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THE DOUADY-EARLE EXTENSIONS

ARE NOT ALWAYS HARMONIC

MANMAN JIANG, LIXIN LIU, AND HONGYU YAO

(Communicated by Michael Wolf)

Abstract. In this paper we give examples to show that the Douady-Earle
extensions are not always harmonic. Furthermore, we discuss the criterion for
the Douady-Earle extensions to be harmonic.

1. Introductions

It’s an interesting and important problem of finding nice extensions to Hn of
quasiconformal (or quasisymmetric, if n = 2) self-homeomorphisms of Sn−1. Quasi-
conformal extensions were first constructed by Beurling and Ahlfors [3] in dimension
n = 2; higher dimensional extensions were given by Tukia and Välsälä [22], and
Tukia [21] produced a version that is compatible with the action of a group of
Möbius transformations. Douady and Earle [4] constructed conformally natural
extensions in all dimensions.

Since the development of the basic results by Eells-Sampson [7], Hartman [9] (see
also [2]), Schoen-Yau [17] and Sampson [15], harmonic maps are used extensively
in the study of Teichmüller space. See for example [5], [20] and [24]. Using the
fact that the Hopf differential of a harmonic map between two Riemann surfaces is
holomorphic, Wolf [24] proved that the Teichmüller space Tg of a compact surface
of genus g > 1 is homeomorphic to the space of holomorphic quadratic differentials
of a fixed compact Riemann surface of the same genus. Many important properties
of Tg can be studied by this parametrization; see for example [24], [10].

On the other hand, Wan [23] extended the above results to a more general
setting. Actually Wan [23] constructed a map from the space of bounded (with
respect to the Poincaré metric) holomorphic quadratic differentials on the unit disk
to the universal Teichmüller space. He showed that the map is continuous and open
(see [23] and [19] for details). More generally, Hardt and Wolf [8] showed that the
set of quasiconformal (quasisymmetric, if n = 2) maps f : Sn−1 → Sn−1 which
admit a quasiconformal harmonic extension is open in the set of quasiconformal
(quasisymmetric, resp.) self-maps of Sn−1. In [8] the authors stated that H. L.
Royden raised the problem of finding a harmonic extension, which might then also
enjoy compatibility with Möbius transformations.

Schoen [16] gave a conjecture as follows: For every quasisymmetric homeomor-
phism between the unit circle, there exists a quasiconformal harmonic extension of
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it between the unit disks. Li and Tam ([11, 12]) first constructed harmonic qua-
siconformal extensions under some additional assumptions of smoothness of the
boundary maps and a lower bound on its energy density (see also Akutagawa [1]).
Non-uniqueness properties of such extensions were also identified by Li-Tam ([12],
[13]). They showed that the group compatibility properties would require some
care. Similar non-uniqueness phenomena for some infinite energy harmonic maps
of hyperbolic surfaces of finite volume were also found by Wolf [25].

McMullen [14, Appendix B] showed that the first variations of the Douady-Earle
extensions are harmonic. It is natural to ask if the Douady-Earle extensions of
quasisymmetric maps are always harmonic. An affirmative answer would imply
Schoen’s conjecture. The authors learnt from a number of people who publicly
commented that the Douady-Earle extension is “known” to be harmonic, giving
this relationship folklore status.

In this paper, we construct examples to show that

Theorem 1.1. There exists a quasisymmetric map f : S1 → S1 whose Douady-
Earle extension is not harmonic.

We note that recently Markovic claimed that he proved Schoen’s conjecture.

2. Preliminaries

Let D := {z ∈ C; |z| < 1} be the unit disk in the complex plane C, endowed with
the Poincaré metric

ρ(z)|dz|2 =
4|dz|2

(1− |z|2)2 .

Denote S1 = ∂D and D = D ∪ S1.
A C2 map ω : D → D is called harmonic if it satisfies the Euler-Lagrange

equation

(1) τ (ω) = ωzz + (log ρ)ω ωzωz = 0.

Remark 2.1. The Euler-Lagrange equation (1) is conformally invariant on the do-
main and isometrically invariant on the range. So if we compose a harmonic map
with Möbius transformations, the resulting map will remain harmonic.

Let φ : S1 → S1 be an orientation-preserving circle homeomorphism. We can
lift φ to a self-homeomorphism of R, denoted by φ̃, such that 0 ≤ φ̃(0) < 1 and

φ̃(x+ 1) = φ̃(x) + 1. We say that φ is quasisymmetric if there is a constant K ≥ 1
such that

K−1 ≤ φ̃(x+ t)− φ̃(x)

φ̃(x)− φ̃(x− t)
≤ K,

for all x ∈ R and t > 0.
Any quasisymmetric map admits a quasiconformal extension to the unit disk

[3]. By [8], [19], a quasisymmetric map φ : S1 → S1 with distortion constant K
sufficiently close to 1 admits quasiconformal harmonic extension to the unit disk.

Suppose that φ : S1 → S1 is a quasisymmetric homeomorphism that admits a
quasiconformal harmonic extension H(φ) : D → D, which is unique by [11], [12].
By Remark 2.1, for any g, h ∈ Aut(D), H(g ◦ φ ◦ h) = g ◦H(φ) ◦ h; that is, H(φ) is
conformally natural.
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Consider a homeomorphism φ : S1 → S1. Douady and Earle [4] defined an
extension E(φ) : D → D of φ by mapping each z ∈ D to the unique solution ω ∈ D

such that

(2) F (z, ω) =
1

2π

∫
S1

φ(ξ)− ω

1− ωφ(ξ)

|dξ|
|z − ξ|2 = 0.

By [4], F is real-analytic in D×D, and the map E(φ) : D → D is a homeomorphism
whose restriction to D is a real-analytic diffeomorphism. If φ : S1 → S

1 is qua-
sisymmetric, then E(φ)(z) = ω(z) : D → D is quasiconformal. The Douady-Earle
extension is conformally natural, i.e.

E(g ◦ φ ◦ h) = g ◦ E(φ) ◦ h
for any g, h ∈ Aut(D).

Let V (S1) and V (D) be the space of continuous vector fields on S1 and D, re-
spectively. If f ∈ V (S1) and t is close to 0, there is a one-parameter group of
homeomorphisms φt : S

1 → S
1 such that

φt(u) = u+ tf(u) + o(t), u ∈ S1,

uniformly in u. For t close to 0, the Douady-Earle extension E(φt) of φt satisfies

E(φt)(z) = z + tL(f)(z) + o(t), z ∈ D, L(f)(z) ∈ R
2.

This induces a linear map L : V (S1) → V (D), f �→ L(f), which is conformally
natural. Earle [6] and McMullen [14] proved that any conformally natural linear
map from V (S1) to V (D) is unique up to a multiplicity of a constant. Thus the
first variations of the Douady-Earle extensions are harmonic (see [14, page 206]).
Thus it seems reasonable to guess that the Douady-Earle extensions are harmonic.

3. Proof of Theorem 1.1

In this section we give a family of quasisymmetric maps between S
1 whose

Douady-Earle extensions are not harmonic.
Given a homeomorphism φ : S1 → S1, we denote its Douady-Earle extension by

ω(z) : D → D. Then ω = ω(z) and z ∈ D satisfy the equation (2).
We rewrite (2) as

F (z, z, ω, ω) = 0.

Differentiating it by z and z, respectively, we have

(3)

{
Fz + Fωωz + Fωωz = 0,

Fz + Fωωz + Fωωz = 0.

From (3), we have

(4)

⎧⎪⎪⎨
⎪⎪⎩
ωz = F zFω−FzFω

FωFω−FωFω
,

ωz = FzFω−F zFω

FωFω−FωFω
.

We denote by

A(z, ω) := Fz(z, ω) = − 1

2π

∫
S1

φ(ξ)− ω

1− ωφ(ξ)

|dξ|
(z − ξ)2(z − ξ)

,

B(z, ω) := Fz(z, ω) = − 1

2π

∫
S1

φ(ξ)− ω

1− ωφ(ξ)

|dξ|
(z − ξ)(z − ξ)2

,
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C(z, ω) := Fω(z, ω) = − 1

2π

∫
S1

1

1− ωφ(ξ)

|dξ|
|z − ξ|2 ,

D(z, ω) := Fω(z, ω) = − 1

2π

∫
S1

φ(ξ)(φ(ξ)− ω)

(1− ωφ(ξ))2
|dξ|

|z − ξ|2 .

Let

O(z, ω) := C(z, ω)C(z, ω)−D(z, ω)D(z, ω),

P (z, ω) := B(z, ω)D(z, ω)−A(z, ω)C(z, ω),

Q(z, ω) := A(z, ω)D(z, ω)−B(z, ω)C(z, ω).

Then by (4), we have

(5) ωz =
B(z, ω)D(z, ω)−A(z, ω)C(z, ω)

C(z, ω)C(z, ω)−D(z, ω)D(z, ω)
=

P (z, ω)

O(z, ω)
,

(6) ωz =
A(z, ω)D(z, ω)−B(z, ω)C(z, ω)

C(z, ω)C(z, ω)−D(z, ω)D(z, ω)
=

Q(z, ω)

O(z, ω)
.

It follows from (5) and (6) that

(7) ωzz =
O(z, ω)Pz(z, ω)−Oz(z, ω)P (z, ω)

O2(z, ω)
,

where

Oz(z, ω) = C(z, ω)Cz(z, ω) + C(z, ω)Cz(z, ω)

−D(z, ω)Dz(z, ω)−D(z, ω)Dz(z, ω),

Pz(z, ω) = Bz(z, ω)D(z, ω) +B(z, ω)Dz(z, ω)

−Az(z, ω)C(z, ω)−A(z, ω)Cz(z, ω).

The relevant terms are as follows:

Az(z, ω) =
1

2π

∫
S1

φ(ξ)− ω

1− ωφ(ξ)

|dξ|
(z − ξ)2(z − ξ)2

+
ωz

2π

∫
S1

1

1− ωφ(ξ)

|dξ|
(z − ξ)2(z − ξ)

−ωz

2π

∫
S1

φ(ξ)(φ(ξ)− ω)

(1− ωφ(ξ))2
|dξ|

(z − ξ)2(z − ξ)
,

Bz(z, ω) = Fzz(z, ω) = Fzz(z, ω) = Az(z, ω),

Cz(z, ω) =
1

2π

∫
S1

1

1− ωφ(ξ)

|dξ|
(z − ξ)2(z − ξ)

−ωz

2π

∫
S1

φ(ξ)

(1− ωφ(ξ))2
|dξ|

(z − ξ)(z − ξ)
,

Cz(z, ω) =
1

2π

∫
S1

1

1− ωφ(ξ)

|dξ|
(z − ξ)(z − ξ)2

−ωz

2π

∫
S1

φ(ξ)

(1− ωφ(ξ))2
|dξ|

(z − ξ)(z − ξ)
,
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Dz(z, ω) = − 1

2π

∫
S1

φ(ξ)(φ(ξ)− ω)

(1− ωφ(ξ))2
|dξ|

(z − ξ)2(z − ξ)

−ωz

2π

∫
S1

φ(ξ)

(1− ωφ(ξ))2
|dξ|

(z − ξ)(z − ξ)

+
ωz

π

∫
S1

φ2(ξ)(φ(ξ)− ω)

(1− ωφ(ξ))3
|dξ|

(z − ξ)(z − ξ)
,

Dz(z, ω) = − 1

2π

∫
S1

φ(ξ)(φ(ξ)− ω)

(1− ωφ(ξ))2
|dξ|

(z − ξ)(z − ξ)2

−ωz

2π

∫
S1

φ(ξ)

(1− ωφ(ξ))2
|dξ|

(z − ξ)(z − ξ)

+
ωz

π

∫
S1

φ2(ξ)(φ(ξ)− ω)

(1− ωφ(ξ))3
|dξ|

(z − ξ)(z − ξ)
.

To make the above computation feasible, we will consider those homeomorphisms
φ : S1 → S1 satisfying ω(0) = 0. This is equivalent to

(8)

∫
S1

φ(ξ)|dξ| = 0.

Let H be the set of homeomorphisms between the unit circles. The subset of H
consists of homeomorphisms φ : S1 → S1 such that ω(0) = 0 will be denoted by
H0.

To show that a certain Douady-Earle extension ω is not harmonic, it suffices to
show that the Euler-Lagrange equation (1) is not true at some point, for example,
at the point z = 0. Since

ρ(ω)|dω|2 =
4|dω|2

(1− |ω|2)2
we have

(log ρ)ω =
2ω

1− |ω|2 .

Then Euler-Lagrange equation (1) is equivalent to

(9) τ (ω) = ωzz +
2ω

1− |ω|2ωzωz = 0.

For φ ∈ H0, to show that ω doesn’t satisfy (9) at z = 0 , it’s equivalent to show
that ωzz(0) 	= 0. From (7), we have

(10) ωzz̄(0) =
O(0, 0)Pz̄(0, 0)−Oz̄(0, 0)P (0, 0)

O2(0, 0)
.

We conclude that

Proposition 3.1 (Criterion of harmonicity). For φ ∈ H0, the Douady-Earle ex-
tension ω of φ is not harmonic at the point z = 0 if and only if

O(0, 0)Pz̄(0, 0) 	= Oz̄(0, 0)P (0, 0).

Letting φ ∈ H0, the previous terms can be simplified as follows:

(11)

⎧⎪⎨
⎪⎩
A(0, 0) = 1

2π

∫
S1
ξφ(ξ)|dξ|, B(0, 0) = 1

2π

∫
S1
ξφ(ξ)|dξ|,

C(0, 0) = −1, D(0, 0) = 1
2π

∫
S1
φ2(ξ)|dξ|.
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(12)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Az(0, 0) =
ωz

2π

∫
S1
ξφ2(ξ)|dξ|,

Bz(0, 0) = Az(0, 0), Cz(0, 0) = Cz(0, 0) = 0,

Dz(0, 0) =
1
2π

∫
S1
ξφ2(ξ)|dξ|+ ωz

π

∫
S1
φ3(ξ)|dξ|,

Dz(0, 0) =
1
2π

∫
S1
ξφ2(ξ)|dξ|+ ωz

π

∫
S1
φ3(ξ)|dξ|.

Now we construct a family of homeomorphisms ft : S
1 → S1. Let⎧⎨

⎩
a1(t) = 1 + t,

a2(t) = 1− (1 +
√
3)t,

a3(t) = 1 +
√
3t

where −
√
3
3 < t <

√
3−1
2 . For z = eiθ ∈ S1, we define

ft(e
iθ) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

e
i 1
a1(t) θ, for 0 ≤ θ ≤ a1(t)

π
6 ,

e
i(1− a1(t)

a2(t)
)π
6 e

i 1
a2(t)

θ
, for a1(t)

π
6 ≤ θ ≤ (a1(t) + a2(t))

π
6 ,

e
i(1− 1

a3(t) )
π
2 e

i 1
a3(t) θ, for π

2 − a3(t)
π
6 ≤ θ ≤ π

2 + a3(t)
π
6 ,

e
i(4− 3π

a2(t)−
a3(t)

a2(t) )
π
6 e

i 1
a2(t) θ, for π

2 + a3(t)
π
6 ≤ θ ≤ π

2 + (a2(t) + a3(t))
π
6 ,

e
i(1− 1

a1(t)
)π
e
i 1
a1(t)

θ
, for π − a1(t)

π
6 ≤ θ ≤ π,

eiθ, for π ≤ θ ≤ 2π.

a′

b′
c′ d′ e′

f ′

g′a

b
c d e

f

g

Figure 1. The family of homeomorphism ft : S
1 → S1.

As shown in Figure 1, ft is the identity on the lower-half circle. On the upper-half
circle, let a, b, c, d, e, f, g be the points on the source with ∠aob = ∠fog = a1(t)

π
6 ,

∠boc = ∠eof = a2(t)
π
6 , ∠cod = ∠doe = a3(t)

π
6 . And let a′, b′, c′, d′, e′, f ′, g′ be

the points on the upper-half circle which divide the half circle into six parts with
equal arc length. Then ft(a) = a′, ft(b) = b′, ft(c) = c′, ft(d) = d′, ft(e) = e′,
ft(f) = f ′, ft(g) = g′. Each ft is piecewise linear with respect to the angle.

Define gt : D → D by

gt(z) = gt(re
iθ) := rft(e

iθ), for z = reiθ ∈ D
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with 0 ≤ r ≤ 1 and 0 ≤ θ < 2π. Then gt is a homeomorphic extension of ft. Direct
computation shows that the maximal quasiconformal dilatation Kt of gt satisfies

Kt ≤ max
1≤j≤3

|1 + aj(t)

1− aj(t)
|.

So gt(z) is a quasiconformal homeomorphism between D for −
√
3
3 < t <

√
3−1
2 .

This implies that ft : S1 → S1 is a quasisymmetric map and has quasiconformal
extension.

Lemma 3.2. The quasisymmetric homeomorphism ft : S
1 → S

1 satisfies (8).

Proof. Note that

∫
S1

ft(ξ)|dξ| =
∫ 2π

0

ft(e
iθ)dθ

=

∫ a1(t)
π
6

0

e
i 1
a1(t) θdθ +

∫ (a1(t)+a2(t))
π
6

a1(t)
π
6

e
i(1− a1(t)

a2(t) )
π
6 e

i 1
a2(t) θdθ

+

∫ π
2 +a3(t)

π
6

π
2 −a3(t)

π
6

e
i(1− 1

a3(t)
)π
2 e

i 1
a3(t)

θ
dθ

+

∫ π
2 +(a2(t)+a3(t))

π
6

π
2 +a3(t)

π
6

e
i(4− 3π

a2(t)
− a3(t)

a2(t)
)π
6 e

i 1
a2(t)

θ
dθ

+

∫ π

π−a1(t)
π
6

e
i(1− 1

a1(t)
)π
e
i 1
a1(t)

θ
dθ +

∫ 2π

π

eiθdθ

=

∫ π
6

0

a1(t)e
iθdθ +

∫ π
3

π
6

a2(t)e
iθdθ +

∫ 2π
3

π
3

a3(t)e
iθdθ

+

∫ 5π
6

2π
3

a2(t)e
iθdθ +

∫ π

5π
6

a1(t)e
iθdθ +

∫ 2π

π

eiθdθ

= −ia1(t)(

√
3

2
− 1)− ia2(t)(

1

2
−

√
3

2
)− ia3(t)(−

1

2
)− i

= 0.

�

We prove Theorem 1.1 by showing that

Theorem 3.3. For |t| 	= 0 sufficiently small, the Douady-Earle extension of ft is
not harmonic at z = 0.

Proof. Since ∫
S1

ft(ξ)|dξ| = 0,

we have ωt(0) = 0, where ωt : D → D denotes the Douady-Earle extension of ft. In
the following, At denotes A(z, ωt) and so on, as we defined in the discussion before
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Proposition 3.1. By 11 and 12, for t close to 0, we have

At(0, 0) =
1

2π

∫
S1

ξft(ξ)|dξ|

=
1

2π
[π + (

2
1

a1(t)
− 1

− 2
1

a2(t)
− 1

) sin(1− a1(t))
π

6

+(
2

1
a3(t)

− 1
− 2

1
a2(t)

− 1
) sin(1− a3(t))

π

6
]

= 1− (8−
√
3)

π2

1296
t2 + o(t2).

Bt(0, 0) =
1

2π

∫
S1

ξft(ξ)|dξ|

= [
1

2π
(

2
1

a1(t)
+ 1

− 2
1

a2(t)
+ 1

) sin(1 + a1(t))
π

6

+(
2

1
a2(t)

+ 1
− 2

1
a3(t)

+ 1
) sin(1 + a3(t))

π

6
]

=
−3 +

√
3

8π
t+ (

√
3

8π
− 1

12
)t2 + o(t2).

Dt(0, 0) =
1

2π

∫
S1

f2
t (ξ)|dξ| =

√
3

4π
(a1(t)− a3(t))

=
−3 +

√
3

4π
t.

We denote by

I1(t) =

∫
S1

ξf2
t (ξ)|dξ|

= i2{ 1
2

a1(t)
− 1

[1− sin(1 + a1(t))
π

6
]

+
1

2
a3(t)

− 1
sin(2− a3(t))

π

6

+
1

2
a2(t)

− 1
[sin(1 + a1(t))

π

6
− sin(2− a3(t))

π

6
]− 1}

= (14 + 2
√
3− 5

3
π − 7

3

√
3π)it2 + o(t2).

I2(t) =

∫
S1

ξf2
t (ξ)|dξ|

= i2{ 1
2

a1(t)
+ 1

[1− sin(1− a1(t))
π

6
]− 1

2
a3(t)

+ 1
sin(2 + a3(t))

π

6

+
1

2
a2(t)

+ 1
[sin(1− a1(t))

π

6
+ sin(2 + a3(t))

π

6
]− 1

3
}

= −8
√
3

9
it+ [

−8(1 +
√
3) + 2(2 +

√
3)π

27
]it2 + o(t2).
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I3(t) =

∫
S1

f3
t (ξ)|dξ|

=
2

3
(a1(t) + a2(t)− a3(t)− 1)i

= −4
√
3

3
it.

We are going to show that ωt
zz(0) 	= 0. By definition,

Ot(0, 0) = |Ct(0, 0)|2 − |Dt(0, 0)|2 = 1− (3−
√
3)2

16π2
t2.

P t(0, 0) = B
t
(0, 0)Dt(0, 0)−At(0, 0)C

t
(0, 0)

= 1 + [
(3−

√
3)2

32π2
− (8−

√
3)

π2

1296
]t2 + o(t2).

Qt(0, 0) = At(0, 0)D
t
(0, 0)− B̄t(0, 0)Ct(0, 0)

=
3(−3 +

√
3)

8π
t+ (

√
3

8π
− 1

12
)t2 + o(t2).

From (5) and (6), we have

ωt
z(0, 0) =

P
t
(0, 0)

Ot(0, 0)

= 1 + [
3(3−

√
3)2

32π2
− (8−

√
3)

π2

1296
]t2 + o(t2).

ωt
z(0, 0) =

Qt(0, 0)

Ot(0, 0)

=
3(−3 +

√
3)

8π
t+ (

√
3

8π
− 1

12
)t2 + o(t2).

Applying (12), we have

Dt
z(0, 0) =

1

2π
I2(t) +

1

π
ωt
z(0, 0)I3(t)

= −16
√
3

9π
it+

1

27π
[−4(1 +

√
3) + (2 +

√
3)π]it2 + o(t2).

D
t

z(0, 0) =
1

2π
I1(t) +

1

π
ωt
z̄(0, 0)I3(t)

= [
3(1−

√
3)

2π2
− 1

2π
(14 + 2

√
3− 5

3
π − 7

√
3

3
π)]it2 + o(t2).

B
t

z(0, 0) = Āt
z(0, 0) =

1

2π
ωt
z(0, 0)I1(t)

= − 1

2π
(14 + 2

√
3− 5

3
π − 7

3

√
3π)it2 + o(t2).
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By conjugation, we also have

At
z(0, 0) = Bt

z(0, 0)

=
1

2π
(14 + 2

√
3− 5

3
π − 7

3

√
3π)it2 + o(t2).

By direct computation, we have

P t
z(0, 0) = B

t

z(0, 0)D
t(0, 0) +B

t
(0, 0)Dt

z(0, 0)−At
z(0, 0)C

t
(0, 0)

= [
1

2π
(14 + 2

√
3− 7

3

√
3π − 5

3
π) +

2(
√
3− 1)

3π2
]it2 + o(t2).

Since Ct(0, 0) = −1, Ct
z(0, 0) = Ct

z(0, 0) = 0, it is easy to check that

Ot
z(0, 0) = −Dt(0, 0)D

t

z(0, 0)−D
t
(0, 0)Dt

z(0, 0)

=
4(1−

√
3)

3π2
it2 + o(t2).

As a result, we have

ωt
zz(0) =

Ot(0, 0)P t
z(0, 0)−Ot

z(0, 0)P
t(0, 0)

(Ot)2(0, 0)

= [
1

2π
(14 + 2

√
3− 7

3

√
3π − 5

3
π) +

2(
√
3− 1)

π2
]it2 + o(t2)

≈ 0.07378it2 + o(t2).

Thus we know that when |t| is small enough and t 	= 0, ωt
zz(0) 	= 0. Thus the

Douady-Earle extensions ft are not harmonic. �

Remark 3.4. It is interesting to know whether for any t with t 	= 0 and −
√
3
3 < t <

√
3−1
2 , the Douady-Earle extension of ft is harmonic or not. Let t = −0.5 and let

ω(z) be the Douady-Earle extension of f−0.5. A direct computation deduces that
ωzz̄(0) ≈ 0.01737i, with error controlled by 10−5. This shows that the Douady-
Earle extension of f−0.5 is not harmonic.

Our proof of Theorem 3.3 implies the following.

Corollary 3.5. The Douady-Earle extensions are not always harmonic with respect
to the Euclidean metric on D.

Note that the family of quasisymmetric maps {ft} defined above is piece-wise
smooth. We know from [18] that each ft admits a quasisymmetric harmonic exten-
sion to the Poincaré disk.

Endow the set H of homeomorphisms φ : S1 → S1 with the compact-open
topology. We know that the Douady-Earle extension E(φ) and the first partial
derivatives of E(φ) depend continuously on φ ∈ H (see [4, pages 30-31]). Denote
the subset of H0 (H) consisting of elements whose Douady-Earle are not harmonic
by H′

0 (H′). We have showed that H′
0 is non-empty. Using Proposition 3.1, we have

Corollary 3.6. The subsets H′
0 and H′ are non-empty open subsets of H0 and H,

respectively.

Remark 3.7. By conformally natural property, it’s possible to give a criteria for the
harmonicity of any homeomorphism in H at any point in the unit disk.



THE DOUADY-EARLE EXTENSIONS ARE NOT ALWAYS HARMONIC 2863

It seems reasonable to make the following conjecture:

Conjecture 3.8. The subset H′ is an open and dense subset of H.

We conclude this section with the following:

Problem 3.9. Is there a non-trivial homeomorphism between circles whose
Douady-Earle extension is harmonic?

4. Criterion of harmonicity by Fourier series

We consider the harmonicity of the Douady-Earle extension of φ ∈ H0 at z = 0.
For φ ∈ H0, denote its Fourier series by

φ(z) =

+∞∑
−∞

anz
n,

where

an =
1

2π

∫
|z|=1

φ(z)z̄n|dz|.

By (8), a0 = 0. With the previous notation, we have

A(0, 0) = a1, B(0, 0) = a−1, C(0, 0) = −1, D(0, 0) = Σ+∞
−∞ana−n,

and
O(0, 0) = 1−D(0, 0)D̄(0, 0), P (0, 0) = ā−1D(0, 0) + a1,

Q(0, 0) = a1D̄(0, 0) + ā−1.

Set

E1 = ωz(0, 0) =
P (0, 0)

O(0, 0)
=

ā−1D(0, 0) + a1
1−D(0, 0)D̄(0, 0)

,

E2 = ω̄z(0, 0) =
Q(0, 0)

O(0, 0)
=

a1D̄(0, 0) + ā−1

1−D(0, 0)D̄(0, 0)
,

D1 =
1

2π

∫
S1

ξ̄φ2(ξ)|dξ| = Σ+∞
−∞ana1−n,

D2 =
1

2π

∫
S1

ξφ2(ξ)|dξ| = Σ+∞
−∞ana−n−1.

Then
Az̄(0, 0) = Bz(0, 0) = D1Ē1, Cz(0, 0) = Cz̄(0, 0) = 0.

Denote by Ml = Σs+t=lasat. Then

D3 =
1

2π

∫
S1

φ3(ξ)|dξ| = Σ+∞
−∞a−lMl,

Dz(0, 0) = D1 + 2D3E2, Dz̄(0, 0) = D2 + 2D3Ē1,

and

Oz̄(0, 0) = −D(0, 0)D̄z̄(0, 0)− D̄(0, 0)Dz̄(0, 0)

= −D(0, 0)D̄1 − D̄(0, 0)D2 − 2D(0, 0)D̄3Ē2 − 2D̄(0, 0)D3Ē1,

Pz̄(0,0) = B̄z̄(0, 0)D(0, 0) + B̄(0, 0)Dz̄(0, 0) +Az̄(0, 0)

= ā−1 + 2ā−1D3E1 +D1Ē1 +D(0, 0)D̄1E1.

As a result,

O(0, 0) = 1−D(0, 0)D̄(0, 0), P (0, 0) = a1 + ā−1D(0, 0).
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Summarizing the above discussion, we have the following:

φ(z) = Σ∞
−∞anzn, a0 = 0.

O(0, 0) = 1− |Σ+∞
−∞ana−n|2.

P (0, 0) = a1 + ā−1Σ
+∞
−∞ana−n.

Oz̄(0, 0) = −Σ+∞
−∞ana−nΣ

+∞
−∞ānā−n − Σ+∞

−∞ānā−nΣ
+∞
−∞ana−n−1

−2Σ+∞
−∞ana−nΣ

+∞
−∞ā−nM̄n

ā−1 + a1Σ
+∞
−∞ānā−n

1− |Σ+∞
−∞ana−n|2

−2Σ+∞
−∞ānā−nΣ

+∞
−∞a−nMn

ā1 + a−1Σ
+∞
−∞ānā−n

1− |Σ+∞
−∞ana−n|2

.

Pz̄(0, 0) = ā−1 + 2ā−1Σ
+∞
−∞a−nMn

a1 + ā−1Σ
+∞
−∞ana−n

1− |Σ+∞
−∞ana−n|2

+Σ+∞
−∞ana1−n

ā1 + a−1Σ
+∞
−∞ānā−n

1− |Σ+∞
−∞ana−n|2

+Σ+∞
−∞ana−nΣ

+∞
−∞ānā1−n

a1 + ā−1Σ
+∞
−∞ana−n

1− |Σ+∞
−∞ana−n|2

.

Then from (10), we obtain a sufficient and necessary condition of the Douady-
Earle extension of φ to be harmonic at z = 0, that is,

O(0, 0)Pz̄(0, 0)−Oz̄(0, 0)P (0, 0) = 0,

where O(0, 0), Oz̄(0, 0), P (0, 0) and Pz̄(0, 0) are as above.
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Möbius group, Acta Math. 154 (1985), no. 3-4, 153–193, DOI 10.1007/BF02392471.
MR781586
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