

(2) For every nonnegative compactly supported C1 function φ on U ,

(3.1) Dt

∫
φdμt ≤

∫
(−φ|H|2 +∇φ ·H +K(∇φ− φHν))dμt

where Df(t) := lim sup
h→0

f(t+h)−f(t)
h .

Note that for any smooth (local) isometric embedding of U ⊂ N3 into R
�, the

forcing term P will be bounded by some K depending on the second fundamental
of the embedding so the mean curvature flow of a hypersurface M ⊂ U in N will
be a K-almost flow in R

�. With this terminology we give the anticipated weighted
monotonicity formula, which in following [17] we first present in its most general
(i.e., localized) form:

Lemma 3.1 (Weighted monotonicity - general form). Let M = {(t, μt) | a <
t < b} be an m-dimensional K-almost Brakke flow in U ⊂ R

� with μt(U) ≤ Λ < ∞
for all t. Suppose s ∈ (a, b) and B(y, 2r) ⊂ U , and let ψ : B(2y, r) → [0, 1] be a C2

function that is 1 in B(y, r) and satisfies the bound

(3.2) r|Dψ|+ r2|D2ψ| ≤ b.

Then the function

(3.3) Jy,s(t) = eK
2(s−t)/2uy,s +

(
cm(1 + b)Λ

rm+2

)
eK

2(s−t)/2 − 1

K2/2

is nonincreasing on the interval max{s− r2, a} ≤ t < s where

(3.4) ρ = Φy,s(x, t), uy,s =

∫
ψρ.
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Indeed,

(3.5) J(t2)− J(t1) ≤ −1

2
eK

2(s−t2)/2

∫ t2

t1

∫
ψρ

∣∣∣∣J +
(x− y)⊥

2(s− t)
− (Dψ)⊥

ψ

∣∣∣∣2 dμtdt.

Of course since mass decreases under the flow and our flows are compact smooth
surfaces, we automatically get mass bounds Λ < ∞ for any open set U ⊂ R

�. Note
that if we let ψ = 1 on all of R�, we may take bound b above to be zero and r as
large as we want, deriving all we really need (we adapt the definition of u below):

Corollary 3.2 (Weighted monotonicity - simpler form). Let M = {(t, μt) |
a < t < b} be an m-dimensional K-almost Brakke flow in R

� with uniformly bounded
mass. Then the function

(3.6) J(t) = eK
2(s−t)/2

∫
Φy,s(x, t) = eK

2(s−t)/2uy,s(x, s)

is nonincreasing on the interval a ≤ t < s. Indeed for t1 < t2 < s:

(3.7) J(t2)− J(t1) ≤ −1

2
eK

2(s−t2)/2

∫ t2

t1

∫
ψρ

∣∣∣∣J +
(x− y)⊥

2(s− t)

∣∣∣∣2 dμtxdt.

Even though we want to use the second version of the result above we might as

well keep the notation uy,s =
∫
Φy,s(x, t), so that J = eK

2(s−t)/2uy,s. Before moving
to the “almost monotonicity” statement first we record an important corollary of
Lemma 3.1 (besides White’s stratification results): ifMt ⊂ R

� is aK-almost Brakke
flow, then dilation of R� by S is a K/S-almost Brakke flow, implying by Brakke
compactness (which is also true for K-almost Brakke flows) that the tangent flow
is a regular Brakke flow in R

�. Even more, the weighted monotonicity implies that
Huisken’s density is upper-semicontinuous, so arguing as in [11] the tangent flows
are actually self shrinkers in R

�:

Corollary 3.3. Tangent flows to K-almost Brakke flows are ordinary Brakke flows;
furthermore they are self shrinkers.

In fact, we immediately see something a bit more is true that we’ll want for the
sequel. It’s an important observation because we will want to import the theory
for hypersurface self shrinkers in R

3 from [6]; it is not good enough to merely know
the tangent flows are surfaces in R

�. We see though since N is a smooth 3-surface
that when we blow up R

� about a point x ∈ N in the limit, (the rescalings of) N
converge to the 3-dimensional plane TxN ⊂ R

� so the following is true:

Corollary 3.4. Suppose that M × [0, t0) is a flow contained in an open region of
N3 that can be embedded into R

� for some �. So is a K-almost Brakke flow for
some K. Then a tangent flow to M at x ∈ N3 is an ordinary Brakke flow in
TxN ∼= R

3 ⊂ R
�, where the inclusion R

3 ⊂ R
� is flat.

Now note that uy,s is indeed Huisken’s weighted volume from before. We are
interested then in when J is close to u and how close it is. To start, note that the
monotonicity of J implies that u is uniformly bounded on any finite time interval,
even though u itself might not be monotone:

Lemma 3.5. Suppose that Mt is a K-almost Brakke flow and that u(x, t0) is
bounded by C1 for all x at t0. Then if t − t0 < τ < ∞ there is a constant C
so that u(x, t) < C.
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Proof. Note that there is a constant σ > 0 so that for all t > t0, t − t0 < τ ,

eK
2(s−t) > σ > 0. Also, since J is monotone decreasing, J(t0) > J(t) for any t in

this time interval. Since J = eK
2(s−t)u then u(t) < J(t0)/σ < eK

2(s−t0)C/σ, so we

may take C = eK
2(s−t0)C1/σ. �

Note that |u − J | = |u(1 − eK
2(s−t))| ≤ C|1− eK

2(s−t)|. Using the bound from

the above Taylor expanding we see that 1 − eK
2(s−t) ≤ K2(s − t)eK

2(s−t). The
monotonicity of J then gives us:

Proposition 3.6 (Almost monotonicity of uy,s). Suppose that M × [0, T ) is a
K-almost Brakke flow in R

�. Then given a point (y, s) in spacetime, 0 < τ < ∞,
and C > 1, there exists δ > 0 so that if K < δ, then uy,s(t2) < uy,s(t1)+CK2(t2−
t1), where t1 < t2 < s, t2 − t1 < τ .

Again if we rescale R
� by S, then K scales by K → K/S, so we can certainly

rescale R
� to make the assumptions of the above applicable, but this also would

dilate τ so isn’t something we can immediately do profitably. Below we’ll still be
able to make use of it when considering tangent flows satisfying (1.1) since it implies
upper bounds on singular time (after rescaling).

4. Essential facts from Colding-Minicozzi theory

and almost monotonicity of entropy

Our proof of Theorem 1.1 rests heavily on concepts and terminology of Colding
and Minicozzi, so we develop the necessary machinery in this section. Since we
embed into R

�, we will also need some generalizations of their theory to higher
codimension; see [20] and [2]. Consider a surface Σk ⊂ R

�; then given x0 ∈ R
� and

t0 > 0 define the functional Fx0,t0 by

(4.1) Fx0,t0(Σ) =
1

(4πt0)k/2

∫
Σ

e
−|x−x0|2

4t0 dμ.

We see that F is closely related to u; indeed

(4.2) Fx0,t0(Σ) =
1

(4πt0)k/2

∫
Σ

e−
|x−x0|2

4t0 dμ =

∫
Σ

Φx0,t0(x, 0)dμ = ux0,t0(0)

(u implicitly depends on Σ). Note that the functionals Fx0,t0 are essentially weighted
volumes. Naturally then we next record the first variation of Fx0,t0 along the flow;
the one calculated in [6] is for codimension 1 flows, but since we are considering
K-almost flows in R

� of some arbitrary codimension we need a more general one
that can be found in [20] (and also in [2]). It is of course important in the sequel:

Lemma 4.1 (Theorem 1 in [20]). Let Σs ⊂ R
� be an n-dimensional complete

manifold without boundary which has polynomial volume growth. Suppose that Σs ⊂
R

� is a normal variation of Σ, xs, ts are variations of x0 and t0, and Σ′
0 = V ,

x′
0 = y, and t′0 = h. Then d

ds (Fxs,ts(Σs)) is
(4.3)

1

(4πt0)k/2

∫
Σ

(
−〈V,H +

x− x0

2t0
〉+ h(

|x− x0|2
4t20

− n

2t0
) +

〈x− x0, y〉
2t0

)
e

−|x−x0|2
4t0 dμ.
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Now we define the entropy of central importance in Colding-Minicozzi theory:

Definition 4.1. The entropy λ of Σ is the supremum over all Fx0,t0 functionals:

(4.4) λ(Σ) = sup
x0,t0

Fx0,t0(Σ)

(In the definition of the F functional t0 > 0, the above points range over (x0, t0)
where t0 > 0.) Note that λ is nonnegative and invariant under dilations, rotations,
or translations of Σ. Also, for the mean curvature flow Σt of Σ, λ(Σt) is nonin-
creasing under the flow. Of course though you can define the functionals Fx0,t0

and hence λ along a flow of hypersurfaces in R
� not flowing by MCF, for example

forced mean curvature flows. For such flows J introduced above will allow us to
understand the Fx0,t0 and thus the entropy along the forced curvature flow as well.
Before moving on further let’s list some slightly strengthened properties on F and
the relationship of λ and F one finds for the hypersurface case in [6] we’ll need later
(we generalized the codimension of Σ). It is important to note that monotonicity
isn’t needed in this lemma:

Lemma 4.2 (Generalized Lemma 7.2 in [6]). If Σk ⊂ R
� is a smooth complete

embedded hypersurface without boundary and with polynomial volume growth, then:

(1) Fx0,t0(Σ) is a smooth function of x0 and t0 on R
n+1 × (0,∞).

(2) Given any t0 > 0 and any x0, we have ∂t0Fx0,t0(Σ) ≥ −λ(Σ)
4 supΣ |H|2.

(3) For each x0, limt0→0 Fx0,t0(Σ) is 1 if x0 ∈ Σ and is 0 otherwise.
(4) If Σ is closed, then λ(Σ) < ∞.

Proof. Statements (1), (3), and (4) are clear, but (2) requires some more work.
Without loss of generality x0 = 0. The first variation formula above implies that

(4.5) ∂t0F0,t0(Σ) =
1

(4πt0)k/2

∫
Σ

|x|2 − 2kt0
4t20

e
−|x|2
4t0 .

Since Δ|x|2 = 2k − 〈x,H〉 and Δef = ef (Δf + |∇f |2), we have

e
|x|2
4t0 Δe−

|x|2
4t0 =

|xT |2
4t20

− 2k

4t0
+

〈x,H〉
2t0

=
|x|2 − 2kt0

4t20
− |x⊥|

4t20
+ |H|

〈x, H
|H| 〉

2t0

≤ |x|2 − 2kt0
4t20

+
|H|2
4

,

(4.6)

where the inequality used 2ab ≤ a2 + b2. Just as in [6], since Σ has polynomial

volume growth and the vector field ∇e−
|x|2
4t0 decays exponentially, Stokes’ theorem

gives
(4.7)

∂t0F0,t0(Σ)≥− 1

(4πt0)k/2

∫
Σ

|H|2
4

e−
|x|2
4t0 ≥−1

4
Fx0,t0(Σ) sup

Σ
|H|2≥−λ(Σ)

4
sup
Σ

|H|2,

showing (2). �

In some cases (relevant to ours in fact), the entropy is even achieved by some
Fx0,t0 . This is again a lemma whose proof generalizes immediately to higher codi-
mension case; we put off showing a strengthening of it to the next section:

Lemma 4.3 (Lemma 7.7 in [6]). If Σ ⊂ R
n+1 is a smooth closed embedded hyper-

surface and λ(Σ) > 1, then there exists x0 ∈ R
n+1 and t0 > 0 so that λ = Fx0,t0(Σ).
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Why might entropy be useful? For MCF in R
�, Huisken monotonicity can be in-

terpreted as saying that for s < t < t0, Fx0,t0(Mt) ≤ Fx0,t0+(t−s)(Ms), temporarily
making explicit that u is a function of a submanifold:

Fx0,t0(Mt) = ux0,t0+t(Mt)(t) ≤ ux0,t0+t(Ms)(s)

= ux0,t0+(t−s)(Ms)(0) = Fx0,t0+(t−s)(Ms)
(4.8)

where the inequality used Huisken montonicity. Since entropy is defined as a supre-
mum of F functionals over {x0, t0} where t0 > 0 we see that for MCF in R

� entropy
is monotone decreasing under the flow. So, as an example, if we can understand
the singularities of low entropy (or stable entropy), imposing entropy conditions on
M would by monotonicity imply what kind of singularities it can have.

Of course for K-almost Brakke flows we don’t have monotonicity, but from this
chain of inequalities above we see that we have the following almost monotonicity
statement for F using Proposition 3.6 above, the almost monotonicity for u:

Lemma 4.4 (Almost monotonicity of F). Suppose that M × [0, T ) is a K-
almost Brakke flow in R

�. Then given a point (x0, t0) in spacetime, 0 < τ < ∞,
and C > 1, there exists δ > 0 so that if K < δ, then Fx0,t0(Mt) ≤ Fx0,t0+(t−s)(Ms)+

CK2(t− s) where s < t < t0, t− s < τ .

This immediately implies that if Mt is an almost Brakke flow, then Dtλ(Mt) <
CK2 (Dt as given above). Since τ < ∞, after possibly taking δ smaller (smallness
of K), we immediately get the following almost monotonicity for entropy:

Proposition 4.5 (Almost monotonicity of entropy). Suppose that M × [0, T )
is a K-almost Brakke flow in R

�. Then given 0 < τ, ε0 < ∞, there exists δ > 0 so
that if K < δ, then λ(Ms) < λ(Mt) + ε0 for t < s < T , s− t < τ .

To use this we will need to eventually answer the question: how small should
ε be? The following two statements we’ll see later dictate this. Given a constant
D > 0, let SD = Sg,λ,D denote the space of all smooth closed embedded self

shrinkers in R
3 with genus at most g, entropy at most λ, and diameter at most D.

From [6], [7] we know:

Proposition 4.6 (Corollary 8.2 of [6] or [7]). For each fixed D, the space SD is
compact. Namely, any sequence in SD has a subsequence that converges uniformly
in the Ck topology (any fixed k) to a surface in SD.

An important corollary of this for us is the following:

Corollary 4.7 (Corollary 8.4 of [6]). Given D > 0 there exists ε > 0 so that if
Σ ∈ SD is not the round sphere, then there is a graph Γ over Σ with λ(Γ) < λ(Σ)−ε.

Again we emphasize that the tangent flows to M as a K-almost Brakke flow
in R

� will be ordinary Brakke flows that will lie in R
3 ⊂ R

� and hence are self
shrinkers considered as flows just in R

3. Furthermore from the bound (1.1) above
these corollaries will hold without much trouble below.

It is also worth pointing out that getting important integral curvature bounds via
the genus depends on dimension specific techniques (one could use Gauss-Bonnet,
for example), and thus the proof of Proposition 4.6 and hence of Corollary 4.7
doesn’t carry over in higher dimensions, hence the present dimension restriction on
N3.
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5. Lipschitz continuity of entropy in certain cases

Below in the proof of Theorem 1.1 we will want to understand how the entropy
behaves on a one-parameter family Σs, s ≤ 0 ≤ 1 (not necessarily moving by MCF).
As Colding and Minicozzi point out in [6], the entropy λ(Σs) does not necessarily
depend smoothly on s; we are only interested in when we can say it is continuous.
We start by proving what one can interpret as a very weak version of Bernstein and
Wang’s results [3] (see also [21] for the extension to higher dimensions), where as a
consequence of their work it was shown that the entropy of a closed hypersurface
is bounded below by the entropy of the round sphere:

Lemma 5.1. Let ΠC,D be the family of compact closed k-submanifolds Σk bounded
locally graphically in C3 by C and diam(Σ) ≤ D. Then there exists σ > 0 so that
λ(Σ) > 1 + σ > 1 for Σ ∈ ΠC,D.

Proof. Suppose not. Then there exists a sequence Σi ∈ ΠC,D so that λ(Σi) < 1+ 1
i .

Taking the limit by Arzela-Ascoli, we get a C2,α converging subsequence for some
0 < α < 1, which we relabel Σi, converging to say Σ. Since each of the Fx0,t0 is
continuous as a function on submanifolds, we see that for each (x0, t0), Fx0,t0(Σ) ≤
1. Hence the entropy is equal to 1.

Now note that under mean curvature flow Σt of Σ (as a submanifold of R
�)

for all (x0, t0), Fx0,t0(Σt) stays bounded by 1 by Huisken monotonicity, so we get
curvature bounds on Σt for all time by the Brakke regularity theorem (as in the
proof of Lemma 6.2 below) so no singularity develops.1 By the curvature bounds
on the flow Σt we may take a subsequential limit along a sequence of times ti → ∞
to get a limit surface S, which we see must be a self shrinker with entropy 1, hence
a plane. For the rigidity statement for Gaussian density, see Proposition 2.10 in
[18] (of course all self shrinkers are ancient flows).

But Σ has finite volume and of course it remains bounded under the flow, so there
is no way the plane can arise as a subsequential limit, so we get a contradiction. �

We may also attain via a compactness argument:

Lemma 5.2. Given ε > 0, there exists T > 0 so that if Σk ∈ ΠC,D and t0 < T ,
then Fx0,t0 < 1 + ε for any x0.

Proof. Suppose not. Then for some ε > 0 there is a sequence Σi ∈ ΠC,D, with
corresponding points (xi, ti), ti → 0, so that Fxi,ti(Σi) > 1 + ε, by Arzela-Ascoli,
passing the limit to a C2 graphically converging subsequence, which we relabel
back to Σi, with limit say Σ. We see each of the Fxi,ti is continuous as a function
on submanifolds, and since each of the Σi has diameter bounded by D, there is a
converging subsequence xi converging to say x. Then we see that lim

t0→0
Fx,t0(Σ) >

1 + ε, which is a contradiction. �

With this in hand, we can prove the following strengthening of Lemma 7.7 in
[6], as recorded in Lemma 4.3 above:

Proposition 5.3. For Σ ∈ ΠC,D as defined above, there is a compact set A ⊂
R

� × (0,∞) depending on C,D so that the entropy for Σ ∈ ΠC,D is achieved in A.

1This would be good enough for hypersurfaces since there are no compact closed minimal
hypersurfaces, and so every compact hypersurface must develop a singularity.
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Proof. For each fixed t0, it is easy to see that lim
|x0|→∞

Fx0,t0(Σ) = 0 by the exponen-

tial decay of the weight function together with the compactness of Σ. In particular,
for each fixed t0 > 0, the maximum of Fx0,t0(Σ) is achieved at some x0. Moreover,
the first variation formula shows (as in the codimension 1 case) that this maximum
occurs when the weighted integral of (x−x0) vanishes, but this can only occur when
x0 lies in the convex hull of Σ. It remains to take the supremum of these maxima
as we vary t0. Our task then is to show that there are constants 0 < T1 < T2 < ∞
so that if t0 ∈ [T1, T2], then for Σ ∈ ΠC,D one has Fx0,t0(Σ) < 1 + σ.

Using σ from Lemma 5.1 above, for ε = σ/2 in Lemma 5.2 there is a T so that
for all Σ ∈ ΠC,D, when t0 > T we have Fx0,t0(Σ) < 1 + ε < 1 + σ < λ(Σ), so we
take T1 = T .

To get T2 first note that for Σ ∈ ΠC,D that Vol(Σ) is universally bounded by say
C1 and that

(5.1) Fx0,t0(Σ) ≤
1

(4πt0)n/2
Vol(Σ);

hence we easily attain a T2 so that if t0 > T2, then Fx0,t0(Σ) < 1 + σ. �
Consider then a smooth one-parameter family Σs ⊂ ΠC,D for some C,D and the

corresponding manifold A. With this in mind we think of the family of F functionals
Fx0,t0(Σs) as a single function F on A× [0, 1], associating to each s ∈ [0, 1] → Σs.
The above proposition can be interpreted as saying that for every fixed s, supF(Σs)
is attained.

Since the curvature of the one-parameter family Σs will be bounded along [0, 1],
the first variation formula Lemma 4.1 gives a gradient bound on F with say |∇F | <
C2. Slightly modifying the proof of “Hamilton’s trick” to make use of the uniform
gradient bound (see Lemma 2.1.3 in [14]) yields the following:

Lemma 5.4 (Lemma 2.1.3 in [14]). Let u : M × [0, 1] → R be a C1 function with
| gradu| < C such that for every time t, there exist a value δ > 0 and a compact
subset K ⊂ M − ∂M such that at every time t′ ∈ (t− δ, t+ δ)∩ [0, 1] the maximum
umax(t

′) = maxp∈M u(p, t′) is attained at least at one point of K. Then umax is a
Lipschitz function in [0, 1] with Lipschitz constant C.

Our manifold M in the above is A; by slightly enlarging A above we may ensure
that the entropy is attained away from ∂A. Hence we derive the following:

Proposition 5.5. Suppose that Σk
s ⊂ R

�, 0 ≤ s ≤ 1 is a one-parameter family
of closed compact submanifolds bounded locally graphically in C2,α. Then λ(Σs) is
continuous in s.

6. Proof of Theorem 1.1

Consider a hypersurface M flowing to a point in N3 as above. Then there is a
time T > 0 so that for t > T , Mt is contained in a geodesic ball of say radius 1 about
some point x0 ∈ N3. We may isometrically embed Bx0

(1) into R
� for some �, by

Nash’s embedding theorem. Without loss of generality then N is a submanifold of
R

� with bounded second fundamental form so that M is a K-almost Brakke flow.
We start with a couple of lemmas, slight modifications of those in [6]. Huisken
monotonicity plays an important role in the original proofs of both of them, and so
we must modify them to use almost monotonicity. Also, for the second lemma, we
have to use the higher codimension first variation formula for F we recorded above.
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Lemma 6.1 (Modification of Lemma 2.9 in [6]). Let Mt be an n-dimensional
smooth K-almost Brakke flow and choose some S > 0. Furthermore suppose K
is so small as to make the assumptions of Proposition 3.6 hold for τ = S,C = 2.
Then given T > 0, there exists a constant V = V (Vol(M0), S, T ) > 0 so that for all

r <
√
S, all x0 ∈ R

�, and all T < t,

(6.1) Vol(Br(x0) ∩Mt) ≤ (V + 2S)rn.

Proof. Possibly taking δ even smaller without loss of generality K < 1. For any
t0 > t with t0 − t < S to be chosen later:

1

(4π(t0 − t))n/2
e

−1
4 Vol(B√

t0−t(x0) ∩Mt)≤
1

(4π(t0 − t))n/2

∫
B√

t0−t
(x0)∩Mt

e
|x−x0|2
4(t−t0)

≤
∫
Mt

ρx0,t0(·, t)=ux0,t0(t)≤ux0,t0(0) + CK2(t0 − t)≤ 1

(4πT )n/2
Vol(M0) + 2S.

(6.2)

Setting t0 = t + r2 (by assumption, r <
√
S) and multiplying through we get the

inequality. �

Lemma 6.2 (Modification of Lemma 8.7 in [6]). Suppose that Mt ⊂ N is an MCF
of smooth closed surfaces for t < 0 in a smooth manifold N considered embedded in
R

� with bounded second fundamental form (so Mt is a K-almost Brakke flow in R
�

for t < 0 for some K depending on the bound). Also suppose Σ0 is a closed smooth
self shrinker equal to the t = −1 time-slice of a multiplicity one tangent flow to Mt

at (0, 0) ⊂ R
� × R. Then we can choose a sequence sj > 0 with sj → 0 so that

(6.3)
1

√
sj

M−sj converges in C2 to Σ0.

Remark. By this convergence in C2 we mean 1√
sj
M−sj = Σ0 +Xj , where Xj is a

sequence of vector fields in NΣ0 that converges to zero in C2. Also note that if M
converges to a point, we can always arrange that it happens at (0, 0) by translating.

Proof. Fix ε > 0 small (to be given by the Brakke regularity theorem in [18]). Since
Σ0 is a smooth closed embedded surface from Lemma 4.2(1) and (3) above there is
r > 0 so that

(6.4) sup
t0≤r

(
sup

x0∈R3

Fx0,t0(Σ0)

)
< 1 + ε.

The definition of tangent flows gives a sequence sj > 0 with sj → 0 so that the

rescaled flows M j
t = 1√

sj
M t

sj

converge to the multiplicity-one flow
√
−tΣ0. Let

M j
−1 = 1√

sj
M−1

sj

be the t = −1 slice of the j-th rescaled flow. We can assume that

the M j
−1’s converge to Σ0 as radon measures with respect to Hausdorff distance.

We will use the convergence together with the above to get uniform bounds for the
F functionals on the M j

−1’s. To do this, define a sequence of functions gj by

(6.5) gj(x0, t0) = Fx0,t0(M
j
−1).

We will only consider the gj ’s on the region B × [r/3, r], where B ⊂ R
� is a fixed

ball of say radius 2D that contains Σ0 and all of the M j
−1’s. If we have uniform
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local area bounds for the M j
−1 it follows from the first variation formula for Fx0,t0

(Lemma 4.1 above) that the gj ’s are uniformly Lipschitz in this region with

(6.6) sup
B×[r/3,r]

|∇x0,t0gj | ≤ C,

where C depends on r, the radius of the ball B, and the local area bounds. Of
course, since sj → 0 and K scales by K → √

sjK there is a j0 so that for j > j0

almost monotonicity holds (let τ =
√
2D + 1, let ε0 = ε), and hence Lemma 5.1

holds so we get the gradient bound in the parabolic cylinder. Since the M j
−1’s

converge to Σ0 as radon measures and Σ0 satisfies (5.4), it follows that

(6.7) lim
j→∞

gj(x0, t0) < 1 + ε for each fixed (x0, t0) ∈ B × [r/3, r].

Combining this with the derivative estimate and the compactness of B × [r/3, r],
there exists j1 > j0 sufficiently large so that for all j > j1 we have

(6.8) sup
B×[r/3,r]

Fx0,t0(M
j
−1) = sup

B×[r/3,r]

gj(x0, t0) < 1 + 2ε.

We see by Lemma 4.4, almost-monotonicity of F , that after possibly taking j0
larger to ensure in Lemma 4.4 that CK2 < ε, for every −1 < t < 0 and j > j0:

(6.9) Fx0,t0(M
j
t ) ≤ Fx0,t0+(t+1)(M

j
−1) + ε.

Hence if t ∈ (−1 + r/3,−1 + 2r/3), t0 ≤ r/3, and j > j1, then the above yields

(6.10) Fx0,t0(M
j
t ) < 1 + 3ε.

Since ε was arbitrary and N has bounded second fundamental form, this is precisely
what is needed to apply White’s Brakke regularity theorem for forced flows, Theo-
rem 4.1 in [17], to get uniform C2,α bounds on M j

t for all t ∈ (−1+4r/9,−1+5r/9)
for some α ∈ (0, 1). We can slightly change the sj ’s so that we instead have uni-

form C2,α bounds on M j
−1. Finally, observe that if Σj is a sequence of closed

surfaces converging to a closed surface Σ0 as radon measures and both the Σj ’s and
Σ0 satisfy uniform C2,α bounds, then the Σj ’s must converge to Σ0 uniformly in
C2. �

Now, as in [6] we will construct a piecewise MCF with a finite number of disconti-
nuities that eventually becomes extinct in a round point or if one of the singularities
encountered is noncompact (which could happen if, after doing some entropy de-
creasing perturbation, (1.1) fails to hold). This is by doing a smooth jump just
before a (nonround) singular time, where we replace a time-slice of the flow by a
graph (in the normal bundle) over it. Moreover the perturbation we will show can
be done so that the entropy decreases by at least a fixed ε′ = ε/4 > 0 after each
replacement, the ε of course coming from Corollary 4.7 above. We repeat this until
we get to a singular point where every tangent flow consists of shrinking spheres.
Recall again that after using the embedding theorems M is a K-almost Brakke flow
in R

�.
By the assumption, all of the tangent flows at tsing0 are smooth, have multiplicity

one (as described in the introduction), and correspond to compact self shrinkers
with diameter at most D for some D > 0. In particular, since the tangent flows are
compact self shrinkers, there is only one singular point x0 ∈ R

� for the flow. Let Σ0

be a self shrinker equal to the t = −1 time-slice of a multiplicity one tangent flow
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at the singularity. By the assumptions Lemma 6.2 gives a sequence sj > 0 with
sj → 0 so that

(6.11)
1

√
sj

M−sj converges in C2 to Σ0.

There are two possibilities. First, if Σ0 is the round sphere for every tangent flow at
x0, then the above implies that M0

tsing
0 −sj

is converging to a round sphere for every

sequence sj → 0. Suppose instead that there is at least one tangent flow so that Σ0

is not the round sphere. To proceed we will want to use our almost-monotonicity
results, so note that since in (5.10) the sequence sj → 0, there is some j so that
K/

√
sj satisfies the assumptions of Proposition 4.5 above for our choice of ε0, τ .

Let’s determine what these should be before moving on.
After the rescaling (1.1) gives us that the diameter of 1√sj

Mtsing
0 −sj

is bounded

by some D < ∞ as indicated above. Note that after rescaling N by sj sufficiently
small its curvatures (and derivatives thereof) as a submanifold of R� can be made
small enough so the sphere of radius D will shrink to a point by using Theorem
1.1 of [10]. So after possibly taking j even larger by the typical maximum principle
argument using the sphere of radius D as a barrier, the time of the existence of its
flow is bounded by say κ. So we take τ = κ.

Since Σ0 is not the round sphere by Corollary 4.7 above (by equation (1.1) let’s
say the diameter of Σ0 is bounded) we get a graph Γ0 over Σ0 with λ(Γ0) < λ(Σ0)−ε
where ε > 0 is a fixed constant given by the corollary. We set ε0 = ε/4.

With this in mind we relabel M = 1√sj
Mtsing

0 −sj
. Note further rescalings by S,

as long as S > 1, preserve K < δ needed for the choice of ε0 and τ above. Of course
for large enough j, 1√

sj
> 1. When j is sufficiently large, (

√
sjΓ0) + x0 is a graph

in the normal bundle over Mtsing
0 −sj

and

(6.12) λ((
√
sjΓ0) + x0) = λ(Γ0) < λ(Σ0)− ε ≤ λ(Mtsing

0 −sj
)− 3ε

4
,

where the first equality used the scale invariance of entropy and the last inequality
used the almost-monotonicity of entropy under MCF. There’s a small problem
though, in that we see (

√
sjΓ0)+x0 lies in TxN as a 3-plane in R

�, but not necessarily
N . So we want to project (

√
sjΓ0)+x0 down to N . For this of course we need that

entropy depends continuously on Σ in at least certain cases, so our work in section
5 above comes in handy.

Recalling Proposition 5.5 above, to proceed then we need to show that for large
enough rescalings of R� the projection of (

√
sjΓ0) + x0 back onto N , which we’ll

denote Γ̃, is as close as we want to (
√
sjΓ0) + x0 in C2,α topology. More precisely:

Lemma 6.3. For each D, ρ > 0, there exists ξ � 0 so that ξ(N) ∩ BD(x) is a
graph of a function f over TxN and ||f ||C3 < ρ.

Proof. The second fundamental form AN of N is bounded in norm initially and
scales by A → 1

ξ2A under rescaling by ξ, so taking ξ as large as we want we make

|AN |2 as small as we want, which implies N is graphical; see Lemma 2.4 in [8]. For
a graph, C2,α bounds scale by inverse power so that, possibly taking ξ larger, we
can arrange that ||f ||C3 < ρ for a given ρ > 0. �
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We see then, possibly by taking j above larger, that without loss of generality

|λ((√sjΓ0) + x0)− λ(Γ̃)| < ε/4. Hence

(6.13) λ(Γ̃) ≤ λ(Mtsing
0 −sj

)− ε

2
.

We then replace Mtsing
0 −sj

with Γ̃ and restart the flow (note that its diameter will

be less than D, so the time of existence of the flow will be less than κ above).
Note that we already rescaled space by 1√

sj
above, before the first replacement,

so that the almost monotonicity lemmas and “flatness of N” along the lines of
Lemma 6.3 hold with ε0 = ε/4, τ = κ (again, as long as later rescalings by say S
are so that S > 1; this is done by throwing out sj (in subsequent blowup sequences)
with sj > 1). The entropy by the next singularity can only go up by an additional
ε/4, which is to say the entropy of the tangent flow Σ1 at the “next” singular time
satisfies

(6.14) λ(Σ1) < λ(Σ0)−
ε

4
.

Since the entropy ofM was initially finite and entropy goes down a uniform constant
ε/2 > 0 at each replacement and is guaranteed not to increase by more than ε/4
under the flow to the next time, this can only occur a finite number of times until
all tangent flows are round.

7. Concluding remarks

One sees that generally speaking given a hypersurface M so that equation (1.1)
holds up to the first singular time, (1.1) can’t be expected to hold after the pertur-
bation above; it is part of the theorem (that (1.1) holds for the whole piecewise flow)
that this is so for us. For example, if a hypersurface M ⊂ N shrinks to a point and
is not genus 0, we see that (1.1) must eventually fail to hold for some perturbation
because the genus of the surface is unchanged after each replacement and preserved
under the flow. Indeed, a corollary of Theorem 1.1 is that a piecewise MCF start-
ing out of a positive genus surface will eventually encounter a noncompact (after
rescaling) singularity.

It follows by Brendle’s classification in [5], shown after [6] was completed, of genus
0 closed embedded self shrinkers in R

3 as precisely the round sphere of radius 2
that conversely if M is genus zero and shrinks to a point that it must do so to a
round point, so in that sense our theorem is weaker than what is already known
to be true. On the other hand, our methods may readily be generalized to higher
dimensions save for the fact that, as pointed out above, we don’t have quite as
good compactness theorems for self shrinkers in higher dimensions, so the “off the
shelf” possible theorems aren’t quite as strong. One might possibly for example
impose a type 1 blowup rate assumption along with equation (1.1) and use that self
shrinkers with bounded curvature and diameter are a compact set. We also feel it
is interesting to understand how to apply some of Colding and Minicozzi’s theory
to the curved setting.

On that note in R
3, there is at least one known example of a positive genus

closed self shrinker (which of course shrink to a point), the Angenant torus [1] (see
[16] for higher dimensional analogues). Also relevant (although they don’t shrink to
points) are the more recent noncompact self shrinkers by Kapouleas, Kleene, and
Moller in [12] of higher genus obtained by gluing or those obtained by Ketover in
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[13] using min-max methods (in fact, the Ketover examples are possibly actually
compact, but that hasn’t been decided). To the author’s knowledge though, it is
unknown if there are examples in general ambient manifolds of hypersurfaces Σ of
positive genus that shrink to points under the flow (convex enough surfaces, which
are spheres, will by [10]); one imagines it could be possible to get examples using
an inverse function theorem argument by “importing” examples like the Angenant
torus. Related to this, one wonders if there is a good “intrinsic” notion of self
shrinker on an ambient manifold N that would help facilitate this.

It is also worth pointing out that singularities forming as t → ∞ might possibly
occur under the flow in the sense that the surface could flow to a minimal cone as
t → ∞, so that’s why we stipulate above explicitly in the statement of Theorem 1.1
that t0 < ∞. For example, there are examples by Valasquez (see [19]) of surfaces
that develop the Simons cone as a singularity.
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